How to Transform Cancer Cells into Weapons Against Cancer

Some cities fight gangs with ex-members who educate kids and starve gangs of new recruits. Stanford Medicine researchers have done something similar with canceraltering cancer cells so that they teach the body’s immune system to fight the very cancer the cells came from.

This approach could open up an entirely new therapeutic approach to treating cancer,” said Ravi Majeti, MD, PhD, a professor of hematology and the study’s senior author. The research was published March 1 in Cancer Discovery. The lead author is Miles Linde, PhD, a former PhD student in immunology who is now at the Fred Hutchinson Cancer Institute in Seattle.

Some of the most promising cancer treatments use the patient’s own immune system to attack the cancer, often by taking the brakes off immune responses to cancer or by teaching the immune system to recognize and attack the cancer more vigorously. T cells, part of the immune system that learns to identify and attack new pathogens such as viruses, can be trained to recognize specific cancer antigens, which are proteins that generate an immune response. For instance, in CAR T-cell therapy, T cells are taken from a patient, programmed to recognize a specific cancer antigen, then returned to the patient. But there are many cancer antigens, and physicians sometimes need to guess which ones will be most potent.

A better approach would be to train T cells to recognize cancer via processes that more closely mimic the way things naturally occur in the body — like the way a vaccine teaches the immune system to recognize pathogens. T cells learn to recognize pathogens because special antigen presenting cells (APCs) gather pieces of the pathogen and show them to the T cells in a way that tells the T cells, “Here is what the pathogen looks like — go get it.” Something similar in cancer would be for APCs to gather up the many antigens that characterize a cancer cell. That way, instead of T cells being programmed to attack one or a few antigens, they are trained to recognize many cancer antigens and are more likely to wage a multipronged attack on the cancer. Now that researchers have become adept at transforming one kind of cell into another, Majeti and his colleagues had a hunch that if they turned cancer cells into a type of APC called macrophages, they would be naturally adept at teaching T cells what to attack.

We hypothesized that maybe cancer cells reprogrammed into macrophage cells could stimulate T cells because those APCs carry all the antigens of the cancer cells they came from,” said Majeti, who is also the RZ Cao Professor, assistant director of the Institute for Stem Cell Biology and Regenerative Medicine and director of the Ludwig Center for Cancer Stem Cell Research and Medicine.

The study builds on prior research from the Majeti lab showing that cells taken from patients with a type of acute leukemia could be converted into non-leukemic macrophages with many of the properties of APCs. In the current study, the researchers programmed mouse leukemia cells so that some of them could be induced to transform themselves into APCs. When they tested their cancer vaccine strategy on the mouse immune system, the mice successfully cleared the cancer. “When we first saw the data showing clearance of the leukemia in the mice with working immune systems, we were blown away,” Majeti said. “We couldn’t believe it worked as well as it did.”

Source: https://med.stanford.edu/

Cancer of the Blood and Bone Marrow Healed by Immunotherapy

Emily Whitehead was diagnosed with acute lymphoblastic leukemia (ALL) when she was just five years old. Acute lymphoblastic leukemia is a type of cancer of the blood and bone marrow that affects white blood cells, and is most common in children ages three to five. Whitehead needed chemotherapy, but after two years, it was unsuccessful. Her health was rapidly declining, and the local hospital told them to go home and enjoy the days they had left with her. But Whitehead’s parents refused to give up on their daughter and turned to the Children’s Hospital of Philadelphia (CHOP) for help.. There, they learned about a clinical trial that had just started involving CAR T-cell therapy, which genetically alters a patient’s white blood cells to fight cancer cellsWhitehead’s doctor, Dr. Grub, says this therapy is a game-changer for blood cancers and is a great option for those who relapsed and don’t have their cancer under control. In 2012, Whitehead became the first pediatric patient in the world to receive this type of therapy. Today, she is 17 years old and just celebrated being ten years cancer-free!

I’m feeling great. I’m really healthy. I’m driving now, I got my driver’s license in January.”

Not all patients who receive CAR T for relapsed ALL reach the same outcome as Emily. Currently, more than 90% of patients who receive CAR T-cell therapy for relapsed ALL go into remission; approximately 50% of those patients will remain cancer free. Researchers are continuing to advance the field so that more patients never relapse. Because CHOP is the pediatric oncology program with the most CAR T experience — having to date treated more than 440 patients, who have come to CHOP from across the globe — the program remains poised to further improve those outcomes.

In addition, Dr. Grupp says there has been a change in thinking surrounding enrollment in clinical trials for cancer patients. Rather than waiting until a patient is nearly out of options to consider experimental treatment options, oncologists are recognizing patients who might qualify for CAR T-cell therapy and other clinical trials earlier in the process. While CAR T-cell therapy is good for blood cancers, doctors and researchers will be spending the next five to ten years trying to figure out how to make this work for other types of cancers such as breast cancer and lung cancer.

Source: https://www.chop.edu/

Cancer Drug Could Patients Stay Disease-free

In 2010, three patients received an experimental form of immunotherapy for leukemia through a clinical trial at the University of Pennsylvania. Two of the patients went into complete remission—and stayed that way.  The treatment, known as CAR T-cell therapy, is now FDA-approved to treat certain blood cancers. It involves engineering a patient’s own white blood cells to attack cancerous cells and then returning them to the body. Since clinical trials and FDA approval, CAR T-cell therapy has already been used to successfully treat and clear certain cancers. However, CAR T-cell therapy doesn’t lead to lasting remissions for every patient, and it can cause serious side effects. A new report offers clues about why the treatment is sometimes remarkably effective.

The two patients who responded well to CAR T-cell therapy in 2010 remained disease free for over a decade. One of the men, a Californian named Doug Olson, is now 75. The other, William Ludwig, died early last year of COVID-19. Researchers were able to detect CAR T-cells lingering in Olson and Ludwig’s bloodstreams long after their cancers disappeared, although the types of immune cells that persisted were slightly different than anticipated, the team reported in Nature.

Two T-cells (red) attack an oral squamous cancer cell (white)—a fight that’s part of the natural immune response. Clinical researchers are developing a new type of therapy that modifies a patient’s T-cells to better attack cancer

Now we can finally say the word ‘cure’ with CAR T-cells,” Carl June, the principal investigator for the University of Pennsylvania trial, told The New York Times.

Olson and Ludwig were among the earliest recipients of CAR T-cell therapy, allowing clinicians a chance to track the patients’ cells and condition over the past decade. “To use the word ‘cure,’ you really need a long time to follow up to make sure people don’t relapse,” says David Maloney, the medical director of cellular immunotherapy at the Immunotherapy Integrated Research Center at the Fred Hutchinson Cancer Research Center in Seattle. “When we get these people out to 10 and 11 years post-treatment, that encourages us to be a little more forceful in saying that perhaps patients are cured in some cases.”

 

Source: https://www.popsci.com/