How to Program Cancer-Fighting Cells to Resist Exhaustion
CAR-T cells are remarkably effective against blood cancers, but their effect can be transient as the cells become exhausted. Stanford researchers found a way to keep the cells effective. A new approach to programming cancer-fighting immune cells called CAR-T cells can prolong their activity and increase their effectiveness against human cancer cells grown in the laboratory and in mice, according to a study by researchers at the Stanford University School of Medicine. The ability to circumvent the exhaustion that the genetically engineered cells often experience after their initial burst of activity could lead to the development of a new generation of CAR-T cells that may be effective even against solid cancers — a goal that has until now eluded researchers.
The studies were conducted in mice harboring human leukemia and bone cancer cells. The researchers hope to begin clinical trials in people with leukemia within the next 18 months and to eventually extend the trials to include solid cancers.
“We know that T cells are powerful enough to eradicate cancer,” said Crystal Mackall, MD, professor of pediatrics and of medicine at Stanford and the Ernest and Amelia Gallo Family Professor. “But these same T cells have evolved to have natural brakes that tamp down the potency of their response after a period of prolonged activity. We’ve developed a way to mitigate this exhaustion response and improve the activity of CAR-T cells against blood and solid cancers.”
Mackall, who is also the director of the Stanford Center for Cancer Cell Therapy and of the Stanford research center of the Parker Institute for Cancer Immunotherapy, treats children with blood cancers at the Bass Center for Childhood Cancer and Blood Diseases at Stanford Children’s Health. Mackall is the senior author of the study, which was published in Nature. Former postdoctoral scholar Rachel Lynn, PhD, is the lead author.
Source: https://med.stanford.edu/
Recent Comments