Solar Electric Vehicle Available in 2023 for $25,000

Germany company Sono Motors says it will bring a solar-powered electric vehicle to market in Europe in mid-2023. Sono has brought the car, called the Sion, on a tour throughout the U.S., in anticipation of its eventual domestic release. Priced at $25,000, the car is more affordable than most EVs on the U.S. market. It features 465 integrated solar half-cells throughout the exterior of the carroof, doors, fenders, hood and all. The company estimates that solar power alone can fuel about 70 miles (113 km) of driving per week. For longer trips though, the Sion has a lithium iron phosphate battery with a 190-mile (306 km) range, made by Chinese electric vehicle and battery giant BYD.

You must be logged in to view this content.

Low Cost Mini Device Harvests Electricity Produced by the Wind

Scientists from NTU Singapore, led by Professor Yang Yaowen, Associate Chair of the School of Civil and Environmental Engineering, have developed a low-cost device that can harness energy from wind as gentle as a light breeze and store it as electricity. When exposed to winds with a velocity as low as two metres per second (m/s), the device can produce a voltage of three volts and generate electricity power of up to 290 microwatts, which is sufficient to power a commercial sensor device and for it to also send the data to a mobile phone or a computer.

The light and durable device, called a wind harvester, also diverts any electricity that is not in use to a battery, where it can be stored to power devices in the absence of wind. The scientists say their invention has the potential to replace batteries in powering light emitting diode (LED) lights and structural health monitoring sensors. Those are used on urban structures, such as bridges and skyscrapers, to monitor their structural health, alerting engineers to issues such as instabilities or physical damage.

Measuring only 15 centimetres by 20 centimetres, the device can easily be mounted on the sides of buildings, and would be ideal for urban environments, such as Singaporean suburbs, where average wind speeds are less than 2.5 m/s, outside of thunderstorms.

Source: https://www.ntu.edu.sg/

Chinese EV Battery With One-Charge Range of 1,000 Kms (620 miles)

The Chinese company Contemporary Amperex Technology Co. Ltd (CATL)  unveiled an electric-car battery it said has a range of over 1,000 kilometers (620 miles) on a single charge and is 13% more powerful than one planned by Tesla Inc., a major customer.

CATL, as the world’s biggest maker of electric-car batteries is known, will start manufacturing the next-generation “Qilin” next year, according to a video the Chinese company streamed online Thursday. The battery charges faster than existing cells, and is safer and more durable, CATL said.

The company claims that the EV battery, the Qilin, has a “record-breaking volume utilisation efficiency of 72% and an energy density of up to 255 Wh/kg – achieving “the highest integration level worldwide so far” and is capable of delivering a range of 1,000 kilometres,

The Qilin battery – named after a legendary creature in Chinese mythology – supposedly offers breakthroughs in the core process, algorithm, and materials.

Source: https://thedriven.io/
AND
https://www.bloomberg.com/

Sodium Batteries May Power New Electric Cars

Half a century ago, the battery of the future was built out of sodium. The reason has to do with why the seas are salty. Sodium is a light element that ionizes easily, giving up one of its electrons. In a battery, those ions shuttle back and forth between two oppositely charged plates, generating a current. This looked like a promising way to power a house or a car. But then another element crashed the party: lithium, sodium’s upstairs neighbor on the periodic table. In 1991, Sony commercialized the first rechargeable lithium-ion battery, which was small and portable enough to power its handheld video cameras. Lithium was lighter and easier to work with than sodium, and so a battery industry grew up around it. Companies and research labs raced to pack more energy into less space. Sodium faded into the background.

So it was surprising this summer when China’s CATL, one of the world’s largest battery makers, announced sodium would play a role in the electrified future. CATL, like its competitors, is a lithium company through and through. But starting in 2023, it will begin placing sodium cells alongside lithium ones inside the battery packs that power electric cars. Why? Well, for one thing, a CATL executive pointed out that sodium is cheaper than lithium, and performs better in cold weather. But it was also hedging against an issue that was difficult to imagine in 1991. By the end of this decade, the world will be running short on the raw materials for batteries—not just lithium, but also metals like nickel and cobalt. Now that electrification is actually happening on a big scale, it’s time to think about diversifying. A CATL spokesperson said it started thinking about sodium 10 years ago.

CATL’s announcement “really injected new energy into the people who work on sodium,” says Shirley Meng, a battery scientist at the University of California, San Diego who works extensively with both elements. As a young professor, Meng started working with sodium in part because she was looking for a suitably weird niche to stand out in—but also because she believed it had potential. “The biggest barrier to success for sodium was that lithium was so successful,” she says.

Lithium is not exceptionally rare. But deposits are concentrated in places that are hard to mine. So companies like CATL compete to secure a slice of the supply from a limited number of mines, mostly located in Australia and the Andes. Meanwhile, reserves in North America are tied up in environmental disputes, raising concerns in the US about the security of the supply chains. Competition is even fiercer for nickel—which Elon Musk has called the “biggest concern” for the future of EV batteries, due to price and supply constraints—and for cobalt, 70 percent of which is dug up in the Democratic Republic of the Congo.

As more mines open, there will probably be enough lithium to power all the world’s vehicles, Meng says. But that doesn’t account for all of the things poised for electrification that aren’t cars: chiefly, the batteries that will manage the load within microgrids and keep our lights on at night when the rooftop solar panels are in the dark. Those are the kinds of applications Meng had in mind when she got into sodium research. “I was thinking everybody would have a refrigerator for electrons in your home in the same way you have a refrigerator for food,” she says. “I think that really is the vision for grid storage.

Source: https://www.wired.com/

New Tesla Battery With 4680 Cells

Tesla has unveiled its latest structural battery pack with 4680 cells during a Gigafactory Berlin tour ahead of Model Y production at the new factory. The start of production at Gigafactory Berlin is not just significant for Tesla’s growth in Europe, but it will also mark the launch of an important new version of the Model Y. Tesla plans to build the new Model Y at Gigafactory Berlin on a whole new platform with its structural battery pack.

At its Battery Day event last year, Tesla not only unveiled its new 4680 battery cell but also a new battery architecture built around the new cellInspired by the aerospace innovation of building airplane wings as fuel tanks instead of building the fuel tanks inside the wings, Tesla decided to build a battery pack that acts as a body structure, linking the front and rear underbody partsCurrently, Tesla builds battery packs by combining cells into modules, which are put together to form a battery pack. That battery pack is installed into the vehicle platform.

The difference with this new concept is that Tesla is not using modules, and is instead building the entire battery pack as the structural platform of the vehicle, with the battery cells helping to solidify the platform as one big unit. Using its expertise in giant casting parts, Tesla can connect a big single-piece rear and front underbody to this structural battery pack.

This new design reduces the number of parts, the total mass of the battery pack, and therefore enables Tesla to improve efficiency and ultimately the range of its electric vehicles (412 Miles or 663 km).

Source: https://electrek.co/

The Rise of the Hydrogen Electric Car

The race is on for car manufacturers to bring out their own range on electric vehicles (EV). But what if the new kid on the block ends up taking over? Honda, Hyundai, and Toyota are among the major firms now testing out hydrogen fuel cell electric vehicles (FCEVs) in their production lines to see which proves the most successful.

FCEVs have been criticized for being less efficient as only around 55 percent of the hydrogen energy created through electrolysis is usable, compared to between 70 and 80 percent in battery-electric cars. However, there are several advantages to fuel cells, including low recharge times – just a matter of minutes, and long-range. But several practical obstacles stand in the way of hydrogen FCEVs, such as the lack of charging infrastructure in contrast to the ever-expanding EV infrastructure. For example, at the beginning of 2021 there were only 12 hydrogen fuelling stations in the U.K., not surprising as only two brands of FCEV were on the market – the Toyota Mirai and the Hyundai Nexo.

In addition, hydrogen is currently much more expensive than electric fuel, costing around £60 for a 300-mile tank. Moreover, much of the hydrogen on the market comes from the excess carbon produced from fossil fuels by using carbon capture and storage (CCS) technologies. Yet, the disadvantages of battery EVs should not be overlooked. After years of investment, it is unlikely that we will see major advances in battery technology any time soon. Not to forget that lithium-ion batteries are heavy, making them near-impossible to use in freight and aviation. The metals used in existing battery production, such as cobalt and nickel, are also problematic due to ethical mining concerns as well a high costs adding to the overall price of price of EVs.
Source: https://oilprice.com/

Novel System Sequesters CO2 And Generates Electricity

A recent study, affiliated with UNIST (South Korea) has unveiled a novel system, capable of producing hydrogen and electricity quickly and effectively while cutting carbon dioxide (CO2) emissions significantly.  Published in the journal Nano Energy, this breakthrough has been carried out by Professor GunTae Kim and his research team in the School of Energy and Chemical Engineering at UNIST. In this study, the research team succeeded in developing a membrane-free aqueous metal-CO2 battery. Unlike the existing aqueous metal-CO2 systems, the new battery is not only easier to manufacture, but also allows continuous operation with one type of electrolyte.

The research team designed a membrane-free (MF) Mg-CO2battery, as an advanced approach to sequester CO2 emissions by generating electricity and value-added chemicals without any harmful by-products. According to the research team, their MF Mg-CO2 battery operates based on the indirect utilization of CO2with facile hydrogen generation process. It has been also found that the new battery exhibits high faradaic efficiency of 92.0%.

In order to translate the newly-developed laboratory-scale MF Mg-CO2 battery technology into a commercial reality, we have envisioned an operational prototype system that produces electricity and value-added chemicals, as a cornerstone to better support sustainable human life from CO2 and earth-abundant renewable power (e.g., wind, solar, seawater),” noted the research team.

The MF Mg-CO2 battery system has a structure similar to that of hydrogen fuel cells for use in cars, since it only requires a Mg-metal negative electrode, an aqueous electrolyte, and a positive-electrode catalyst. However, unlike the existing fuel cells, they are based on aqueous electrolytes. As a result, the newly-developed MF Mg-CO2 battery had successfully sequestered CO2 emissions by generating electricity and value-added chemicals without any harmful by-products.

Our findings indicate great benefits for the newly-developed MF Mg-CO2 battery technology to produce various value-added chemicals of practical significance and electricity from CO2without any wasted by-products,” noted the research team. “Through this we have opened the door to electrochemical utilization of CO2 with indirect circulation for future alternative technologies.”

Source: https://www.eurekalert.org/

Ultralow-Temperature Supercapacitors Could Power Mars, Polar Missions

NASA‘s Perseverance Rover recently made a successful landing on Mars, embarking on a two-year mission to seek signs of ancient life and collect samples. Because Mars is extremely cold — nighttime temperatures can drop below -112 Fheaters are required to keep the rover’s battery system from freezing. Now, researchers reporting in ACS’ Nano Letters have 3D printed porous carbon aerogels for electrodes in ultralow-temperature supercapacitors, reducing heating needs for future space and polar missions.

Jennifer Lu, Yat Li and colleagues wanted to develop an energy storage system that could operate at very low temperatures without heating units, which add weight and energy requirements to instruments and machinery, such as the Mars rovers. So the researchers 3D printed a porous carbon aerogel using cellulose nanocrystal-based ink, and then freeze-dried it and further treated the surface. The resulting material had multiple levels of pores, from the 500-µm pores in the lattice-like structure, to nanometer-sized pores within the bars of the lattice. This multiscale porous network preserved adequate ion diffusion and charge transfer through an electrode at -94 F, achieving higher energy storage capacitance than previously reported low-temperature supercapacitors. The team will collaborate with NASA scientists to further characterize the device’s low-temperature performance.

The authors acknowledge funding from the Merced nAnomaterials Center for Energy and Sensing, NASA, the University of California, Santa Cruz and the U.S. Department of Energy.

How To Make EV Hydrogen Fuel Cells Last More

An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable. The new process is industrially applicable and can be used to further optimize fuel cell powered vehicles without CO₂ emissionsFuel cells are gaining in importance as an alternative to battery-operated electromobility in heavy traffic, especially since hydrogen is a CO₂-neutral energy carrier if it is obtained from renewable sources.

For efficient operation, fuel cells need an electrocatalyst that improves the electrochemical reaction in which electricity is generated. The platinum-cobalt nanoparticle catalysts used as standard today have good catalytic properties and require only as little as necessary rare and expensive platinum. In order for the catalyst to be used in the fuel cell, it must have a surface with very small platinum-cobalt particles in the nanometer range, which is applied to a conductive carbon carrier material. Since the small particles and also the carbon in the fuel cell are exposed to corrosion, the cell loses efficiency and stability over time.

An international team led by Professor Matthias Arenz from the Department of Chemistry and Biochemistry (DCB) at the University of Bern has now succeeded in using a special process to produce an electrocatalyst without a carbon carrier, which, unlike existing catalysts, consists of a thin metal network and is therefore more durable.

The catalyst we have developed achieves high performance and promises stable fuel cell operation even at higher temperatures and high current density,” says Matthias Arenz.

The results have been published in Nature Materials.

Source: https://www.unibe.ch/

Could Deep Sea Mining Fuel The Electric Vehicle Boom?

The world is hungry for resources to power the green transition. As we increasingly look to solar, wind, geothermal and move towards decarbonization, consumption of minerals such as cobalt, lithium and copper, which underpin them, is set to grow markedly. One study by the World Bank estimates that to meet this demand, cobalt production will need to grow by 450% from 2018 to 2050, in pursuit of keeping global average temperature rises below 2°C. The mining of any material can give rise to complex environmental and social impacts. Cobalt, however, has attracted particular attention in recent years over concerns of unsafe working conditions and labour rights abuses associated with its production.

New battery technologies are under development with reduced or zero cobalt content, but it is not yet determined how fast and by how much these technologies and circular economy innovations can decrease overall cobalt demand. Deep-sea mining has the potential to supply cobalt and other metals free from association with such social  strife, and can reduce the raw material cost and carbon footprint of much-needed green technologies.

On the other hand, concerned scientists have highlighted our limited knowledge of the deep-sea and its ecosystems. The potential impact of mining on deep-sea biodiversitydeep-sea habitats and fisheries are still being studied, and some experts have questioned the idea that environmental impacts of mining in the deep-sea can be mitigated in the same way as those on land.

https://oilprice.com/