How to Grow New Liver

A new experimental treatment could help treat end-stage liver disease – by growing tiny new livers elsewhere in the patient’s bodies. The technique, pioneered by cell therapy company LyGenesis, is due to begin human clinical trials in the next few weeks. The liver has a powerful regenerative capacity, able to repair itself from the constant damage it sustains as it works to rid the body of toxins. But alcohol intake or an unhealthy diet can impair that ability and lead to liver disease, the end stages of which can require liver transplants.

But the team at LyGenesis has been working on a creative alternative that would be much less invasive. Rather than replacing the liver, the technique would involve growing entirely new ones elsewhere in the bodymini-livers that can perform the same vital functions.

The process involves injecting healthy liver cells, taken from donated organs, into the recipient’s lymph nodes. There, they multiply and grow into functioning mini versions that can support the work of the remaining cells in the original liver. Previous tests in micepigs and dogs showed that the treatment improved their liver function, and can save the lives of many animals that would otherwise succumb to liver failure.

And now LyGenesis is preparing to test the technique in humans for the first time, in a phase 2a clinical trial. Beginning in the next few weeks, 12 adults with end-stage liver disease (ESLD) will receive batches of healthy liver cells. These will be delivered via endoscope and injected directly into the lymph nodes.

The trial participants will be split into three groups of four that receive different doses – either 50 million, 150 million or 250 million cells. It’s thought that for every 50 million cells a patient receives, they will grow one mini liver, meaning the highest dose group could end up with five extra livers. The LyGenesis team will monitor the patients for a year afterwards, assessing the effectiveness and safety of the treatment at the different doses.

Patients will need to receive immune-suppressing drugs to prevent their bodies rejecting the “foreign” mini-livers, much the same as those who currently receive whole organ transplants. However,

Source: https://newatlas.com/

Algorithms Boost Cell Therapy

Cellular therapy is a powerful strategy to produce patient-specific, personalised cells to treat many diseases, including heart disease and neurological disorders. But a major challenge for cell therapy applications is keeping cells alive and well in the lab.

That may soon change as researchers at Duke-NUS Medical School, Singapore, and Monash University, Australia, have devised an algorithm that can predict what molecules are needed to keep cells healthy in laboratory cultures. They developed a computational approach called EpiMogrify, that can predict the molecules needed to signal stem cells to change into specific tissue cells, which can help accelerate treatments that require growing patient cells in the lab.

Computational biology is rapidly becoming a key enabler in cell therapy, providing a way to short-circuit otherwise expensive and time-consuming discovery approaches with cleverly designed algorithms,” said Assistant Professor Owen Rackham, a computational biologist at Duke-NUS, and a senior and corresponding author of the study, published today in the journal Cell Systems.

In the laboratory, cells are often grown and maintained in cell cultures, formed of a substance, called a medium, which contains nutrients and other molecules. It has been an ongoing challenge to identify the necessary molecules to maintain high-quality cells in culture, as well as finding molecules that can induce stem cells to convert to other cell types.

The research team developed a computer model called EpiMogrify that successfully identified molecules to add to cell culture media to maintain healthy nerve cells, called astrocytes, and heart cells, called cardiomyocytes. They also used their model to successfully predict molecules that trigger stem cells to turn into astrocytes and cardiomyocytes. “Research at Duke-NUS is paving the road for cell therapies and regenerative medicine to enter the clinic in Singapore and worldwide; this study leverages our expertise in computational and systems biology to facilitate the good manufacturing practice (GMP) production of high-quality cells for these much needed therapeutic applications,” said Associate Professor Enrico Petretto, who leads the Systems Genetics group at Duke-NUS, and is a senior and corresponding author of the study.

Source: https://www.duke-nus.edu.sg/