Posts belonging to Category Uncategorized

The Bright Future of the Hydrogen Economy

The U.S. is counting on hydrogen to play a significant role in the low-carbon economy of the future, but fundamental questions about transportation, storage and cost need to be addressed in order to integrate hydrogen gas into the nation’s existing infrastructure, according to a preliminary study from a new research program at The University of Texas at Austin. That’s because although hydrogen gas burns carbon free, it only gives about a third of the energy of natural gas per unit volume. That means the U.S. will need to make and store much more of it for heating, transportation, power generation and industrial uses.

The research offers a framework for solving these issues, presenting an initial goal of replacing 10% of the nation’s natural gas supply with hydrogen as a reasonable first target. That move could reduce U.S. greenhouse gasses by 3.2%, based on 2019 emissions, and help meet the Department of Energy’s goal of enabling a low-carbon economy in the U.S. The analysis considers what it would take to scale up the use of hydrogen, including integrating hydrogen into the country’s natural gas system, which is probably the most robust in the world, said lead author Mark Shuster, associate director of energy at the Bureau of Economic Geology in the UT Jackson School of Geosciences.

We know how to move gas. We’re very experienced in it, particularly in the U.S., so it makes sense,” he said. “You have a whole suite of potential uses for the hydrogen, but it’s going to take some work, some research, and I think it’s going to take probably some targeted incentives.”

The paper, authored by scientists and economists at the bureau, was published in the Oil & Gas Journal. It came out as Secretary of Energy Jennifer M. Granholm announced the goal of reducing the cost of clean hydrogen from $5 a kilogram to $1 a kilogram in a decade.

Bureau Chief Economist Ning Lin, a study co-author, said that hydrogen projects will have to quickly become reality for the Department of Energy’s goal to be met.

There is a lot of research being done, but not enough demonstration,” she said. “In order to achieve the goal of having hydrogen as a meaningful sector in our current energy system with competitive cost, we need to see material progress in scaling up to pilot test capacity and strong cost reduction evidence in the next five years.”


China Reports its First Human Death from Rare Monkey B Virus

China says it has recorded its first primate-to-human infection and death involving the monkey B virus, a rare and deadly pathogen that remains little-understood in some parts of the world.

The victim was a 53-year-old veterinarian from Beijing who contracted the infection while dissecting dead monkeys in early March, according to China’s CDC Weekly. *The patient started showing symptoms in April and died on May 27, officials said. Two close contacts have since tested negative for the virus. Symptoms include nausea, fever and vomiting about a month after the infection.

Neurological symptoms started to appear soon afterward, prompting health officials to run a battery of tests. They ultimately found the monkey B virus in the patient’s blood and saliva, China’s CDC said. They were unable to save him from the disease.

It was an unusual discovery for health officials in China, where doctors have never documented the virus in humans before.


FDA-approved Drugs Slow or Reverse Alzheimer’s

A research team at Washington University School of Medicine in St. Louis has identified potential new treatment targets for Alzheimer’s disease, as well as existing drugs that have therapeutic potential against these targets.

The potential targets are defective proteins that lead to the buildup of amyloid in the brain, contributing to the onset of problems with memory and thinking that are the hallmark of Alzheimer’s. The 15 existing drugs identified by the researchers have been approved by the Food and Drug Administration (FDA) for other purposes, providing the possibility of clinical trials that could begin sooner than is typical, according to the researchers.

In addition, the experiments yielded seven drugs that may be useful for treating faulty proteins linked to Parkinson’s disease, six for stroke and one for amyotrophic lateral sclerosis (ALS).

Scientists have worked for decades to develop treatments for Alzheimer’s by targeting genes rooted in the disease process but have had little success. That approach has led to several dead ends because many of those genes don’t fundamentally alter proteins at work in the brain. The new study takes a different approach, by focusing on proteins in the brain, and other tissues, whose function has been altered.

In this study, we used human samples and the latest technologies to better understand the biology of Alzheimer’s disease,” said principal investigator Carlos Cruchaga, the Reuben Morriss III Professor of Neurology and a professor of psychiatry. “Using Alzheimer’s disease samples, we’ve been able to identify new genes, druggable targets and FDA-approved compounds that interact with those targets to potentially slow or reverse the progress of Alzheimer’s.”

The scientists focused on protein levels in the brain, cerebrospinal fluid (CSF) and blood plasma of people with and without Alzheimer’s disease. Some of the proteins were made by genes previously linked to Alzheimer’s risk, while others were made by genes not previously connected to the disease. After identifying the proteins, the researchers compared their results to several databases of existing drugs that affect those proteins.

The new study, funded by the National Institute on Aging of the National Institutes of Health (NIH), is published in the journal Nature Neuroscience.


The Virus Trap

To date, there are no effective antidotes against most virus infections. An interdisciplinary research team at the Technical University of Munich (TUM) has now developed a new approach: they engulf and neutralize viruses with nano-capsules tailored from genetic material using the DNA origami method. The strategy has already been tested against hepatitis and adeno-associated viruses in cell cultures. It may also prove successful against corona viruses.

There are antibiotics against dangerous bacteria, but few antidotes to treat acute viral infections. Some infections can be prevented by vaccination but developing new vaccines is a long and laborious process.

Now an interdisciplinary research team from the Technical University of Munich, the Helmholtz Zentrum München and the Brandeis University (USA) is proposing a novel strategy for the treatment of acute viral infections: The team has developed nanostructures made of DNA, the substance that makes up our genetic material, that can trap viruses and render them harmless.

Lined on the inside with virus-binding molecules, nano shells made of DNA material bind viruses tightly and thus render them harmless.

Even before the new variant of the corona virus put the world on hold, Hendrik Dietz, Professor of Biomolecular Nanotechnology at the Physics Department of the Technical University of Munich, and his team were working on the construction of virus-sized objects that assemble themselves.

In 1962, the biologist Donald Caspar and the biophysicist Aaron Klug discovered the geometrical principles according to which the protein envelopes of viruses are built. Based on these geometric specifications, the team around Hendrik Dietz at the Technical University of Munich, supported by Seth Fraden and Michael Hagan from Brandeis University in the USA, developed a concept that made it possible to produce artificial hollow bodies the size of a virus.

In the summer of 2019, the team asked whether such hollow bodies could also be used as a kind of “virus trap”. If they were to be lined with virus-binding molecules on the inside, they should be able to bind viruses tightly and thus be able to take them out of circulation. For this, however, the hollow bodies would also have to have sufficiently large openings through which viruses can get into the shells.

None of the objects that we had built using DNA origami technology at that time would have been able to engulf a whole virus – they were simply too small,” says Hendrik Dietz in retrospect. “Building stable hollow bodies of this size was a huge challenge.”

Starting from the basic geometric shape of the icosahedron, an object made up of 20 triangular surfaces, the team decided to build the hollow bodies for the virus trap from three-dimensional, triangular plates. For the DNA plates to assemble into larger geometrical structures, the edges must be slightly beveled. The correct choice and positioning of binding points on the edges ensure that the panels self-assemble to the desired objects.

In this way, we can now program the shape and size of the desired objects using the exact shape of the triangular plates,” says Hendrik Dietz. “We can now produce objects with up to 180 subunits and achieve yields of up to 95 percent. The route there was, however, quite rocky, with many iterations.”

By varying the binding points on the edges of the triangles, the team’s scientists can not only create closed hollow spheres, but also spheres with openings or half-shells. These can then be used as virus traps.


AI Recognises the Biological Activity of Natural Products

Nature has a vast store of medicinal substances. “Over 50 percent of all drugs today are inspired by nature,” says Gisbert Schneider, Professor of Computer-​Assisted Drug Design at ETH Zurich. Nevertheless, he is convinced that we have tapped only a fraction of the potential of natural products. Together with his team, he has successfully demonstrated how artificial intelligence (AI) methods can be used in a targeted manner to find new pharmaceutical applications for natural products. Furthermore, AI methods are capable of helping to find alternatives to these compounds that have the same effect but are much easier and therefore cheaper to manufacture.

And so the ETH researchers are paving the way for an important medical advance: we currently have only about 4,000 basically different medicines in total. In contrast, estimates of the number of human proteins reach up to 400,000, each of which could be a target for a drug. There are good reasons for Schneider’s focus on nature in the search for new pharmaceutical agents.

Most natural products are by definition potential active ingredients that have been selected via evolutionary mechanisms,” he says.
Whereas scientists used to trawl collections of natural products on the search for new drugs, Schneider and his team have flipped the script: first, they look for possible target molecules, typically proteins, of natural products so as to identify the pharmacologically relevant compounds. “The chances of finding medically meaningful pairs of active ingredient and target protein are much greater using this method than with conventional screening,” Schneider says.


Destroying Cancer Cells by Enhancing Radiation Therapy

A new study by researchers at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and collaborators in Japan and the United States demonstrates that enhancing radiation therapy using novel iodine nanoparticles can destroy cancer cells.

When X-rays are irradiated onto tumor tissue containing iodine-carrying nanoparticles, the iodine releases electrons that break DNA and kill the cancer cells

X-ray irradiation of high Z elements causes photoelectric effects that include the release of Auger electrons that can induce localized DNA breaks,” wrote the researchers. “We have previously established a tumor spheroid-based assay that used gadolinium containing mesoporous silica nanoparticles and synchrotron-generated monochromatic X-rays. In this work, we focused on iodine and synthesized iodine-containing porous organosilica (IPO) nanoparticles.”

Exposing a metal to light leads to the release of electrons, a phenomenon called the photoelectric effect. An explanation of this phenomenon by Albert Einstein in 1905 heralded the birth of quantum physics,” said iCeMS molecular biologist Fuyuhiko Tamanoi, PhD, who led the study. “Our research provides evidence that suggests it is possible to reproduce this effect inside cancer cells.

The researchers sought to overcome the challenge of effective radiation therapy at the center of tumors where oxygen levels are low due to the lack of blood vessels penetrating deeply into the tissue.

The findings were published in the journal Scientific Reports .

Gene Therapy Offers Hope for Children with Rare, Incurable Disorder

Children with a devastating genetic disorder characterized by severe motor disability and developmental delay have experienced sometimes dramatic improvements in a gene therapy trial launched at UC San Francisco Benioff Children’s Hospitals. The trial includes seven children aged 4 to 9 born with deficiency of AADC, an enzyme involved in the synthesis of neurotransmitters, particularly dopamine, that leaves them unable to speak, feed themselves or hold up their head. Six of the children were treated at UCSF and one at Ohio State Wexner Medical Center.

Children in the study experienced improved motor function, better mood, and longer sleep, and were able to interact more fully with their parents and siblings. Oculogyric crisis, a hallmark of the disorder involving involuntary upward fixed gaze that may last for hours and may be accompanied by seizure-like episodes, ceased in all but one patient. Just 135 children worldwide are known to be missing the AADC enzyme, with the condition affecting more people of Asian descent.

The trial borrowed from gene delivery techniques used to treat Parkinson’s disease, pioneered by senior author Krystof Bankiewicz, MD, PhD, of the UCSF Department of Neurological Surgery and the Weill Institute for Neurosciences, and of the Department of Neurological Surgery at Ohio State University. Both conditions are associated with deficiencies of AADC, which converts levodopa into dopamine, a neurotransmitter involved in movement, mood, learning and concentration. In treating both conditions, Bankiewicz developed a viral vector containing the AADC gene. The vector is infused into the brain via a small hole in the skull, using real-time MR imaging to enable the neurosurgeon to map the target region and plan canula insertion and infusion.

Children with primary AADC deficiency lack a functional copy of the gene, but we had presumed that their actual neuronal pathway was intact,” said co-first author Nalin Gupta, MD, PhD, of the UCSF Department of Neurological Surgery and the surgical principal investigator. “This is unlike Parkinson’s disease, where the neurons that produce dopamine undergo degeneration.

While the Parkinson’s trial focused on the putamen, a part of the brain that plays a key role in this degeneration, Gupta said the AADC gene therapy trial targeted neurons in the substantia nigra and ventral tegmental area of the brainstem, sites that may have more therapeutic benefits.

The approach for treating AADC deficiency is much more straightforward than it is for Parkinson’s,” said Bankiewicz. “In AADC deficiency, the wiring of the brain is normal, it’s just the neurons don’t know how to produce dopamine because they lack AADC.”

Results appear in Nature Communications.


mRNA Vaccine to Prevent Colorectal Cancer Recurrence

The COVID-19 vaccines mark the first widespread use of mRNA technology. They work by using synthetic genetic code to instruct the patient’s cells to recognize the coronavirus and activate the immune system against the virus. But researchers began exploring how to use mRNA vaccines as a new way to treat cancer long before this technology was used against the coronavirus.

A B-cell displaying antibodies created in response to foreign protein fragments produced from a personalized mRNA vaccine recognizes a colorectal cancer cell and signals killer T-cells to destroy it

We’ve known about this technology for a long time, well before COVID-19,” says Van Morris, M.D. Here, he explains how mRNA vaccines work and how a team of MD Anderson colorectal cancer experts led by Scott Kopetz, M.D., Ph.D., are testing the technology in a Phase II clinical trial, following high-risk patients with stage II or stage III colorectal cancer who test positive for circulating tumor DNA after surgery.

The presence of circulating tumor DNA is checked with a blood test. “If there is ctDNA present, it can mean that a patient is at higher risk for the cancer coming back,” Morris says. The opposite can also be true: if there is not circulating tumor DNA present, the patient may have a lower risk of recurrence, he adds.

In the Phase II clinical trial, enrolled patients start chemotherapy after the tumor is surgically removed. Tissue from the tumor is sent off to a specialized lab, where it’s tested to look for genetic mutations that fuel the cancer’s growth. Morris explains anywhere from five to 20 mutations specific to that patient’s tumor can be identified during testing. The mutations are then prioritized by the most common to the least common, and an mRNA vaccine is created based on that ranking. “Each patient on the trial receives a personalized mRNA vaccine based on their individual mutation test results from their tumor.

As with the COVID-19 vaccines, the mRNA instructs the patient’s cells to produce protein fragments based off tumor’s genetic mutations identified during testing. The immune system then searches for other cells with the mutated proteins and clears out any remaining circulating tumor cells.We’re hopeful that with the personalized vaccine, we’re priming the immune system to go after the residual tumor cells, clear them out and cure the patient,” says Morris.


Electronic Paper with Optimal Colors and Minimal Energy Consumption

Imagine sitting out in the sun, reading a digital screen as thin as paper, but seeing the same image quality as if you were indoors. Thanks to research from Chalmers University of Technology, Sweden, it could soon be a reality.  A new type of reflective screen – sometimes described as ‘electronic paper’ – offers optimal colour display, while using ambient light to keep energy consumption to a minimum.​​ Traditional digital screens use a backlight to illuminate the text or images displayed upon them. This is fine indoors, but we’ve all experienced the difficulties of viewing such screens in bright sunshine. Reflective screens, however, attempt to use the ambient light, mimicking the way our eyes respond to natural paper.

Electronic paper using ambient light. A new design from Chalmers University of Technology could help produce e-readers, advertising signs and other digital screens with optimal colour display and minimal energy consumption. ​​​​​​

For reflective screens to compete with the energy-intensive digital screens that we use today, images and colours must be reproduced with the same high quality. That will be the real breakthrough. Our research now shows how the technology can be optimised, making it attractive for commercial use,” says Marika Gugole, Doctoral Student at the Department of Chemistry and Chemical Engineering at Chalmers University of Technology.

The researchers had already previously succeeded in developing an ultra-thin, flexible material that reproduces all the colours an LED screen can display, while requiring only a tenth of the energy that a standard tablet consumes. But in the earlier design the colours on the reflective screen did not display with optimal quality. Now the new study, published in the journal Nano Letters takes the material one step further. Using a previously researched, porous and nanostructured material, containing tungsten trioxide, gold and platinum, they tried a new tactic – inverting the design in such a way as to allow the colours to appear much more accurately on the screen.The inversion of the design represents a great step forward. They placed the component which makes the material electrically conductive underneath the pixelated nanostructure that reproduces the colours – instead of above it, as was previously the case. This new design means you look directly at the pixelated surface, therefore seeing the colours much more clearly.

In addition to the minimal energy consumption, reflective screens have other advantages. For example, they are much less tiring for the eyes compared to looking at a regular screen.


Branson Versus Bezos

The successful trip was the first in a series to the edge of space and beyond by billionaire entrepreneurs that seek to make human spaceflight more routine. Soaring more than 50 miles into the hot, glaringly bright skies above New Mexico, Richard Branson at last fulfilled a dream that took decades to realize: He can now call himself an astronaut.

On Sunday morning, a small rocket plane operated by Virgin Galactic, which Mr. Branson founded in 2004, carried him and five other people to the edge of space and back. More than an hour later, Mr. Branson took the stage to celebrate. “The whole thing was magical,” he said.

 Another billionaire with his own rocket companyJeff Bezos, the founder of Amazon — has plans to make a similar jaunt to the edge of space in nine days. In each case, billionaire entrepreneurs are risking injury or death to fulfill their childhood aspirations — and advance the goal of making human spaceflight unexceptional.

They’re putting their money where their mouth is, and they’re putting their body where their money is,” said Eric Anderson, chairman of Space Adventures Limited, a company that charters launches to orbit. “That’s impressive, frankly.

At 8:40 a.m. Mountain time, a carrier aircraft, with the rocket plane, named V.S.S. Unity, tucked underneath, rose off the runway and headed to an altitude of about 45,000 feet. There, Unity was released, and a few moments later, its rocket motor ignited, accelerating the space plane on an upward arc.

Although Unity had made three previous trips to space, this was its first launch that resembled a full commercial flight of the sort that Virgin Galactic has promised to offer the general public, with two pilots — David Mackay and Michael Masucci — and four more crew members including Mr. Branson.