Nano BiosuperCapacitor Provides Energy for Biomedical Applications

The miniaturization of microelectronic sensor technology, microelectronic robots or intravascular implants is progressing rapidly. However, it also poses major challenges for research. One of the biggest is the development of tiny but efficient energy storage devices that enable the operation of autonomously working microsystems – in more and more smaller areas of the human body for example. In addition, these energy storage devices must be bio-compatible if they are to be used in the body at all. Now there is a prototype that combines these essential properties. The breakthrough was achieved by an international research team led by Prof. Dr. Oliver G. Schmidt, Professorship of Materials Systems for Nanoelectronics at Chemnitz University of Technology (Germany), initiator of the Center for Materials, Architectures and Integration of Nanomembranes (MAIN) at Chemnitz University of Technology and director at the Leibniz Institute for Solid State and Materials Research (IFW) Dresden. The Leibniz Institute of Polymer Research Dresden (IPF) was also involved in the study as a cooperation partner.

In the current issue of Nature Communications, the researchers report on the smallest microsupercapacitors to date, which already functions in (artificial) blood vessels and can be used as an energy source for a tiny sensor system to measure pH.

This storage system opens up possibilities for intravascular implants and microrobotic systems for next-generation biomedicine that could operate in hard-to-reach small spaces deep inside the human body. For example, real-time detection of blood pH can help predict early tumor growing. “It is extremely encouraging to see how new, extremely flexible, and adaptive microelectronics is making it into the miniaturized world of biological systems“, says research group leader Prof. Dr. Oliver G. Schmidt, who is extremely pleased with this research success.

The architecture of our nano-bio supercapacitors offers the first potential solution to one of the biggest challenges – tiny integrated energy storage devices that enable the self-sufficient operation of multifunctional microsystems,” says Dr. Vineeth Kumar, researcher in Prof. Schmidt’s team and a research associate at the MAIN research center.

Ever smaller energy storage devices in the submillimeter range – so-called “nano-supercapacitors” (nBSC) – for even smaller microelectronic components are not only a major technical challenge, however. This is because, as a rule, these supercapacitors do not use biocompatible materials but, for example, corrosive electrolytes and quickly discharge themselves in the event of defects and contamination. Both aspects make them unsuitable for biomedical applications in the body. So-called “biosupercapacitors (BSCs)” offer a solution. They have two outstanding properties: they are fully biocompatible, which means that they can be used in body fluids such as blood and can be used for further medical studies.

In addition, biosupercapacitors can compensate for self-discharge behavior through bio-electrochemical reactions. In doing so, they even benefit from the body’s own reactions. This is because, in addition to typical charge storage reactions of a supercapacitor, redox enzymatic reactions and living cells naturally present in the blood increase the performance of the device by 40%.

Source: https://www.tu-chemnitz.de/

Smart Nanoparticles To Target Lung Cancer

A new and promising approach for treatment of lung cancer has been developed by researchers at Lund University (Sweden). The treatment combines a novel surgical approach with smart nanoparticles to specifically target lung tumorsLung tumors are often difficult to remove using current surgical techniques due to their location in the lung or the fact that there are multiple tumors which are too small to observe. Tumors also develop natural barriers to prevent drugs and immune cells from reaching the tumor cells.

Illustration of the pH-responsive mesoporous silica nanoparticles designed to specifically target lung cancer

Therefore, patients often receive high doses of chemotherapeutics which are circulated through the entire body and lead to major side effects in other organs. While a number of new experimental therapies have been developed for lung cancer and have shown promise in the lab, a major remaining challenge has been how to deliver the right drug specifically to these difficult to reach tumors”, explains Darcy Wagner, Associate Professor and Head of the research group.

In order to overcome this challenge, the researchers behind the new study: Deniz Bölükbas and Darcy Wagner, researchers of the Lung Bioengineering and regeneration group, and colleagues developed a novel surgical technique which introduces the nanoparticles only into the blood vessels of the lung. The blood vessels around and in tumors are different than those in normal organs. The researchers used this difference to their benefit to direct nanoparticles to the interior of large and dense solid lung tumorsBölükbas and colleagues also used animal models which have a full immune system and closely resemble the types of lung tumors that patients have.

Using this technique, which we call ‘organ restricted vascular delivery’ (ORVD), we were able to see lung cancer cells with the delivered nanoparticles inside of them – something which has not been achieved previously in these types of lung cancer animal models, which closely resemble the clinical scenario”, explains Deniz Bölükbas, post-doctoral fellow and leading author of the article.

The new study has been published in the July issue of Advanced Therapeutics.
Source: https://www.lunduniversity.lu.se/

Self-Cleaning Surface Repels The Deadliest SuperBugs

Researchers at McMaster (Canada) have solved a vexing problem by engineering surface coatings that can repel everything, such as bacteria, viruses and living cells, but can be modified to permit beneficial exceptionsThe discovery holds significant promise for medical and other applications, making it possible for implants such as vascular grafts, replacement heart valves and artificial joints to bond to the body without risk of infection or blood clotting. The new nanotechnology has the potential to greatly reduce false positives and negatives in medical tests by eliminating interference from non-target elements in blood and urine.

The research adds significant utility to completely repellent surfaces that have existed since 2011. Those surface coatings are useful for waterproofing phones and windshields, and repelling bacteria from food-preparation areas, for example, but have offered limited utility in medical applications where specific beneficial binding is required

 

It was a huge achievement to have completely repellent surfaces, but to maximize the benefits of such surfaces, we needed to create a selective door that would allow beneficial elements to bond with those surfaces,” explains Tohid Didar of McMaster’s Department of Mechanical Engineering and School of Biomedical Engineering, the senior author of a paper that appears today in the journal ACS Nano.

In the case of a synthetic heart valve, for example, a repellent coating can prevent blood cells from sticking and forming clots, making it much safer.

A coating that repels blood cells could potentially eliminate the need for medicines such as warfarin that are used after implants to cut the risk of clots,” says co-author , a McMaster PhD student in Biomedical Engineering. Still, she explains, a completely repellent coating also prevents the body from integrating the new valve into the tissue of the heart itself.

By designing the surface to permit adhesion only with heart tissue cells, the researchers are making it possible for the body to integrate the new valve naturally, avoiding the complications of rejection. The same would be true for other implants, such as artificial joints and stents used to open blood vessels.

If you want a device to perform better and not be rejected by the body, this is what you need to do,” says co-author Maryam Badv, also a McMaster PhD student in Biomedical Engineering. “It is a huge problem in medicine.”

Source: https://brighterworld.mcmaster.ca/

How To Create See-through Human Organs

Researchers in Germany have created transparent human organs using a new technology that could pave the way to print three-dimensional body parts such as kidneys for transplants. The organ is then scanned by lasers in a microscope that allows researchers to capture the entire structure, including the blood vessels and every single cell in its specific location. Using this blueprint, researchers print out the scaffold of the organ. They then load the 3D printer with stem cells which act as “ink” and are injected into the correct position making the organ functional.

The team led by Ali Erturk at Ludwig Maximilians University in Munich have developed a technique that uses a solvent to make organs such as the brain and kidneys transparent. While 3D printing is already used widely to produce spare parts for industry, Erturk said the development marks a step forward for 3D printing in the medical field. Until now 3D-printed organs lacked detailed cellular structures because they were based on images from computer tomography or MRI machines, he said.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

3D transparent mouse

We can see where every single cell is located in transparent human organs. And then we can actually replicate exactly the same, using 3D bioprinting technology to make a real functional organ,” he said. “Therefore, I believe we are much closer to a real human organ for the first time now.”

Erturk’s team plan to start by creating a bioprinted pancreas over the next 2-3 years and also hope to develop a kidney within 5-6 years. The researchers will first test to see whether animals can survive with the bioprinted organs and could start clinical trials within 5-10 years, he said.

Source: https://www.reuters.com/

Nanorobots Deliver Drugs Directly To Diseased Tissue

Scientists at EPFL and ETH Zurich in Switzerland have developed tiny elastic robots that can change shape depending on their surroundings. Modeled after bacteria and fully biocompatible, these robots optimize their movements so as to get to hard-to-reach areas of the human body. They stand to revolutionize targeted drug delivery.

One day we may be able to ingest tiny robots that deliver drugs directly to diseased tissue, thanks to research being carried out at EPFL and ETH Zurich.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The robots are modeled after bacteria and fully biocompatible© 2019 EPFL/ ETHZ

The group of scientists – led by Selman Sakar at EPFL and Bradley Nelson at ETH Zurich – drew inspiration from bacteria to design smart, biocompatible microrobots that are highly flexible. Because these devices are able to swim through fluids and modify their shape when needed, they can pass through narrow blood vessels and intricate systems without compromising on speed or maneuverability. They are made of hydrogel nanocomposites that contain magnetic nanoparticles allowing them to be controlled via an electromagnetic field.

In an article appearing in Science Advances, the scientists describe the method they have developed for “programming the robot’s shape so that it can easily travel through fluids that are dense, viscous or moving at rapid speeds. When we think of robots, we generally think of bulky machines equipped with complex systems of electronics, sensors, batteries and actuators. But on a microscopic scale, robots are entirely different.

Fabricating miniaturized robots presents a host of challenges, which the scientists addressed using an origami-based folding method. Their novel locomotion strategy employs embodied intelligence, which is an alternative to the classical computation paradigm that is performed by embedded electronic systems.Our robots have a special composition and structure that allow them to adapt to the characteristics of the fluid they are moving through. For instance, if they encounter a change in viscosity or osmotic concentration, they modify their shape to maintain their speed and maneuverability without losing control of the direction of motion,” says Sakar.

These deformations can be “programmed” in advance so as to maximize performance without the use of cumbersome sensors or actuators. The robots can be either controlled using an electromagnetic field or left to navigate on their own through cavities by utilizing fluid flow. Either way, they will automatically morph into the most efficient shape.

Source: https://actu.epfl.ch/

Potential Revolutionnary Treatment For Alzheimer’s

Leaky capillaries in the brain portend early onset of Alzheimer’s disease as they signal cognitive impairment before hallmark toxic proteins appear, new USC research shows. The findings, which appear in Nature Medicine, could help with earlier diagnosis and suggest new targets for drugs that could slow or prevent the onset of the disease.

The number of Americans with Alzheimer’s is expected to more than double to about 14 million in 40 years, according to the Centers for Disease Control and Prevention. Five Alzheimer’s drugs are approved by the U.S. Food and Drug Administration to temporarily help with memory and thinking problems, but none treats the underlying cause of the disease or slow its progression. Researchers believe that successful treatment will eventually involve a combination of drugs aimed at multiple targets.

USC’s five-year study, which involved 161 older adults, showed that people with the worst memory problems also had the most leakage in their brain’s blood vessels — regardless of whether abnormal proteins amyloid and tau were present.

This image depicts a blood vessel in the brain that has become leaky, or permeable.

The fact that we’re seeing the blood vessels leaking, independent of tau and independent of amyloid, when people have cognitive impairment on a mild level, suggests it could be a totally separate process or a very early process,” said senior author Berislav Zlokovic, director of the Zilkha Neurogenetic Institute at the Keck School of Medicine of USC. “That was surprising that this blood-brain barrier breakdown is occurring independently.”

In healthy brains, the cells that make up blood vessels fit together so tightly they form a barrier that keeps stray cells, pathogens, metals and other unhealthy substances from reaching brain tissue. Scientists call this the blood-brain barrier. In some aging brains, the seams between cells loosen, and the blood vessels become permeable.

If the blood-brain barrier is not working properly, then there is the potential for damage,” said co-author Arthur Toga, director of the USC Mark and Mary Stevens Neuroimaging and Informatics Institute at the Keck School of Medicine. “It suggests the vessels aren’t properly providing the nutrients and blood flow that the neurons need. And you have the possibility of toxic proteins getting in.

Participants in the study had their memory and thinking ability assessed through a series of tasks and tests, resulting in measures of cognitive function and a “clinical dementia rating score.” Individuals diagnosed with disorders that might account for cognitive impairment were excluded. The researchers used neuroimaging and cerebral spinal fluid analysis to measure the permeability, or leakiness, of capillaries serving the brain’s hippocampus, and found a strong correlation between impairment and leakage.

“The results were really kind of eye-opening,” said first author Daniel Nation, an assistant professor of psychology at the USC Dornsife College of Letters, Arts and Sciences. “It didn’t matter whether people had amyloid or tau pathology; they still had cognitive impairment.”

Source: https://news.usc.edu/

Fasting Is A powerful Anti-Aging Weapon

A molecule produced during fasting or calorie restriction has anti-aging effects on the vascular system, which could reduce the occurrence and severity of human diseases related to blood vessels, such as cardiovascular disease, according to a study led by Georgia State University.

As people become older, they are more susceptible to disease, like cancer, cardiovascular disease and Alzheimer’s disease,” said Dr. Ming-Hui Zou, senior author of the study, director of the Center for Molecular and Translational Medicine at Georgia State. “Age is the most important so-called risk factor for human disease. How to actually delay aging is a major pathway to reducing the incident and severity of human diseaseThe most important part of aging is vascular aging. When people become older, the vessels that supply different organs are the most sensitive and more subject to aging damage, so studying vascular aging is very important. This study is focused on vascular aging, and in old age, what kind of changes happen and how to prevent vascular aging.”

In this study, the research team explores the link between calorie restriction (eating less or fasting) and delaying aging, which is unknown and has been poorly studied. The findings are published in the journal Molecular Cell.

The researchers identified an important, small molecule that is produced during fasting or calorie restriction conditions. The molecule, β-Hydroxybutyrate, is one type of a ketone body, or a water-soluble molecule that contains a ketone group and is produced by the liver from fatty acids during periods of low food intake, carbohydrate restrictive diets, starvation and prolonged intense exercise.

Source: https://news.gsu.edu/

Blood Vessels Can Contribute To Tumor Suppression

A study from the Institute of Pharmacology and Structural Biology in Toulouse (France) has introduced a novel concept in cancer biology : Blood vessels in human tumors are not all the same and some types of blood vessels found in the tumor microenvironment (i. e. HEVs) can contribute to tumor suppression rather than tumor growth(Cancer Res 2011).

 A better understanding of HEVs at the molecular level, which is one of the major objectives of the research team, may have an important impact for cancer therapy.

Dendritic cells, which are well known for their role as antigen-presenting cells, play an unexpected and important role in the maintenance of HEV blood vessels in lymph nodes (Nature 2011). In addition, the scientists discovered the frequent presence of HEVs in human solid tumors, and their association with cytotoxic lymphocyte infiltration and favourable clinical outcome in breast cancer. They also showed that IL-33 is a chromatin-associated cytokine (PNAS 2007, 453 citations) that function as an alarm signal (alarmin) released upon cellular damage (PNAS 2009, 312 citations). Inflammatory proteases can generate truncated forms of IL-33 that are 30-fold more potent than the full length protein for activation of group 2 innate lymphoid cells (PNAS 2012, 133 citations, PNAS 2014).

An important objective  is now to further characterize IL-33 regulation and mechanisms of action in vivo, through the use of multidisciplinary approaches.

Source: http://www.ipbs.fr/