How to Command a Computer Just by Thinking

The first brain-computer interface device was implanted in a patient in the US earlier in July by a doctor at the medical center, Mount Sinai West, in New York, in an investigatory trial of the startup Synchron’s procedure to help patients suffering from ALS (amyotrophic lateral sclerosis) text by thinking. The procedure involved the doctor threading a 1.5-inch-long implant comprised of wires and electrodes into a blood vessel in the brain of a patient with ALS. The hope is that the patient, who’s lost the ability to move and speak, will be able to surf the web and communicate via email and text simply by thinking, and the device will translate the patient’s thoughts into commands sent to a computerSynchron, the startup behind the technology, has already implanted its devices in four patients in Australia, who haven’t experienced side effects and have been able to carry out such tasks as sending WhatsApp messages and making online purchases.

The implant was a major step forward in a nascent industry, putting the Brooklyn-based company ahead of competitors, including ahead of Elon Musk’s Neuralink Corp.

This surgery was special because of its implications and huge potential,” said Dr. Shahram Majidi, the neurointerventional surgeon who performed the procedure.This was the first procedure the company has performed in the US.

The brain-computer interface (BCI) has caught the attention of many in the technological field because its device, known as the stentrode, can be inserted into the brain without cutting through a person’s skull or damaging tissue. A doctor makes an incision in the patient’s neck and feeds the stentrode via a catheter through the jugular vein into a blood vessel nestled within the motor cortex. As the catheter is removed, the stentrode, a cylindrical, hollow wire mesh opens up and begins to fuse with the outer edges of the vessel. According to Majidi, the process is very similar to implanting a coronary stent and takes only a few minutes.

A second procedure then connects the stentrode via a wire to a computing device implanted in the patient’s chest. To do this, the surgeon must create a tunnel for the wire and a pocket for the device underneath the patient’s skin much like what’s done to accommodate a pacemaker. The stentrode reads the signals when neurons fire in the brain, and the computing device amplifies those signals and sends them out to a computer or smartphone via Bluetooth.

The stentrode then uses sixteen electrodes to monitor brain activity and record the firing of neurons when a person thinks. The signal strength improves over time as the device fuses deeper into the blood vessel and gets closer to the neurons. Software is used to analyze the patterns of brain data and match them with the the user’s goal.

Source: https://synchron.com/
AND
https://greekreporter.com/

How to Block Pain

Researchers have published the first proof-of-concept results from a years-long program to develop tiny, wireless devices that can treat neurological diseases or block pain. The nerve stimulators require no batteries and instead draw both their power and programming from a low-powered magnetic transmitter outside the body.
The MagnetoElectric Bio ImplanT—aka ME-BIT—is placed surgically and an electrode is fed into a blood vessel toward the nerve targeted for stimulation. Once there, the device can be powered and securely controlled with a near-field transmitter worn close to the body. Researchers successfully tested the technology on animal models and found it could charge and communicate with implants several centimeters below the skin.
The implant, detailed in Nature Biomedical Engineering, could replace more invasive units that now treat Parkinson’s disease, epilepsy, chronic pain, hearing loss, and paralysis.

Because the devices are so small, we can use blood vessels as a highway system to reach targets that are difficult to get to with traditional surgery,” says Jacob Robinson, an associate professor of electrical and computer engineering and of bioengineering at Rice University. “We’re delivering them using the same catheters you would use for an endovascular procedure, but we would leave the device outside the vessel and place a guidewire into the bloodstream as the stimulating electrode, which could be held in place with a stent.”

The ability to power the implants with magnetoelectric materials eliminates the need for electrical leads through the skin and other tissues. Leads like those often used for pacemakers can cause inflammation, and sometimes need to be replaced. Battery-powered implants can also require additional surgery to replace batteries.

ME-BIT’s wearable charger requires no surgery. The researchers showed it could even be misaligned by several inches and still sufficiently power and communicate with the implant.

The programmable, 0.8-square-millimeter implant incorporates a strip of magnetoelectric film that converts magnetic energy to electrical power. An on-board capacitor can store some of that power, and a “system-on-a-chipmicroprocessor translates modulations in the magnetic field into data. The components are held together by a 3D-printed capsule and further encased in epoxy. The magnetic field generated by the transmitter—about 1 milliTesla—is easily tolerated by tissues, the researchers say. They estimate the current implant can generate a maximum of 4 milliwatts of power, sufficient for many neural stimulation applications.

One of the nice things is that all the nerves in our bodies require oxygen and nutrients, so that means there’s a blood vessel within a few hundred microns of all the nerves,” Robinson says. “It’s just a matter of tracing the right blood vessels to reach the targets. “With a combination of imaging and anatomy, we can be pretty confident about where we place the electrodes,” he says.

Source: https://www.futurity.org/

Blocking Protein Curbs Memory Loss

Impeding VCAM1, a protein that tethers circulating immune cells to blood vessel walls, enabled old mice to perform as well on memory and learning tests as young mice, a Stanford study found. Mice aren’t people, but like us they become forgetful in old age. In a study  published online May 13 in Nature Medicine, old mice suffered far fewer senior moments during a battery of memory tests when Stanford University School of Medicine investigators disabled a single molecule dotting the mice’s cerebral blood vessels. For example, they breezed through a maze with an ease characteristic of young adult mice.

The molecule appears on the surfaces of a small percentage of endothelial cells, the main building blocks of blood vessels throughout the body. Blocking this molecule’s capacity to do its main job — it selectively latches onto immune cells circulating in the bloodstream — not only improved old mice’s cognitive performance but countered two physiological hallmarks of the aging brain: It restored to a more youthful level the ability of the old mice’s brains to create new nerve cells, and it subdued the inflammatory mood of the brain’s resident immune cells, called microglia.

Scientists have shown that old mice’s blood is bad for young mice’s brains. There’s a strong suspicion in the scientific community that something in older people’s blood similarly induces declines in brain physiology and cognitive skills. Just what that something is remains to be revealed. But, the new study suggests, there might be a practical way to block its path where the rubber meets the road: at the blood-brain barrier, which tightly regulates the passage of most cells and substances through the walls of blood vessels that pervade the human brain.

 

We may have found an important mechanism through which the blood communicates deleterious signals to the brain,” said the study’s senior author, Tony Wyss-Coray, PhD, professor of neurology and neurological sciences, co-director of the Stanford Alzheimer’s Disease Research Center and a senior research career scientist at the Veterans Affairs Palo Alto Health Care System. The lead author of the study is Hanadie Yousef, PhD, a former postdoctoral scholar in the Wyss-Coray lab. The intervention’s success points to possible treatments that could someday slow, stop or perhaps even reverse that decline. Targeting a protein on blood-vessel walls may be easier than trying to get into the brain itself. “We can now try to treat brain degeneration using drugs that typically aren’t very good at getting through the blood-brain barrier — but, in this case, would no longer need to,” Yousef said.

Source: http://med.stanford.edu/

Nanospheres Dissolve Clots In A Few Minutes

Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have developed a drug-delivery system that allows rapid response to heart attacks without surgical intervention. In laboratory and animal testing, the system proved to be effective at dissolving clots, limiting long-term scarring to heart tissue and preserving more of the heart’s normal function.

Our approach would allow health-care providers to begin treating heart attacks before a patient reaches a surgical suite, hopefully improving patient outcomes,” says Ashley Brown, corresponding author of a paper on the work and an assistant professor in the Joint Biomedical Engineering Program (BME) at NC State and UNC. “And because we are able to target the blockage, we are able to use powerful drugs that may pose threats to other parts of the body; the targeting reduces the risk of unintended harms.”

Heart attacks, or myocardial infarctions, occur when a thrombus – or clotblocks a blood vessel in the heart. In order to treat heart attacks, doctors often perform surgery to introduce a catheter to the blood vessel, allowing them to physically break up or remove the thrombus. But not all patients have quick access to surgical care. And more damage can occur even after the blockage has been removed. That’s because the return of fresh blood to tissues that had been blocked off can cause damage of its own, called reperfusion injury. Reperfusion injury can cause scarring, stiffening cardiac tissue and limiting the heart’s normal functionality.

To address these problems, researchers have developed a solution that relies on porous nanogel spheres, about 250 nanometers in diameter, which target a thrombus and deliver a cocktail of two drugs: tPA and Y-27632.

In in vitro testing, the researchers found that the targeted tPA/Y-27632 cocktail dissolved clots in a matter of minutes. While this has yet to be tested in trials, it may work more quickly than surgical interventions, which require time to prep the patient and get the catheter in place. In tests using laboratory rats, the researchers also found that their technique limited scarring and preserved heart function after heart attack better than targeted tPA or Y-27632 by themselves – and far better than a control group in which animals received neither drug.

The paper was recently published in the journal ACS Nano. Trials on larger animals are now being planned.

Source: https://news.ncsu.edu/