AI Diagnoses Illness Based On the Sound of Your Voice

Voices offer lots of information. Turns out, they can even help diagnose an illness — and researchers are working on an app for that. The National Institutes of Health is funding a massive research project to collect voice data and develop an AI that could diagnose people based on their speech. Everything from your vocal cord vibrations to breathing patterns when you speak offers potential information about your health, says laryngologist Dr. Yael Bensoussan, the director of the University of South Florida’s Health Voice Center and a leader on the study.

We asked experts: Well, if you close your eyes when a patient comes in, just by listening to their voice, can you have an idea of the diagnosis they have?” Bensoussan says. “And that’s where we got all our information.”

Someone who speaks low and slowly might have Parkinson’s disease. Slurring is a sign of a stroke. Scientists could even diagnose depression or cancer. The team will start by collecting the voices of people with conditions in five areas: neurological disorders, voice disorders, mood disorders, respiratory disorders and pediatric disorders like autism and speech delays. The project is part of the NIH‘s Bridge to AI program, which launched over a year ago with more than $100 million in funding from the federal government, with the goal of creating large-scale health care databases for precision medicine.

We were really lacking large what we call open source databases,” Bensoussan says. “Every institution kind of has their own database of data. But to create these networks and these infrastructures was really important to then allow researchers from other generations to use this data.” This isn’t the first time researchers have used AI to study human voices, but it’s the first time data will be collected on this level — the project is a collaboration between USF, Cornell and 10 other institutions. “We saw that everybody was kind of doing very similar work but always at a smaller level,” Bensoussan says. “We needed to do something as a team and build a network.”

The ultimate goal is an app that could help bridge access to rural or underserved communities, by helping general practitioners refer patients to specialists. Long term, iPhones or Alexa could detect changes in your voice, such as a cough, and advise you to seek medical attention.

Source: https://www.npr.org/

How to Reverse Muscle Loss Due to Aging

An international team led by uOttawa Faculty of Medicine researchers have published findings that could contribute to future therapeutics for muscle degeneration due to old age, and diseases such as cancer and muscular dystrophyIn a study appearing in the Journal of Cell Biology, which publishes peer-reviewed research on cellular structure and function, the authors said their work demonstrates the importance of the enzyme GCN5 in maintaining the expression of key structural proteins in skeletal muscle. Those are the muscles attached to bone that breathing, posture and locomotion all rely on.

We found that if you delete GCN5 expression from muscle it will no longer be able to handle extreme physical stress,” says Dr. Keir Menzies, a molecular biologist at the Faculty of Medicine’s Biochemistry, Microbiology and Immunology department and cross-appointed as an associate professor at the Interdisciplinary School of Health Sciences.

Over the span of roughly five years, the uOttawa-led international collaboration painstakingly experimented with a muscle-specific mouse knockout” of GCN5, a well-studied enzyme which regulates multiple cellular processes such as metabolism and inflammation. Through a series of manipulations, scientists produce lab mice in which specific genes are disrupted, or knocked out, to unveil animal models of human disease and better understand how genes work.

In this case, multiple experiments were done to examine the role the GCN5 enzyme plays in muscle fiber. What they found with this line of muscle-specific mouse knockouts was a notable decline in muscle health during physical stress, such as downhill treadmill running, a type of exercise known by athletes to cause micro-tears in muscle fibres to stimulate muscle growth. The lab animals’ muscle fibers became dramatically weaker as they scurried downhill, like those of old mice, while wild-type mice were not similarly impacted

Dr. Menzies, the senior author of the study, says the findings are akin to what is observed in advanced aging, or myopathies and muscular dystrophy, a group of genetic diseases that result in progressive weakness and loss of muscle mass. It was supported by human data, including an observed negative correlation between muscle fiber diameter and Yin Yang 1, a highly multifunctional protein that is pivotal to a slew of cellular processes and found by the Menzies lab to be a target of GCN5. Ultimately, the team’s research found that GCN5 boosts the expression of key structural muscle proteins, notably dystrophin, and a lack of it will reduce them.

Source: https://rupress.org/
AND
https://www.thebrighterside.news