Secretive1,000 Years Lasting Concrete From Ancient Romans Could Reduce Climate Change

Rome's Pantheon stands defiant 2,000 years after it was built, its marble floors sheltered under the world’s largest unreinforced concrete dome. For decades, researchers have probed samples from Roman concrete structurestombs, breakwaters, aqueducts, and wharves—to find out why these ancient buildings endure when modern concrete may crumble after only a few decades.

In a recent study, scientists have got closer to the answer—and their findings could reverberate long into the future. Not only is Roman concrete exponentially more durable than modern concrete, but it can also repair itself. Creating a modern equivalent that lasts longer than existing materials could reduce climate emissions and become a key component of resilient infrastructure, like seawalls. Currently, concrete is second only to water as the world’s most consumed material, and making it accounts for about 7 percent of global emissions.

You must be logged in to view this content.

Synthetic Tooth Enamel is Stronger than Actual Human Teeth

An international team of researchers developed the synthetic enamel to outperform the real thing, according to a paper of their findings published in the journal Science. If all goes well, the findings could finally provide a compelling solution to decaying teeth.

To develop it, the team needed to replicate the interconnected nanowires of calcium in natural teeth, according to a press release from the American Association for the Advancement of Science. They were able to create a nanocomposite system that effectively imitated the toughness of actual enamel while maintaining its viscoelasticity.

They then tested the material by coating it to different shaped objects including human teeth. The team found it “exhibited high stiffness, hardness, strength, viscoelasticity, and toughness, exceeding the properties of enamel and previously manufactured bulk enamel-inspired materials,” according to the study.

It’s still a ways away from becoming commercially viable yet, but the team now plans to test the synthetic enamel to ensure it can, you know, survive in our disgusting mouths for an extended period of time. If things go well, the material could even be used on things other than teeth, such as pacemakers or damaged bones.

It’s undoubtedly an interesting and exciting bit of news considering that replicating enamel has been a longtime goal of dental researchers. Let’s just hope it can come out soon so those of us with sensitive teeth can finally stop suffering every time we eat an ice cream cone.

How To Reverse Vascular Disease In Kidney Failure

By loading a chelation drug into a nano-sized homing device, researchers at Clemson University have reversed in an animal model the deadliest effects of chronic kidney disease, which kills more people in the United States each year than breast or prostate cancer. When kidneys stop working properly, calcium builds up in artery tissue, leading to heart disease. Although nearly half a million Americans receive kidney dialysis, heart disease is the leading cause of death for people with chronic kidney disease.

Human kidney cross section on scientific background

The findings are very exciting scientifically, but also for the thousands of patients who could potentially benefit from this technology one day,” said Naren Vyavahare, professor of bioengineering at Clemson and the principal investigator of the research.

Chelation, a method of removing metals such as iron and lead from the body, has been used experimentally for some people with heart disease. The therapy is not approved by the Food and Drug Administration, but the National Institutes of Health has sponsored two large-scale, multi-center studies using ethylene diamine tetra-acetic acid, or EDTA, as chelation therapy for people with heart disease.

In clinical studies, EDTA is included in an infusion that circulates through the body; it’s systemic and non-specific. This method of chelation has shown good results in improving heart function, especially in diabetic patients, Vyavahare said. But EDTA infusion therapy is arduous (it requires 40 infusions over a period of a year), and it can cause side effects, including a depletion of calcium from the blood and from bone.

Now, in a paper published in Scientific Reports, a Nature publication, Vyavahare’s team describes how they developed an animal model that mimics a human’s chronic kidney disease. Animals were treated either with EDTA infusions, like in the NIH human trials, or with EDTA enclosed in a nanoparticle coupled with an antibody that seeks out damaged elastin. In animals that received the targeted therapy, calcium buildup was destroyed, without causing side effects, better than with EDTA infusions alone. Moreover, the calcification did not come back up to four weeks after the last injection, even though other signs of chronic kidney disease were present.


Brain Metals Drive Alzheimer’s Progression

Alzheimer’s disease could be better treated, thanks to a breakthrough discovery of the properties of the metals in the brain involved in the progression of the neurodegenerative condition, by an international research collaboration including the University of Warwick.

Iron is an essential element in the brain, so it is critical to understand how its management is affected in Alzheimer’s disease. The advanced X-ray techniques that we used in this study have delivered a step-change in the level of information that we can obtain about iron chemistry in the amyloid plaques. We are excited to have these new insights into how amyloid plaque formation influences iron chemistry in the human brain, as our findings coincide with efforts by others to treat Alzheimer’s disease with iron-modifying drugs,” commented Dr Joanna Collingwood, from Warwick’s School of Engineering, who was part of a research team which characterised iron species associated with the formation of amyloid protein plaques in the human brainabnormal clusters of proteins in the brain. The formation of these plaques is associated with toxicity which causes cell and tissue death, leading to mental deterioration in Alzheimer’s patients.

They found that in brains affected by Alzheimer’s, several chemically-reduced iron species including a proliferation of a magnetic iron oxide called magnetite – which is not commonly found in the human brainoccur in the amyloid protein plaques. The team had previously shown that these minerals can form when iron and the amyloid protein interact with each other. Thanks to advanced measurement capabilities at synchrotron X-ray facilities in the UK and USA, including the Diamond Light Source I08 beamline in Oxfordshire, the team has now shown detailed evidence that these processes took place in the brains of individuals who had Alzheimer’s disease. They also made unique observations about the forms of calcium minerals present in the amyloid plaques.

The team, led by an EPSRC-funded collaboration between University of Warwick and Keele University – and which includes researchers from University of Florida and The University of Texas at San Antonio – made their discovery by extracting amyloid plaque cores from two deceased patients who had a formal diagnosis of Alzheimer’s. The researchers scanned the plaque cores using state-of-the-art X-ray microscopy at the Advanced Light Source in Berkeley, USA and at beamline I08 at the Diamond Light Source synchrotron in Oxfordshire, to determine the chemical properties of the minerals within them.