Here’s What a Lab-grown Burger Tastes Like

Sitting in a booth in a hotel lobby in Brooklyn, I stared down the lineup of sliders, each on a separate bamboo plate. On the far left was a plant-based burger from Impossible Foods. On the right, an old-fashioned beef burger. And in the middle, the star of the show: a burger made with lab-grown meat. I’m not a vegan or even a vegetarian. I drink whole milk in my lattes, and I can’t turn down a hot dog at a summer cookout. But as a climate reporter, I’m keenly aware of the impact that eating meat has on the planet. Animal agriculture makes up nearly 15% of global greenhouse-gas emissions, and beef is a particular offender, with more emissions per gram than basically any other meat.

We started with a plant-based burger from Impossible Foods. Founded in 2011, the company makes meat alternatives from plants. The special ingredient is heme protein, which is cranked out by genetically engineered microbes and sprinkled in for that meaty flavor. I took a small bite of the Impossible burger, and if you ask me, the taste was a pretty good approximation of the real thing, though the texture was a bit looser and softer than beef. (If you’re based in the US, you may have tried this one already yourself. In Europe, heme still hasn’t been approved by regulators, so Impossible’s products don’t include it there.)

Next on the docket was the beef burger. By the way, none of these sliders had any sort of sauces or toppings on them, and Krieger says they were seasoned identically, for a fair comparison. I truly have nothing to say about this one—it was just a plain burger. Even as I was chewing, I had my eyes on the final item on my tasting menu for the day: the lab-grown version. The burger on my plate was actually only about 20% lab-grown material, Krieger explained. The company’s plan is to blend its cells with a base of plant-based meat (she wouldn’t tell me much about this base, just that it’s not Ohayo’s recipe). Plants can help provide the structure for alternative meats, Krieger says. One other major benefit to this blending technique is financial: the lab-grown components are expensive, so mixing in plants can help keep costs down. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter.


Comments are closed.