Scribe Therapeutics change the genes responsible for causing diseases

Imagine being able to change the genes responsible for causing diseases. For Scribe Therapeutics, a gene-editing company that develops genetic medicines, this is no longer a dream but a reality. Scribe Therapeutics is one of several companies approaching genetic medicines through Crispr, the now-famous “molecular scissors” employed to cut and edit DNA. But the company is taking a new approach to leveraging Crispr technology. Instead of relying on wild-type or naturally occurring Crispr molecules such as Cas9, Scribe Therapeutics have built their own, highly-specialized varieties.

Founded by Jennifer Doudna, Benjamin Oakes, Brett Staahl, and David Savage, Scribe Therapeutics is creating an advanced platform for Crispr-based genetic medicine.

Crispr is changing how we think about treating diseases,” says co-founder, President, and CEO of Scribe Therapeutics, Benjamin Oakes. “When I finished my undergraduate degree, I shadowed doctors and realized we had no way to treat the underlying causes of diseases. This changed my career path to creating Crispr-based tools that can actually treat the underlying causes.”

Scribe Therapeutics has collaborated with Biogen to create Crispr-based genetic medicines for diseases such as amyotrophic lateral sclerosis (ALS). The company is also studying how to use adeno-associated virus (AAV) vectors to deliver Crispr components to the nervous system, eyes, and muscles. AAV vectors can deliver DNA to specific target cells for therapeutic uses.

Today, Scribe Therapeutics announced a $100 million Series B funding round that will help the company grow and expand. One of the key ways it stands out from other synthetic biology and gene-editing companies is through its approach to doing science. Other companies sometimes create tools without thinking about the problems they can solve, but Scribe Therapeutics is different. Instead of building technology in need of a solution, Scribe Therapeutics finds the problem first and creates the technology to fix it.

We face challenges head-on and continue to inspire people to try the hard things. You have to encourage fearlessness in science. If your experiment failed today, it doesn’t mean you’re a failure. You have to keep trying,” says Oakes.

Scribe Therapeutics‘ “Crispr by designplatform has custom-engineered millions of novel molecules specifically designed for therapeutic uses within the human body. For example, its X-editing (XE) technology is an engineered molecule that offers greater specificity, activity, and deliverability when used therapeutically.

Source: https://www.forbes.com/

Gene Therapy Combats Efficiently Age-related Diseases

As we age, our bodies tend to develop diseases like heart failure, kidney failure, diabetes, and obesity, and the presence of any one disease increases the risk of developing others. In traditional drug development, a drug usually only targets one condition, largely ignoring the interconnectedness of age-related diseases, such as obesity, diabetes, and heart failure, and requiring patients to take multiple drugs, which increases the risk of negative side effects.

A new study from the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School (HMS) reports that a single administration of an adeno-associated virus (AAV)-based gene therapy delivering combinations of three longevity-associated genes to mice dramatically improved or completely reversed multiple age-related diseases, suggesting that a systems-level approach to treating such diseases could improve overall health and lifespan. The research is reported in PNAS.

The AAV-based gene therapy improved the function of the heart and other organs in mice with various age-related diseases, suggesting that such an approach could help maintain health during aging.

The results we saw were stunning, and suggest that holistically addressing aging via gene therapy could be more effective than the piecemeal approach that currently exists,” said first author Noah Davidsohn, Ph.D., a former Research Scientist at the Wyss Institute and HMS who is now the Chief Technology Officer of Rejuvenate Bio. “Everyone wants to stay as healthy as possible for as long as possible, and this study is a first step toward reducing the suffering caused by debilitating diseases.

The study was conducted in the lab of Wyss Core Faculty member George Church, Ph.D. as part of Davidsohn’s postdoctoral research into the genetics of aging. Davidsohn, Church, and their co-authors honed in on three genes that had previously been shown to confer increased health and lifespan benefits when their expression was modified in genetically engineered mice: FGF21, sTGFβR2, and αKlotho. They hypothesized that providing extra copies of those genes to non-engineered mice via gene therapy would similarly combat age-related diseases and confer health benefits.

The team created separate gene therapy constructs for each gene using the AAV8 serotype as a delivery vehicle, and injected them into mouse models of obesity, type II diabetes, heart failure, and renal failure both individually and in combination with the other genes to see if there was a synergistic beneficial effect.

Source; https://wyss.harvard.edu/