Supercharging Plants and Soils to Remove Carbon From the Atmosphere

Plants are the original carbon capture factories—and a new research program aims to make them better ones by using gene editing. The Innovative Genomics Institute (IGI), supported by a $11 million commitment from the Chan Zuckerberg Initiative (CZI), seeks to use CRISPR genome editing to enhance the natural ability of plants and soil microbes to both capture and store carbon from the atmosphere. Along with efforts to reduce existing sources of emissions, carbon dioxide removal (CDR) could play an increasingly important role in reducing the global impact from climate change and reversing its course, according to the Intergovernmental Panel on Climate Change (IPCC). In any discussion of CDR, it is often noted that we already have technologies that do this quite well: plants, microbes, and other living organisms, but they were optimized for a world without large amounts of excess carbon produced by human activities. The IGI project aims to enhance the natural carbon-removal abilities of living organisms to meet the scale of the climate change problem.

Over the past year, CZI has invested in the development of promising technologies to help address climate change at scale as part of an exploration of cutting-edge and emerging climate solutions, including CDR technologies. The IGI program is the latest recipient of support, and one of the first to apply CRISPR genome editing to the worldwide CDR effort.

Dr. Jill Banfield (right) working in California rice fields with her team (Bethany Kolody and Jack Kim) to analyze the soil microbes responsible for both emitting and storing carbon.

We’re excited to support the Innovative Genomics Institute’s important research into new applications of gene-editing technology,” says CZI co-founder and co-CEO Dr. Priscilla Chan. “This technology has the potential to supercharge the natural abilities of plants, enabling them to pull more carbon out of the atmosphere and store more carbon in their roots and the surrounding soil — providing a new set of innovative tools to address climate change.”

Water Found On A Potentially Life-friendly Alien Planet

In a first for astronomers studying worlds beyond our solar system, data from the Hubble Space Telescope have revealed water vapor in the atmosphere of an Earth-size planet. Although this exoplanet orbits a star that is smaller than our sun, it falls within what’s known as the star’s habitable zone, the range of orbital distances where it would be warm enough for liquid water to exist on a planet’s surface. The discovery, announced this week in two independent studies, comes from years of observations of the exoplanet K2-18b, a super-Earth that’s about 111 light-years from our solar system. Discovered in 2015 by NASA’s Kepler spacecraft, K2-18b is very unlike our home world: It’s more than eight times the mass of Earth, which means it’s either an icy giant like Neptune or a rocky world with a thick, hydrogen-rich atmosphere.

K2-18b’s orbit also takes it seven times closer to its star than Earth gets to the sun. But because it circles a type of dim red star known as an M dwarf, that orbit places it in the star’s potentially life-friendly zone. Crude models predict that K2-18b’s effective temperature falls somewhere between -100 and 116 degrees Fahrenheit, and if it is about as reflective as Earth, its equilibrium temperature would be roughly the same as our home planet’s.

This is the only planet right now that we know outside the solar system that has the correct temperature to support water, it has an atmosphere, and it has water in it—making this planet the best candidate for habitability that we know right now,” University College London astronomer Angelos Tsiaras, a coauthor of one of the two studies, said during a press conference.

Source: https://www.nationalgeographic.com/