Wireless Implant Could Help Remove Deadly Brain Tumors

Brain tumors are among the most deadly and difficult-to-treat cancers. Glioblastoma, a particularly aggressive form, kills more than 10,000 Americans a year and has a median survival time of less than 15 months. For patients with brain tumors, treatment typically includes open-skull surgery to remove as much of the tumor as possible followed by chemotherapy or radiation, which come with serious side effects and numerous hospital visits.

What if a patient’s brain tumor could be treated painlessly, without anesthesia, in the comfort of their home? Researchers at Stanford Medicine have developed, and tested in mice, a small wireless device that one day could do just that. The device is a remotely activated implant that can heat up nanoparticles injected into the tumor, gradually killing cancerous cells. In mice with brain tumors, 15 minutes of daily treatment over 15 days, as the animals went about their normal activities, was enough to significantly increase survival times. The researchers published their work in August in Nature Nanotechnology.

The nanoparticles help us target the treatment to only the tumor, so the side effects will be relatively less compared with chemotherapy and radiation,” said Hamed Arami, PhD, co-lead  author of the paper, a former postdoctoral fellow at Stanford Medicine who is now at Arizona State University.

Arami, trained as a bioengineer, came to focus on brain cancer as a postdoctoral fellow in the lab of the late Sam Gambhir, MD, former chair of radiology at Stanford Medicine and a pioneer in molecular imaging and cancer diagnostics who died of cancer in 2020 . Five years prior, Gambhir’s teenage son, Milan, died of a glioblastoma.

Source: https://scopeblog.stanford.edu/

How To Heal Acute Kidney Injury

Each year, there are some 13.3 million new cases of acute kidney injury (AKI), a serious affliction. Formerly known as acute renal failure, the ailment produces a rapid buildup of nitrogenous wastes and decreases urine output, usually within hours or days of disease onset.  Severe complications often ensue. Currently, there is no known cure for AKI.

AKI is responsible for 1.7 million deaths annually. Protecting healthy kidneys from harm and treating those already injured remains a significant challenge for modern medicine.

In new research appearing in the journal Nature Biomedical Engineering, Hao Yan and his colleagues at the University of Wisconsin-Madison and in China describe a new method for treating and preventing AKI. Their technique involves the use of tiny, self-assembling forms measuring just billionths of a meter in diameter.

Yan directs the Biodesign Center for Molecular Design and Biomimetics and is Professor in the School of Molecular Sciences at the Arizona State University (ASU).

Their research demonstrated that the introduction of DNA origami nanostructures (DONs) protected normal kidneys and improved functioning of kidneys damaged by AKI. The beneficial effect of the nanostructures was comparable to the current treatment modality, administration of an anti-oxidant drug known as N-acetylcysteine (NAC). New treatments are being saught because NAC is not easily absorbed in the kidneys. Further examination of stained tissue samples from mice confirmed the beneficial effects of the DONs.

Source: https://biodesign.asu.edu/