Simple Eye Test Uses AI To Predict Death From a Heart Condition

A simple eye test that predicts death from cardiovascular disease has been developed by British scientists. It combines artificial intelligence (AI) with scans of the retina – a membrane at the back of peepers that contains light sensitive cells. The technique could lead to a screening programme – enabling drugs and lifestyle changes to be prescribed decades before symptoms emerge. Lead author Professor Alicja Regina Rudnicka, of St George’s University of London, said the test is inexpensive, accessible and non-invasive. People at risk of stroke, heart attack and other circulatory conditions could undergo RV (artificial intelligence enabled retinal vasculometry) during routine visits to the optician.

Prof Rudnicka said: “It has the potential for reaching a higher proportion of the population in the community because of ‘high street’ availability. “RV offers an alternative predictive biomarker to traditional risk-scores for vascular health – without the need for blood sampling or blood pressure measurement. “It is highly likely to help prolong disease-free status in an ever-aging population with increasing comorbidities, and assist with minimising healthcare costs associated with lifelong vascular diseases.”

An algorithm called QUARTZ was developed based on retinal images from tens of thousands of Britons aged 40 to 69. It focused on the width, area and curvature, or tortuosity, of tiny blood vessels called arterioles and venules. The performance of QUARTZ was compared with the widely used Framingham Risk Scores framework – both separately and jointly.

The health of all the participants was tracked for an average of seven to nine years, during which time there were 327 and 201 circulatory disease deaths among 64,144 UK Biobank and 5,862 EPIC-Norfolk participants respectively. In men, arteriolar and venular width, tortuosity, and width variation emerged as important predictors of death from circulatory disease. In women, arteriolar and venular area and width and venular tortuosity and width variation contributed to risk prediction.

The predictive impact of retinal vasculature on circulatory disease death interacted with smoking, drugs to treat high blood pressure, and previous heart attacks. Overall, these predictive models, based on age, smoking, medical history and retinal vasculature, captured between half and two-thirds of circulatory disease deaths in those most at risk.

Source: https://www.mirror.co.uk/

Japan Launches World’s First Genome-Edited Tomato

Sanatech Seed, the Japanese start-up behind the launch of the world’s first direct consumption genome-edited tomato, says the variety is the first of several it plans to develop with enhanced nutritional benefits. The company’s Sicilian Rouge High GABA tomato was developed using cutting edge CRISPR/Cas9 gene editing technology. It contains high levels of Gamma-AminoButyric Acid (GABA), an amino acid believed to aid relaxation and help lower blood pressure.

According to Shimpei Takeshita, president of Sanatech Seed and chief innovation officer of Pioneer EcoScience, the exclusive distributor of the tomato, it contains four to five times more GABA than a regular tomato.

This tomato represents an easy and realistic way in which consumers can improve their daily diet,” he told delegates during a session on how to breed better tomatoes at this year’s Global Tomato Congress.

Takeshita said the reason for choosing both the Sicilian Rouge variety and the GABA trait was their high level of acceptance by consumers. “Sicilian Rouge is a popular tomato, and consumers are already used to buying other products with a high GABA content so we felt it was important to introduce them to the technology in a way that was already familiar to them,” he explained.

Dr Hiroshi Ezura, CTO of Sanatech Seed, told the congress that CRISPR/Cas9 is simpler and easier to handle than other gene editing techniques, making it ideal for developing crops with enhanced nutritional characteristicsRules in Japan allow products developed using gene editing to be sold providing the necessary approval has been sought from the regulatory agencies. “With GMOs you need to produce a lot of data in order to get regulatory approval by the government, while with gene editing, you still need to notify the government but the amount of data you have to produce is a lot lower,” Ezura explained. There have been widespread marketing campaigns in Japan to educate consumers about the difference between GMOs and gene-edited crops, so there is a higher level of understanding and acceptance of these products than in other parts of the world.

Source: http://www.fruitnet.com

One Pill A Day Reduces Heart Attack Risk By One Third

A cheap, single pill taken once a day that combines four common drugs is safe and reduces the risk of events such as heart attacks, strokes and sudden death in people over the age of 50, research has found. The study, the first large-scale trial to date, looked at the effectiveness of a so-called polypill – a four-in-one therapy containing drugs to lower cholesterol and blood pressure that was first proposed more than 15 years ago. The researchers found those taking the polypill had a more than 30% lower risk of serious heart problems than those just offered advice.

While different formulations have been studied, previous trials have only been conducted in small groups of people and over short periods of time. These studies have primarily looked at the impacts of cholesterol on blood pressure, relying on models to predict the impact on cardiovascular events such as strokes – meaning the full potential of the polypill has remained unclear. The latest study tackled both of these problems.

There has been a lot of talk about using this simple, fixed-dose combination drug for prevention of cardiovascular disease and I think we have shown that as a strategy it can work,” said Prof Tom Marshall, a co-author of the study from the University of Birmingham, adding that the pills might cost as little as a few pence per day. The new study involved more than 6,800 participants aged 50-75 from rural Iran – an area where almost 34% of premature deaths are down to coronary heart disease, and 14% are caused by strokes.

Writing in the Lancet, researchers from the UK, US and Iran reported that 3,417 people were given only minimum care, such as help with controlling blood pressure or cholesterol if needed, as well as lifestyle advice on topics such as diet, exercise and smoking. A similar number of people were, in addition to this, also given the polypill. More than 90% of those involved in the study did not have cardiovascular disease at the outset. Participants were followed up for five years. Over that time, 202 people taking the polypill had a major cardiovascular event, such as heart attack, heart failure, or stroke, compared with 301 in the “advice” group.

The authors say that translated as a 34% lower risk of having such an event, compared with the “advice” group, once factors including age, sex, diabetes and high blood pressure were taken into account.

There were also signs that, at least early on, the polypill reduced some aspects of high blood pressure, while it also led to a small fall in “bad” cholesterol. Both groups showed similar low levels of problematic events including internal bleeding and peptic ulcers. Overall, the results suggested that two major cardiovascular events would be avoided for every 69 people taking the tablet for 5 years. The polypill includes aspirin, which the team acknowledge is controversial as it can increase the risk of bleeding: the latest trial did not include people who were at high risk of such problems.

Source: https://www.theguardian.com/

Optical Circuits Up To 100 Times Faster Than Electronic Circuits

Optical circuits are set to revolutionize the performance of many devices. Not only are they 10 to 100 times faster than electronic circuits, but they also consume a lot less power. Within these circuits, light waves are controlled by extremely thin surfaces called metasurfaces that concentrate the waves and guide them as needed. The metasurfaces contain regularly spaced nanoparticles that can modulate electromagnetic waves over sub-micrometer wavelength scales.

Metasurfaces could enable engineers to make flexible and ultra-thin optics for a host of applications, ranging from flexible tablet computers to solar panels with enhanced light-absorption characteristics. They could also be used to create flexible sensors for direct placement on a patient’s skin, for example, in order to measure things like pulse and blood pressure or to detect specific chemical compounds.

The catch is that creating metasurfaces using the conventional method, lithography, is a fastidious process that takes several hours and must be done in a cleanroom. But EPFL engineers from the Laboratory of Photonic Materials and Fiber Devices (FIMAP) in Switzerland have now developed a simple method for making them in just a few minutes at low temperatures—or sometimes even at room temperature—with no need for a cleanroom. The EPFL‘s School of Engineering method produces dielectric glass metasurfaces that can be either rigid or flexible. The results of their research appear in Nature Nanotechnology.

The new method employs a natural process already used in : dewetting. This occurs when a thin film of material is deposited on a substrate and then heated. The heat causes the film to retract and break apart into tiny nanoparticles.

Dewetting is seen as a problem in manufacturing—but we decided to use it to our advantage,” says Fabien Sorin, the study’s lead author and the head of FIMAP.

With their method, the engineers were able to create dielectric glass metasurfaces, rather than metallic metasurfaces, for the first time. The advantage of dielectric metasurfaces is that they absorb very little light and have a high refractive index, making it possible to modulate the light that propagates through them.

Source: https://phys.org/