Brain Implant Could Be the Next Computer Mouse

Eight years ago, a patient lost her power of speech because of ALS, or Lou Gehrig’s disease, which causes progressive paralysis. She can still make sounds, but her words have become unintelligible, leaving her reliant on a writing board or iPad to communicate.

Now, after volunteering to receive a brain implant, the woman has been able to rapidly communicate phrases like “I don’t own my home” and “It’s just tough” at a rate approaching normal speech.

That is the claim inpaper published over the weekend on the website bioRxiv by a team at Stanford University. The study has not been formally reviewed by other researchers. The scientists say their volunteer, identified only as “subject T12,” smashed previous records by using the brain-reading implant to communicate at a rate of 62 words a minute, three times the previous best.

Philip Sabes, a researcher at the University of California, San Francisco, who was not involved in the project, called the results a “big breakthrough” and said that experimental brain-reading technology could be ready to leave the lab and become a useful product soon.

The performance in this paper is already at a level which many people who cannot speak would want, if the device were ready,” says Sabes. “People are going to want this.” People without speech deficits typically talk at a rate of about 160 words a minute. Even in an era of keyboards, thumb-typing, emojis, and internet abbreviations, speech remains the fastest form of human-to-human communication.

The new research was carried out at Stanford University. The preprint, published January 21, began drawing extra attention on Twitter and other social media because of the death the same day of its co-lead author, Krishna Shenoy, from pancreatic cancer.

Shenoy had devoted his career to improving the speed of communication through brain interfaces, carefully maintaining a list of records on his laboratory website. In 2019, another volunteer Shenoy worked with managed to use his thoughts to type at a rate of 18 words a minute, a record performance at the time.

Source: https://www.technologyreview.com/

Type Words Just by Thinking Them

Scientists at Stanford have developed a brain implant that allowed a man with paralyzed hands to “type” words just by thinking them. According to the findings, the man was able to type up to 90 characters per minute. This is a big improvement over past implants. Previous options have relied on the patients using their thoughts to move cursors to specific characters on a digital keyboard. With this new implant, people would be able to freely type and communicate via text by simply thinking about the words that they want to use.

One of the main focuses of brain-computer interfaces (BCIs) is to restore motor skills such as talking and moving to people who have lost those abilities. With this new implant, scientists trying to build off of that idea by using an intracortical BCI that decodes the handwriting movements and neural activity in the motor cortex. The implant then takes that information and translates it to text in real-time. Essentially, it allows the person with the implant to think about writing a letter or word. That letter or word is then translated into text, allowing for quick communication from the user.

When tested, the implant was able to achieve a 94.1 percent raw accuracy when online. It was also able to deliver 99 percent accuracy when offline. This number is comparable to the typical smartphone typing speeds of individuals in the age group of the test’s participant.

When we really understand the brain through neuroscience in the coming decades, we should be able to do much better in a wider variety of tasks,” Krishna Shenoy, a neuroscientist and engineer, said during the WE Summit (via the South China Morning Post).

We’ve already seen brain implants allowing blind users to see shapes. Shenoy believes that these findings are just the “tip of the iceberg”. With more testing and engineering, the implants they use could provide even stronger results.

The group originally published its work in Nature in May, with a full presentation released at a recent science teleconference called the WE Summit.

Source: https://bgr.com/

How to Link Human Brains To Computers

Elon Musk has a vision of linking human brains to computers in order to avoid our species from being outpaced by artificial intelligence – and this dream is set to become a reality. Speaking on Joe Rogan’s podcast, the billionaire said his company Neuralink will have a version of its brain implant ready ‘within a year.’ Musk explained that the process involves removing a chunk of the skull, robots then insert electrodes into the brain and the device into the hole, with only a small scar left behind.

Neuralink, which was founded in 2016, is designing tiny flexible ‘threads‘ that are ten times thinner than a human hair with the goal of treating brain injuries and trauma. The tech tycoon also revealed that the technology could develop into a full brain interface in just 25 years, which would enable ‘symbiosis‘ between humans and AI.

Wait until you see the next version vs what was presented last year. It’s *awesome*, he wrote. In the podcast, Musk dished to Rogan about the technology, how it is implanted and what it can do to improve the human body. The tech tycoon explained that the device is about one inch in diameter, similar to the face of a smart watch, and is implanted by removing a small chunk of the skull. A small robot connects the thread-like electrodes to certain areas of the brain, stitches up the hole and the only visible remains is a scar left behind from the incision.

The process involves removing a chunk of the skull, robots then insert electrodes into the brain and the device into the hole, with only a small scar left behind 

If you got an interface into the motor cortex, and then an implant that’s like a microcontroller near muscle groups you can then create a sort of a neural shunt that restores somebody who quadriplegic to full functionality, like they can walk around, be normal – maybe slightly better overtime,’ Musk explained.

When asked about the risks involved with placing a foreign object in the body, Musk said there is ‘a very low potential risk for rejection.’ ‘People put in heart monitors and things for epileptic seizures, deep brain simulation, artificial hips and knees that kind of thing,’ he said, noting that ‘it’s well known what is cause for a rejection or not.

Along with curing ailments, the chip could change the way human beings interface with each other‘You wouldn’t need to talk,’ Musk said, who foresees the technology going further to enable ‘symbiosis’ between humans and AI‘I think this is one of the paths to like AI is getting better and better,’ Musk added. ‘We are kind of left behind, we are just too dumb.’ ‘We are already a cyborg to some degree,’

Source: https://www.dailymail.co.uk/

How To Control Computers With The Mind

A new type of brain implant allows a paralyzed person to learn how to control a computer cursor with their mind. This kind of technology could be revolutionary for people with very limited mobility as it could open up computer-based communication and give them more freedom in every day life.

So-called ‘brain-computer interfaces’ have been developed for this purpose before, but a key problem with them was that the user had to retrain on a daily basis, making progress difficultBrain-computer interface implants work by a user thinking about moving the cursor on a screen in different directions by imagining they are moving their arm and neck in a specific way.  Electrical impulses picked up by the brain implant allow the cursor to move. A computer algorithm then ‘learns’ how the brain signals correlate to the cursor movements and adjusts them giving the implant user control.

This is akin to relearning how to move your arm every day,” explained Karunesh Ganguly, an associate professor in neurology at the University of California San Francisco, who led the current research.

Previous implants have had “technical issues related to having small wires in the brain that are not stable over time,” he added.

Source: https://www.ucsf.edu/
AND
https://www.forbes.com/