Cancer Vaccine to Simultaneously Kill and Prevent Brain Cancer

Scientists are harnessing a new way to turn cancer cells into potent, anti-cancer agents. In the latest work from the lab of Khalid Shah, MS, PhD, at Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, investigators have developed a new cell therapy approach to eliminate established tumors and induce long-term immunity, training the immune system so that it can prevent cancer from recurring. The team tested their dual-action, cancer-killing vaccine in an advanced mouse model of the deadly brain cancer glioblastoma, with promising results.

Our team has pursued a simple idea: to take cancer cells and transform them into cancer killers and vaccines,” said corresponding author Khalid Shah, MS, PhD, director of the Center for Stem Cell and Translational Immunotherapy (CSTI) and the vice chair of research in the Department of Neurosurgery at the Brigham and faculty at Harvard Medical School and Harvard Stem Cell Institute (HSCI). “Using gene engineering, we are repurposing cancer cells to develop a therapeutic that kills tumor cells and stimulates the immune system to both destroy primary tumors and prevent cancer.”

You must be logged in to view this content.

How to Fight Cancer With Cancer

Scientists at Brigham and Women’s Hospital (BWH) have found a way to fight cancer with cancer. The team genetically engineered cancer cells to release anti-cancer drugs at the site of established tumors, as well as stimulating the immune system against the disease. Tests in mice proved promising as both a therapy and a preventative vaccine.

Cancer vaccines are an emerging area of research, where patients are often administered inactive tumor cells or proteins expressed at high levels by cancer cells. This trains the immune system to recognize existing tumors and mount an assault on them, and can prevent the spread or appearance of new tumors. For the new study, the BWH team took a new approach, using living tumor cells instead.

You must be logged in to view this content.

Voice, a Biomarker to Detect Diseases

To the general public, it may sound like something out of a science fiction movie: diagnosing serious diseases such as cancer by listening to someone’s voice. But in fact, researchers funded by the National Institutes of Health (NIH) are now investigating whether changes in a person’s voice could serve as a new biomarker in clinical care for detecting illnesses early.

The project, called Voice as a Biomarker of Health, will include 12 research institutions and is being funded by the Bridge to Artificial Intelligence (Bridge2AI) program out of the NIH Common Fund. The project will use machine learning to build a database of vocal biomarkers, and then use the science of acoustic analysis to identify changes—such as pitch, amplitude, cadence, and words per minute—that could become a low-cost diagnostic tool, alongside other clinical tests.

(more…)

Major Advance In Cancer Therapy

Immune checkpoint inhibitors such as Keytruda and Opdivo work by unleashing the immune system’s T cells to attack tumor cells. Their introduction a decade ago marked a major advance in cancer therapy, but only 10% to 30% of treated patients experience long-term improvement. In a paper published online today in The Journal of Clinical Investigation (JCI), scientists at Albert Einstein College of Medicine describe findings that could bolster the effectiveness of immune-checkpoint therapyRather than rally T cells against cancer, the Einstein research team used different human immune cells known as natural killer (NK) cells—with dramatic results.

“We believe the novel immunotherapy we’ve developed has great potential to move into clinical trials involving various types of cancer,” said study leader Xingxing Zang, M.Med., Ph.D., Professor of microbiology  at Einstein and a member of the Cancer Therapeutics Program of the Montefiore Einstein Cancer Center.

You must be logged in to view this content.

Anti-Cancer CAR-T Therapy Reengineers T Cells to Kill Tumors

Teaching the body’s immune cells to recognize and fight cancer is one of the holy grails in medicine. Over the past two decades, researchers have developed new immunotherapy drugs that stimulate a patient’s immune cells to significantly shrink or even eliminate tumors. These treatments often focus on increasing the cancer-killing ability of cytotoxic T cells. However, these treatments appear to only work for thsmall group of patients who already have T cells within their tumors. One 2019 study estimated that under 13% of cancer patients responded to immunotherapy.

You must be logged in to view this content.

Cancer Vaccine Yields Significant Tumor Regression

An experimental therapeutic cancer vaccine induced two distinct and desirable immune system responses that led to significant tumor regression in mice. This is according to a new research study published in the journal Cell, reported by investigators from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH).

According to the research findings, intravenous (IV) administration of the vaccine boosted the number of cytotoxic T cells capable of infiltrating and attacking tumor cells and engaged the innate immune system by inducing type I interferon. The innate immune response modified the tumor microenvironment, counteracting suppressive forces that otherwise would tamp down T-cell action. Modification of the tumor microenvironment was not found in mice that received the vaccine via subcutaneous administration (i.e. a needle injection into the skin).

You must be logged in to view this content.

AI Tailors Artificial DNA

With the help of an AI, researchers at Chalmers University of Technology, Sweden, have succeeded in designing synthetic DNA that controls the cells’ protein production. The technology can contribute to the development and production of vaccines, drugs for severe diseases, as well as alternative food proteins much faster and at significantly lower costs than today.

How our genes are expressed is a process that is fundamental to the functionality of cells in all living organisms. Simply put, the genetic code in DNA is transcribed to the molecule messenger RNA (mRNA), which tells the cell’s factory which protein to produce and in which quantities.

You must be logged in to view this content.

Nano-robot Antibodies to Fight Cancer

Scientists in Israel have created the first nano-robot antibodies designed to fight cancer. The first human trial for the new nano-robots will start soon, and it will determine just how effective the antibodies are. What is special about these particular antibodies, too, is that they are programmed to decide whether cells surrounding tumors are “bad” or “good.”

The trial is currently underway in Australia and if it goes according to plan, the nano-robot antibodies will be able to fight cells around tumors that can help the tumor while also boosting the capability of the cells inhibiting the growth of the cancerous cells. The antibodies were invented by Professor Yanay Ofran and are based on human and animal antibodies.

You must be logged in to view this content.

Extension of the Life of Immune System Means Live Longer

A new mechanism that slows down and may even prevent the natural ageing of immune cells – one of the ninehallmarks of ageing’* – has been identified by an international team led by UCL scientists.

Published in Nature Cell Biology, researchers say the discovery in-vitro (cells) and validated in mice was ‘unexpected’ and believe harnessing the mechanism could extend the life of the immune system, allowing people to live healthier and longer, and would also have clinical utility for diseases such as cancer and dementia.

You must be logged in to view this content.

Reprogramming Aging Bodies Back to Youth

A little over 15 years ago, scientists at Kyoto University in Japan made a remarkable discovery. When they added just four proteins to a skin cell and waited about two weeks, some of the cells underwent an unexpected and astounding transformation: they became young again. They turned into stem cells almost identical to the kind found in a days-old embryo, just beginning life’s journey.
At least in a petri dish, researchers using the procedure can take withered skin cells from a 101-year-old and rewind them so they act as if they’d never aged at all.

You must be logged in to view this content.