Nano-robot Antibodies to Fight Cancer

Scientists in Israel have created the first nano-robot antibodies designed to fight cancer. The first human trial for the new nano-robots will start soon, and it will determine just how effective the antibodies are. What is special about these particular antibodies, too, is that they are programmed to decide whether cells surrounding tumors are “bad” or “good.”

The trial is currently underway in Australia and if it goes according to plan, the nano-robot antibodies will be able to fight cells around tumors that can help the tumor while also boosting the capability of the cells inhibiting the growth of the cancerous cells. The antibodies were invented by Professor Yanay Ofran and are based on human and animal antibodies.

You must be logged in to view this content.

Wireless Implant Could Help Remove Deadly Brain Tumors

Brain tumors are among the most deadly and difficult-to-treat cancers. Glioblastoma, a particularly aggressive form, kills more than 10,000 Americans a year and has a median survival time of less than 15 months. For patients with brain tumors, treatment typically includes open-skull surgery to remove as much of the tumor as possible followed by chemotherapy or radiation, which come with serious side effects and numerous hospital visits.

What if a patient’s brain tumor could be treated painlessly, without anesthesia, in the comfort of their home? Researchers at Stanford Medicine have developed, and tested in mice, a small wireless device that one day could do just that. The device is a remotely activated implant that can heat up nanoparticles injected into the tumor, gradually killing cancerous cells. In mice with brain tumors, 15 minutes of daily treatment over 15 days, as the animals went about their normal activities, was enough to significantly increase survival times. The researchers published their work in August in Nature Nanotechnology.

The nanoparticles help us target the treatment to only the tumor, so the side effects will be relatively less compared with chemotherapy and radiation,” said Hamed Arami, PhD, co-lead  author of the paper, a former postdoctoral fellow at Stanford Medicine who is now at Arizona State University.

Arami, trained as a bioengineer, came to focus on brain cancer as a postdoctoral fellow in the lab of the late Sam Gambhir, MD, former chair of radiology at Stanford Medicine and a pioneer in molecular imaging and cancer diagnostics who died of cancer in 2020 . Five years prior, Gambhir’s teenage son, Milan, died of a glioblastoma.

Source: https://scopeblog.stanford.edu/

Self-assembling Molecules Asphyxiate Cancerous Cells

Treatment of cancer is a long-term process because remnants of living cancer cells often evolve into aggressive forms and become untreatable. Hence, treatment plans often involve multiple drug combinations and/or radiation therapy in order to prevent cancer relapse. To combat the variety of cancer cell types, modern drugs have been developed to target specific biochemical processes that are unique within each cell type.

However,  are highly adaptive and able to develop mechanisms to avoid the effects of the treatment.

We want to prevent such adaptation by invading the main pillar of cellular life—how cells breathe—that means take up oxygen—and thus produce  for growth,” says David Ng, group leader at the MPI-P.

The research team produced a synthetic drug that travels into cells where it reacts to conditions found inside and triggers a chemical process. This allows the drug’s molecules to bind together and form tiny hairs that are a thousand times thinner than . “These hairs are fluorescent, so you can look at them directly with a microscope as they form,” says Zhixuan Zhou, an Alexander-von-Humboldt-fellow and first author of the paper.

The scientists monitored the oxygen consumption in different cell types and found that the hairs stop all of them from converting oxygen into ATP, a molecule that is responsible for energy delivery in cells. The process worked even for those cells derived from untreatable metastatic cancer. As a result, the cells die rapidly within four hours. After some more years of research, the scientists hope that they can develop a new method to treat up-to-now untreatable cancer.

Weil, Ng and colleagues have shown an exciting outcome under controlled laboratory culture and will continue to unravel deeper insights on the basis of how these  prevent the conversion of oxygen to chemical energy. With further development, these objects could in the future possibly also be manipulated to control other cellular processes to address other important diseases.

They have published their results in the Journal of the American Chemical Society.

Source: https://phys.org/

Lasers and Ultrasound Combine to Pulverize Arterial Plaque

Lasers are one of the tools physicians can lean on to tackle plaque buildup on arterial walls, but current approaches carry a risk of complications and can be limited in their effectiveness. By bringing ultrasound into the mix, scientists at the University of Kansas have demonstrated a new take on this treatment that relies on exploding microbubbles to destroy plaque with greater safety and efficiency, while hinting at some unique long-term advantages.

Scientists have demonstrated a new technique to take out arterial plaque, using low-power lasers and ultrasound to break it apart with tiny bubbles

The novel ultrasound-assisted laser technique builds off what’s known as laser angioplasty, an existing treatment designed to improve blood flow in patients suffering from plaque buildup that narrows the arteries. Where more conventional treatments such as stents and balloon angioplasty expand the artery and compress the plaque, laser angioplasty destroys it to eliminate the blockage.

The laser is inserted into the artery with a catheter, and the thermal energy it generates turns water in the artery into a vapor bubble that expands, collapses and breaks up the plaque. Because this technique calls for high-power lasers, it has the potential to perforate or dissect the artery, something the scientists are looking to avoid by using low-power lasers instead.

They were able to do so in pork belly samples and ex vivo samples of artery plaque with the help of ultrasound. The method uses a low-power nanosecond pulsed laser to generate microbubbles, and applying ultrasound to the artery then causes these microbubbles to expand, collapse and disrupt the plaque.

In conventional laser angioplasty, a high laser power is required for the entire cavitation process, whereas in our technology, a lower laser power is only required for initiating the cavitation process,” said team member Rohit Singh. “Overall, the combination of ultrasound and laser reduces the need for laser power and improves the efficiency of atherosclerotic plaque removal.

The mix of lasers and ultrasound has shown potential in other areas of medicine, with Singh and his colleagues pursuing similar therapies to tackle abnormal microvessels in the eye that cause blindness and blood clots in the veins. We’ve also seen ultrasound used to explode tiny bubbles in cancer research, providing a way of wiping out cancerous cells within a tumor.

Source: https://newatlas.com/

Drug Prevents Breast Cancer Recurrence and Metastasis

Even when detected early, some cancers are more aggressive and more fatal than others. This is the case, for example, with triple negative breast cancer which accounts for 10 to 15% of all breast cancers. This cancer affects 1,000 patients per year in Belgium, while the figure worldwide is 225,000. Around half of the patients will develop local recurrences and metastases, regardless of the treatment they receive. No specific treatment is currently capable of preventing these two events. Patients suffering from pervasive triple negative breast cancer have only a one-in-ten chance of a cure. In 2014, Pierre Sonveaux, a researcher at the University of Louvain (UCLouvain) Institute for experimental and clinical research, succeeded in demonstrating the principle that it was possible to prevent the appearance of melanoma tumour metastases in mice. However, the experimental molecules used at the time were far from being drugs.

Since then, the UCLouvain researcher and his team, including post-doctoral researcher Tania Capeloa, have continued their work thanks in particular to sponsorship obtained by the UCLouvain Foundation. They have now succeeded in establishing that a drug developed for diseases other than cancer, MitoQ, avoids the appearance of metastases in 80% and local recurrences of human breast cancer in 75% of cases in mice. Conversely, most of the mice not treated suffered a recurrence of their cancer, which spread.

To do this, the researchers treated mice affected by human breast cancer. They treated them as hospital patients are treated, i.e. by combining surgery with a carefully dosed cocktail of standard chemotherapies. However, the UCLouvain researchers supplemented this standard treatment with the new molecule, MitoQ. They not only demonstrated that the administration of MitoQ is compatible with standard chemotherapies, but also that this innovative treatment prevents both relapses and metastases of breast cancer in mice. “We expected to be able to block the metastases, says Pierre Sonveaux enthusiastically. But preventing the recurrence of the cancer was totally unexpected. Getting this type of result is a huge motivation for us to carry on.” In short, this is a giant step given that the three main causes of cancer mortality are recurrences, the spread of the cancer caused by metastasis and resistance to treatment. And that there is currently no other known molecule capable of acting like MitoQ.

How does it work? Cancers consist of two types of cancerous cells: those that proliferate and are sensitive to clinical treatments and those that are dormant and that bide their time. Such cells are more harmful. The problem? These cancerous stem cells are resistant to clinical treatments. They result in metastases and if, unfortunately, cancer surgery fails to remove them all, they cause recurrences. These relapses are currently treated using chemotherapy. However, this tends to be relatively ineffective owing to the resistance to treatment developed by the tumorous cells . This is where the important discovery of the UCLouvain scientists comes in: the molecule MitoQ stops cancerous stem cells from awakening.

What next? MitoQ has already come through the first clinical phase successfully. It has been tested on healthy patients, both men and women, and proves to be only slightly toxic (nausea, vomiting). In addition, its behaviour is known. What next? The discovery made by the UCLouvain scientists opens wide the path for the clinical 2 phase, intended to demonstrate the efficacy of the new treatment in cancer patients.

Source: https://uclouvain.be/
AND
https://www.thebrighterside.news

Engineered Thymus From Human Cells

Researchers at University College London (UCL)  and the Crick Institute have rebuilt a human thymus, an essential organ in the immune system, using human stem cells and a bioengineered scaffold. Their work is an important step towards being able to build artificial thymi which could be used as transplants.

The thymus is an organ in the chest where T lymphocytes, which play a vital role in the immune system, mature. If the thymus does not work properly or does not form during foetal development in the womb, this can lead to diseases such as severe immunodeficiency, where the body cannot fight infectious diseases or cancerous cells, or autoimmunity, where the immune system mistakenly attacks the patient’s own healthy tissue.

In their proof-of-concept study, published in Nature Communications, the scientists rebuilt thymi using stem cells taken from patients who had to have the organ removed during surgery. When transplanted into mice, the bioengineered thymi were able to support the development of mature and functional human T lymphocytes.

Showing it is possible to build a working thymus from human cells is a crucial step towards being able to grow thymi which could one day be used as transplants,” says Sara Campinoti, author and researcher in the Epithelial Stem Cell Biology and Regenerative Medicine Laboratory at the Crick. 

Source: https://www.ncbi.nlm.nih.gov/
AND
https://www.ucl.ac.uk/

How To Eradicate Breast Tumors In 11 Days

Despite unbelievable advances in medical science in recent decades, breast cancer kills. Approximately 1 in 8 American women will develop breast cancer cells during the course of their lifetime.

Finding a cure is imperative, and as such, fervent research continues. At the European Breast Cancer Conference in Amsterdam, scientists presented a pair of drugs with an astounding claim: this treatment can eradicate some types of breast cancer in only 11 days, eliminating the need for chemotherapy.

Chemotherapy, whilst an amazing feat of medical-scientific engineering, is known for its uncomfortable and sometimes debilitating side effects. Women undergoing chemotherapy for breast cancer treatment may lose their hair, suffer extreme fatigue, and even loss of cognitive functionCancers may also recur after long, painful months of chemotherapy treatment.

The new trial, raising hopes across the medical community, is focused upon two drugs: Herceptin and Lapatinib. The drugs, in tandem, target a protein known as HER2, which is instrumental in stimulating the growth of certain cancer cells.

A pair of drugs can dramatically shrink and eliminate some breast cancers in just 11 days, UK doctors have shown.

They both target HER2 – a protein that fuels the growth of some women’s breast cancersHerceptin works on the surface of cancerous cells while lapatinib is able to penetrate inside the cell to disable HER2.

The study, which also took place at NHS hospitals in Manchester, gave the treatment to women with tumours measuring between 1 and 3cm. But Prof Bliss believes the findings could eventually mean some women do not need chemotherapy.

In less than two weeks of treatment, the cancer disappeared entirely in 11% of cases, and in a further 17% they were smaller than 5mm.

Current therapy for HER2 positive breast cancers is surgery, followed by chemotherapy and Herceptin. But Prof Bliss believes the findings could eventually mean some women do not need chemotherapy.

Source: https://www.bbc.com

A Weapon To Fight Lung Cancer

Researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) have discovered a new metabolic vulnerability in small cell lung cancer (SCLC) that can be targeted by existing drug therapies.

SCLC is a deadly and aggressive form of lung cancer with few therapeutic options and an incredibly low five-year survival rate of 5 percent. Researchers at CRI believe the key to finding new therapies for this disease lies in better understanding the metabolism of SCLC.

Cancerous cells reprogram their metabolic pathways to grow and spread rapidly through the body. In some forms of cancer, cancer cells become highly dependent or “addicted” to specific metabolic pathways as a result of genetic mutations. Identifying these pathways can lead to new treatment options.

SCLC metabolism has not previously been studied in-depth,” said Dr. Ralph DeBerardinis, Professor at CRI and Director of CRI’s Genetic and Metabolic Disease Program.If we identify the metabolic pathways SCLC uses to grow and spread, then maybe we can find drugs to inhibit them. This could effectively cut off the fuel supply to these tumors.”

To discover new vulnerabilities in SCLC, researchers at CRI analyzed metabolism and gene expression in cells obtained from more than 25 human SCLC tumors. From the data, they identified two distinct categories of SCLC defined by the level of two oncogenes: MYC and ASCL1. Oncogenes are genes known to promote cancer formation and growth.

The study, published in Cell Metabolism, found that MYC stimulated synthesis of purine molecules. Purines are essential for cells to produce RNA and DNA, both of which are required for growth and division. MYC-expressing cells had a particular need for a specific type of purine called guanosine.

We were excited to discover that purine synthesis was so important for this subset of SCLC cells. There are already safe and effective inhibitors of guanosine synthesis used in patients for other diseases besides cancer. Our findings suggested that mice with MYC-expressing SCLC might benefit from treatment with drugs that inhibit purine synthesis,” said Dr. Fang Huang, a visiting scholar at CRI and first author on the paper.

To test the hypothesis, researchers treated mice from multiple different mouse models of SCLC with the drug mizoribine, a purine synthesis inhibitor. Treatment with this drug suppressed tumor growth and significantly extended the lifespan in mice with MYC-expressing SCLC.

Our findings suggest purine synthesis inhibitors could be effective in SCLC patients whose tumors have high levels of MYC. If we are right, this could quickly provide a new treatment for this disease, which has few options at present,” said Dr. DeBerardinis.

Source: https://www.utsouthwestern.edu/