Crispr Can Edit Directly Genes Inside Human Bodies

A decade ago, biologists Jennifer Doudna and Emmanuelle Charpentier published a landmark paper describing a natural immune system found in bacteria and its potential as a tool for editing the genes of living organisms. A year later, in 2013, Feng Zhang and his colleagues at the Broad Institute of MIT and Harvard reported that they’d harnessed that systemknown as Crispr, to edit human and animal cells in the lab. The work by both teams led to an explosion of interest in using Crispr to treat genetic diseases, as well as a 2020 Nobel Prize for Doudna and Charpentier.

Many diseases arise from gene mutations, so if Crispr could just snip out or replace an abnormal gene, it could in theory correct the disease. But one of the challenges of turning test tube Crispr discoveries into cures for patients has been figuring ouhow to get the gene-editing components to the place in the body that needs treatment.

One biotech company, Crispr Therapeutics, has gotten around that issue by editing patients’ cells outside the body. Scientists there have used the tool to treat dozens of people with sickle cell anemia and beta thalassemia—two common blood disorders. In those trials, investigators extract patients’ red blood cells, edit them to correct a disease-causing mutation, then infuse them back into the body.

But this “ex vivo” approach has downsides. It’s complex to administer, expensive, and has limited uses. Most diseases occur in cells and tissues that can’t be easily taken out of the body, treated, and put back in. So the next wave of Crispr research is focused on editingin vivo”—that is, directly inside a patient’s body. Last year, Intellia Therapeutics was the first to demonstrate that this was possible for a disease called transthyretin amyloidosis. And last week, the Cambridge, Massachusetts-based biotech company showed in-the-body editing in a second disease.

Source: https://www.intelliatx.com/
AND
https://www.wired.com/

The First CRISPR Gene-Editing Drug on the Market by 2023

Until recently, CRISPR—the gene-editing technology that won scientists Jennifer Doudna and Emmanuelle Charpentier the 2020 Nobel Prize in chemistry—sounded more like science fiction than medicine; lab-created molecular scissors are used to snip out problematic DNA sections in a patient’s cells to cure them of disease. But soon we could see regulators approve the very first treatment using this gene-editing technology in an effort to combat rare inherited blood disorders that affect millions across the globe.

In a $900 million collaboration, rare disease specialist Vertex and CRISPR Therapeutics developed the therapy, dubbed exa-cel (short for exagamglogene autotemcel). It has already amassed promising evidence that it can help patients with beta thalassemia and sickle cell disease (SCD), both of which are genetic blood diseases that are relatively rare in the U.S. but somewhat more common inherited conditions globally.

Beta thalassemia is characterized by damaged or missing genes that cause the body to produce less hemoglobin (an essential protein that transports oxygen), potentially leading to enlargement of the liver, spleen, or heart, and malformed or brittle bones. It is estimated to afflict 1 in 100,000 people in the world, and regular blood transfusions are necessary to stave off its most serious effects.

While the exact statistics are unknown, SCD is estimated to affect 100,000 people in the U.S. and millions around the world; it is attributed to a defective gene that causes malformed hemoglobin that are stiff, sticky, and sickle-shaped (hence the name) and can thus block healthy blood cells from transporting oxygen around the body.

Exa-cel reportedly slashed the need for blood transfusions or incidence of serious, life-threatening medical events for months to years after patients received the treatment. New and impressive clinical trial results were announced at a major international medical conference in June and bolstered the companies’ prospect of producing the first gene-editing therapy of its kind to reach the broader market and patients.

The drug makers say they intend to submit exa-cel for regulatory approval in the U.S., U.K., and Europe by the end of this year, meaning the drug could receive marketing authorization sometime in 2023 as more and more biopharma companies pursue novel gene therapies.

Source: https://www.fastcompany.com/