Alzheimer’s: Why Certain Frequencies Blast Amyloid Plaques

In 1906, a German psychiatrist and neuroanatomist performed an autopsy on the brain of a patient who displayed abnormal symptoms while alive. Over the course of several years, this woman’s behavior, as well as her speech and language, became erratic. She forgot who people were, became paranoid, and, as her condition worsened, suffered total memory loss. When her doctor dissected her brain, he found unusual plaques and neurofibrillary tangles in her cerebral cortex. He quickly alerted his colleagues of this “peculiar severe disease.” The doctor was Alois Alzheimer. More than a century later, the medical community is still trying to understand Alzheimer’s disease (AD), a neurodegenerative brain disorder. But early studies have demonstrated that we may be able to mitigate some of the damage created by AD simply by exposing people to certain waves of sound and light.

Li-Huei Tsai, a neuroscientist and the director of the Picower Institute for Learning and Memory in the Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology has spent the past three decades working to understand and treat neurodegenerative diseases, in particular AD.

It has not turned out to be a disease attributable to just one runaway protein or just one gene,” Li- Huei explained in a 2021 op-ed in The Boston Globe. “In fact, although Alzheimer’s is referred to as a single name, we in the Alzheimer’s research community don’t yet know how many different types of Alzheimer’s there may be, and, therefore, how many different treatments might ultimately prove necessary across the population.”

AD researchers have traditionally pursued small-molecule pharmaceuticals and immunotherapies that target a single errant protein, the amyloid. But Li-Huei believes Alzheimer’s to be a broader systemic breakdown, and she has thought about more encompassing, and hopefully effective, treatments. For several years now, her lab has pursued novel approaches using the aesthetic interventions of light and sound. We know the influence that light and sound have on the human body. People suffering from seasonal affective disorder benefit from light therapy. Blue light before bed stimulates our brain and disrupts sleep. Sound vibrations change our physiology. But how might this work on a brain experiencing AD?

Source: https://www.fastcompany.com/