Ultrasound ‘Tornado’ Breaks Down Blood Clots

Researchers have developed a new tool and technique that uses “vortex ultrasound” – a sort of ultrasonic tornado – to break down blood clots in the brain. The new approach worked more quickly than existing techniques to eliminate clots formed in an in vitro model of cerebral venous sinus thrombosis (CVST).

Our previous work looked at various techniques that use ultrasound to eliminate blood clots using what are essentially forward-facing waves,” says Xiaoning Jiang, co-corresponding author of a paper on the work. “Our new work uses vortex ultrasound, where the ultrasound waves have a helical wavefront. “In other words, the ultrasound is swirling as it moves forward,” says Jiang, who is the Dean F. Duncan Professor of Mechanical and Aerospace Engineering at North Carolina State University. “Based on our in vitro testing, this approach eliminates blood clots more quickly than existing techniques, largely because of the shear stress induced by the vortex wave.”

The fact that our new technique works quickly is important, because CVST clots increase pressure on blood vessels in the brain,” says Chengzhi Shi, co-corresponding author of the work and an assistant professor of mechanical engineering at Georgia Tech. “This increases the risk of a hemorrhage in the brain, which can be catastrophic for patients. Existing techniques rely in large part on interventions that dissolve the blood clot. But this is a time-consuming process. Our approach has the potential to address these clots more quickly, reducing risk for patients.”

CVST occurs when a blood clot forms in the veins responsible for draining blood from the brain. Incidence rates of CVST were between 2 and 3 per 100,000 in the United States in 2018 and 2019, and the incidence rate appears to be increasing.

Another reason our work here is important is that current treatments for CVST fail in 20-40% of cases,” Jiang says.

Source: https://news.ncsu.edu/

New Blood Test Tracks Alzheimer’s

A new blood test that tracks the breakdown of nerve cells in the brain in Alzheimer's disease. It is an innovation that is now being presented by researchers at the University of Gothenburg in Sweden, together with colleagues in Italy, Great Britain and the United States.

In recent years, great progress has been made in the development of blood tests, so-called biomarkers, for screening and monitoring various disease processes in Alzheimer's disease. Partly, it has involved identifying amyloid plaques in the brain (formed by the protein beta-amyloid) via blood samples, and in later research also the formation of neurofibrils, small thread-like protein structures that consist of a modified (phosphorylated) form of the nerve cell protein tau.

 

You must be logged in to view this content.

A Sound You Can’t Hear but May One Day Change Your Life

Undergoing clinical trials around the world is a brain surgery that doesn’t need an incision or produce any blood yet drastically improves the lives of people with essential tremor, depression and more. The procedure, known as a focused ultrasound, aims sound waves at parts of the brain to disrupt faulty brain circuits causing symptoms.

Pictured are scans of a 80-year-old patient's brain. Focused ultrasound signficantly improved the tremors.

Focused ultrasound is a noninvasive therapeutic technology,” said Dr. Neal Kassell, founder and chairman of the Focused Ultrasound Foundation. “We’ve said that focused ultrasound is the most powerful sound you will never hear, but sound that someday could save your life.

Kassell describes the way it works as “analogous to using a magnifying glass to focus beams of light on a point and burn a hole in a leaf.” “With focused ultrasound, instead of using an optical lens to focus beams of light,” he added, “an acoustic lens is used to focus multiple beams of ultrasound energy on targets deep in the body with a high degree of precision and accuracy, sparing the adjacent normal tissue.”

You must be logged in to view this content.

GPT-3 Could Make Google Search Engine Obsolete

According to The Economist, improved algorithms, powerful computers, and an increase in digitized data have fueled a revolution in machine learning, with new techniques in the 2010s resulting in "rapid improvements in tasks" including manipulating language. Software models are trained to learn by using thousands or millions of examples in a "structure ... loosely based on the neural architecture of the brain". One architecture used in natural language processing (NLP) is a neural network based on a deep learning model that was first introduced in 2017—the Transformer. GPT-n models are based on this Transformer-based deep learning neural network architecture. There are a number of NLP systems capable of processing, mining, organizing, connecting and contrasting textual input, as well as correctly answering questions.

On June 11, 2018, OpenAI researchers and engineers posted their original paper on generative models—language models—artificial intelligence systems—that could be pre-trained with an enormous and diverse corpus of text via datasets, in a process they called generative pre-training (GP). The authors described how language understanding performances in natural language processing (NLP) were improved in GPT-n through a process of "generative pre-training of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task." This eliminated the need for human supervision and for time-intensive hand-labeling.

In February 2020, Microsoft introduced its Turing Natural Language Generation (T-NLG), which was claimed to be the "largest language model ever published at 17 billion parameters." It performed better than any other language model at a variety of tasks which included summarizing texts and answering questions.

You must be logged in to view this content.

One in Five Post-COVID Patients Have Brain Abnormalities

According to the U.S. Centers for Disease Control and Prevention (CDC), about one in five adults have a health condition that might be related to having previously been infected with COVID-19. In addition to cardiovascular and respiratory conditions, blood clots and vascular issues, kidney failure, and musculoskeletal conditions, these individuals may also experience changes in their neurological and mental health conditions.

Researchers shared how their use of a special type of MRI revealed brain changes in patients up to 6 months after they have recovered from COVID-19 at the 2022 Radiological Society of North America (RSNA) annual meeting.

For their study, a team led by researchers at the Indian Institute of Technology used susceptibility-weighted imaging (SWI) to analyze the effects that COVID-19 has on the brain. Magnetic susceptibilitydenotes how much certain materials, such as blood, iron and calcium, will become magnetized in an applied magnetic field,” the authors noted in an RSNA statement summarizing the findings. “This ability aids in the detection and monitoring of a host of neurologic conditions including microbleeds, vascular malformations, brain tumors, and stroke.”

You must be logged in to view this content.

Skin Patch Monitors Conditions Deep Into Body

A team of engineers at the University of California San Diego has developed an electronic patch that can monitor biomolecules in deep tissues, including hemoglobin. This gives medical professionals unprecedented access to crucial information that could help spot life-threatening conditions such as malignant tumors, organ dysfunction, cerebral or gut hemorrhages and more. 

A photoacoustic sensor could help clinicians diagnose tumors, organ malfunctions and more

The amount and location of hemoglobin in the body provide critical information about blood perfusion or accumulation in specific locations. Our device shows great potential in close monitoring of high-risk groups, enabling timely interventions at urgent moments,” said Sheng Xu, a professor of nanoengineering at UC San Diego and corresponding author of the study.

You must be logged in to view this content.

Elon Musk’s Neuralink expects to start human trials of wireless brain chip in 6 months

Elon Musk’s Neuralink Corp expects to start inserting its wireless brain chip into human patients within six months, the US-based company said at an event yesterday.

Neuralink is developing a brain chip implant that it says could enable disabled patients to move and communicate again, which it demonstrated with a video of a monkey typing on a keyboard to order snacks using ‘telepathic typing’ with the chip communicating messages from its brain to a computer. It needs approval from the US Food and Drug Administration (FDA) before it can start clinical trials on people.

You must be logged in to view this content.

How to Diagnose Alzheimer’s Before Symptoms Emerge

A large study led by Lund University in Sweden has shown that people with Alzheimer's disease can now be identified before they experience any symptoms. It is now also possible to predict who will deteriorate within the next few years. The study is published in Nature Medicine, and is very timely in light of the recent development of new drugs for Alzheimer's disease.

It has long been known that there are two proteins linked to Alzheimer’sbeta-amyloid, which forms plaques in the brain, and tau, which at a later stage accumulates inside brain cells. Elevated levels of these proteins in combination with cognitive impairment have previously formed the basis for diagnosing Alzheimer's.

Changes occur in the brain between ten and twenty years before the patient experiences any clear symptoms, and it is only when tau begins to spread that the nerve cells die and the person in question experiences the first cognitive problems. This is why Alzheimer's is so difficult to diagnose in its early stages”, explains Oskar Hansson, senior physician in neurology at Skåne University Hospital and professor at Lund University.

You must be logged in to view this content.

Anti-inflammatory Molecules Decline in the Aging Brain

Aging involves complicated plot twists and a large cast of characters: inflammation, stress, metabolism changes, and many others.

Now, a team of Salk Institute and UC San Diego scientists reveal another factor implicated in the aging process—a class of lipids called SGDGs (3-sulfogalactosyl diacylglycerols) that decline in the brain with age and may have anti-inflammatory effects.

 

The research, published in Nature Chemical Biology, helps unravel the molecular basis of brain aging, reveals new mechanisms underlying age-related neurological diseases, and offers future opportunities for therapeutic intervention.

You must be logged in to view this content.

Decreased Proteins, Not Amyloid Plaques, Tied To Alzheimer’s

New research from the University of Cincinnati (UC) bolsters a hypothesis that Alzheimer’s disease is caused by a decline in levels of a specific protein, contrary to a prevailing theory that has been recently called into question.

The prevailing narrative in the field has stated Alzheimer’s is caused by amyloid plaques in the brain, but Alberto Espay, MD, Andrea Sturchio, MD, and their colleagues hypothesized that plaques are simply a consequence of the levels of soluble amyloid-beta in the brain decreasing. These levels decrease because the normal protein, under situations of biological, metabolic or infectious stress, transform into the abnormal amyloid plaques.

In the current study, the team analyzed the levels of amyloid-beta in a subset of patients with mutations that predict an overexpression of amyloid plaques in the brain, which is thought to make them more likely to develop Alzheimer’s disease.

What we found was that individuals already accumulating plaques in their brains who are able to generate high levels of soluble amyloid-beta have a lower risk of evolving into dementia over a three-year span,” said Espay, professor of neurology in the UC College of Medicine.

Source: https://www.uc.edu/
AND
https://www.eurasiareview.com/