First Cultivated Meat Approved By The FDA

A major milestone is currently underway in the realm of cultivated meat. Food scientists have spent decades of research and development crafting new meat to tackle the increasing demand for this produce, reduce environmental degradation, and support animal welfare (via CNN). Now, one company is swiftly on its way to producing some of the country's first cultured protein. Following its first pre-market consultation, the FDA has evaluated the safety of cultivated chicken created by Upside Foods and confirmed that there are no further questions at this time.

You must be logged in to view this content.

How to Deliver Chemo Straight to the Brain to Kill Cancer

The blood-brain barrier is an important aspect of the brain’s blood vessels that prevents poisons, viruses, and bacteria in blood from infiltrating the brain—but it inadvertently blocks most therapeutic substances. Nanoparticles, focused ultrasound, clever chemistry, and other innovative ideas are being tried to overcome the barrier and deliver treatments to the brain. Now, neurosurgeons at Columbia University and NewYork-Presbyterian are taking a more direct approach: a fully implantable pump that continuously delivers chemo through a tube inserted directly into the brain.

You must be logged in to view this content.

Breast Cancer Vaccine to Boost Anti-Tumor Immunity

An experimental vaccine against breast cancer safely generated a strong immune response to a key tumor protein, researchers from the University of Washington (UW) School of Medicine in Seattle report in a paper published by the journal JAMA Oncology. The findings suggest the vaccine may be able to treat different types of breast cancer.

Because this was not a randomized clinical trial, the results should be considered preliminary, but the findings are promising enough that the vaccine will now be evaluated in a larger, randomized clinical trial,” said lead author Dr. Mary “Nora” L. Disis, a UW professor of medicine, Division of Medical Oncology, and director of the Cancer Vaccine Institute.

You must be logged in to view this content.

Extension of the Life of Immune System Means Live Longer

A new mechanism that slows down and may even prevent the natural ageing of immune cells – one of the ninehallmarks of ageing’* – has been identified by an international team led by UCL scientists.

Published in Nature Cell Biology, researchers say the discovery in-vitro (cells) and validated in mice was ‘unexpected’ and believe harnessing the mechanism could extend the life of the immune system, allowing people to live healthier and longer, and would also have clinical utility for diseases such as cancer and dementia.

You must be logged in to view this content.

How to Grow Fully Functioning Hair Follicles

We can add functional mouse hair follicles to body parts that scientists have successfully grown in the lab, outside the body. Using cells obtained from embryonic mice, for the first time researchers were able to produce hair follicle organoidssmall, simple versions of an organ – that grew hair.

Moreover, they were able to influence the pigmentation of the hair; and, when the follicles were transplanted into living hairless mice, they continued to function across multiple hair growth cycles. This research, the team says, could help aid efforts to treat hair loss, as well as provide alternative models to animal testing and drug screening.

You must be logged in to view this content.

How to Boost DNA Repair in Aging Cells

Scientists have long wondered why cells lose their ability to repair themselves as they age. New research by scientists has uncovered two intriguing cluesDNA strands in human cells routinely break and repair themselves, Seluanov and Gorbunova from University of Rochester explained, but as cells age, the system for repair becomes less efficient and flaws in the process lead to a decline in the functionality of tissue and an increase in the incidence of tumors. Their team wanted to determine why this occurs, and establish whether the process could be slowed, or even reversed.
Seluanov and his colleagues found that the decline in a cell's ability to repair DNA during aging coincided with a global reduction in the levels of proteins involved in the repair process. Seluanov's group tried to reverse the age-related decline in DNA repair efficiency by restoring the proteins to their original levels and found only one protein, SIRT6, did the trick. Gorbunova said the results build on a paper by Haim Cohen, a staff scientist investigating aging at Bar-Ilan University in Israel, and others published in the journal Nature this summer.

"That work showed that overexpressing the SIRT6 protein extended the lifespans of mice," said Gorbunova, "Our research looked at DNA repair and found a reason for the increased longevity, and that is SIRT6's role in promoting more efficient DNA repair."

The next step for Seluanov and his team is to study the factors that regulate SIRT6, in an effort to learn more about the early stages of the DNA repair process. Seluanov said that multiple groups are trying to develop drugs that activate SIRT6, and he hopes that this research will one day lead to therapies that help extend a person's lifespan and treat cancer.

You must be logged in to view this content.

Cancer Vaccine Available Before 2030

Vaccines that target cancer could be available before the end of the decade, according to the husband and wife team behind one of the most successful Covid vaccines of the pandemic. Uğur Şahin and Özlem Türeci, who co-founded BioNTech, the German firm that partnered with Pfizer to manufacture a revolutionary mRNA Covid vaccine, said they had made breakthroughs that fuelled their optimism for cancer vaccines in the coming years. Speaking on the BBC’s Sunday with Laura Kuenssberg, Prof Türeci described how the mRNA technology at the heart of BioNTech’s Covid vaccine could be repurposed so that it primed the immune system to attack cancer cells instead of invading coronaviruses.

Asked when cancer vaccines based on mRNA might be ready to use in patients, Prof Sahin said they could be available “before 2030”.

An mRNA Covid vaccine works by ferrying the genetic instructions for harmless spike proteins on the Covid virus into the body. The instructions are taken up by cells which churn out the spike protein. These proteins, or antigens, are then used as “wanted posters” – telling the immune system’s antibodies and other defences what to search for and attack. The same approach can be taken to prime the immune system to seek out and destroy cancer cells, said Türeci, BioNTech’s chief medical officer. Rather than carrying code that identifies viruses, the vaccine contains genetic instructions for cancer antigensproteins that stud the surfaces of tumour cells.

Source: https://www.theguardian.com/

‘Dancing Molecules’ Successfully Repair Severe Spinal Cord Injuries

Northwestern University researchers have developed a new injectable therapy that harnessesdancing molecules” to reverse paralysis and repair tissue after severe spinal cord injuries. In a new study, researchers administered a single injection to tissues surrounding the spinal cords of paralyzed mice. Just four weeks later, the animals regained the ability to walk.

By sending bioactive signals to trigger cells to repair and regenerate, the breakthrough therapy dramatically improved severely injured spinal cords in five key ways: The severed extensions of neurons, called axons, regenerated. Scar tissue, which can create a physical barrier to regeneration and repair, significantly diminished. Myelin, the insulating layer of axons that is important in transmitting electrical signals efficiently, reformed around cells. Functional blood vessels formed to deliver nutrients to cells at the injury site. More motor neurons survived.
After the therapy performs its function, the materials biodegrade into nutrients for the cells within 12 weeks and then completely disappear from the body without noticeable side effects. This is the first study in which researchers controlled the collective motion of molecules through changes in chemical structure to increase a therapeutic’s efficacy.

Our research aims to find a therapy that can prevent individuals from becoming paralyzed after major trauma or disease,” said Northwestern’s Samuel I. Stupp, who led the study. “For decades, this has remained a major challenge for scientists because our body’s central nervous system, which includes the brain and spinal cord, does not have any significant capacity to repair itself after injury or after the onset of a degenerative disease. We are going straight to the FDA to start the process of getting this new therapy approved for use in human patients, who currently have very few treatment options.”

Stupp is Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern, where he is founding director of the Simpson Querrey Institute for BioNanotechnology (SQI) and its affiliated research center, the Center for Regenerative Nanomedicine.

Source: https://news.northwestern.edu/

Crispr Can Edit Directly Genes Inside Human Bodies

A decade ago, biologists Jennifer Doudna and Emmanuelle Charpentier published a landmark paper describing a natural immune system found in bacteria and its potential as a tool for editing the genes of living organisms. A year later, in 2013, Feng Zhang and his colleagues at the Broad Institute of MIT and Harvard reported that they’d harnessed that systemknown as Crispr, to edit human and animal cells in the lab. The work by both teams led to an explosion of interest in using Crispr to treat genetic diseases, as well as a 2020 Nobel Prize for Doudna and Charpentier.

Many diseases arise from gene mutations, so if Crispr could just snip out or replace an abnormal gene, it could in theory correct the disease. But one of the challenges of turning test tube Crispr discoveries into cures for patients has been figuring ouhow to get the gene-editing components to the place in the body that needs treatment.

One biotech company, Crispr Therapeutics, has gotten around that issue by editing patients’ cells outside the body. Scientists there have used the tool to treat dozens of people with sickle cell anemia and beta thalassemia—two common blood disorders. In those trials, investigators extract patients’ red blood cells, edit them to correct a disease-causing mutation, then infuse them back into the body.

But this “ex vivo” approach has downsides. It’s complex to administer, expensive, and has limited uses. Most diseases occur in cells and tissues that can’t be easily taken out of the body, treated, and put back in. So the next wave of Crispr research is focused on editingin vivo”—that is, directly inside a patient’s body. Last year, Intellia Therapeutics was the first to demonstrate that this was possible for a disease called transthyretin amyloidosis. And last week, the Cambridge, Massachusetts-based biotech company showed in-the-body editing in a second disease.

Source: https://www.intelliatx.com/
AND
https://www.wired.com/

Cancer-killing Virus Shrinks Tumours of A Third of the Patients

A new type of cancer therapy that uses a common virus to infect and destroy harmful cells is showing big promise in early  human trials, say UK scientists. One patient’s cancer vanished, while others saw their tumours shrink. The drug is a weakened form of the cold sore virusherpes simplex – that has been modified to kill tumours. Larger and longer studies will be needed, but experts say the injection might ultimately offer a lifeline to more people with advanced cancers.

Krzysztof Wojkowski, a 39-year-old builder from west London, is one of the patients who took part in the ongoing phase one safety trial, run by the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust. He was diagnosed in 2017 with cancer of the salivary glands, near the mouth. Despite surgery and other treatments at the time, his cancer continued to grow.

I was told there was no options left for me and I was receiving end-of-life care. It was devastating, so it was incredible to be given the chance to join the trial.” A short course of the virus therapy – which is a specially modified version of the herpes virus which normally causes cold sores – appears to have cleared his cancer. “I had injections every two weeks for five weeks which completely eradicated my cancer. I’ve been cancer-free for two years now.”

The injections, given directly into the tumour, attacks cancer in two ways – by invading the cancerous cells and making them burst, and by activating the immune system. About 40 patients have tried the treatment as part of the trial. Some were given the virus injection, called RP2, on its own. Others also received another cancer drug – called nivolumab – as well.

The findings, presented at a medical conference in Paris, France, show that three out of nine patients given RP2 only, which included Krzysztof, saw their tumours shrink.

Source: https://www.bbc.com/