How to Generate Cartilage Cells

 As any weekend warrior understands, cartilage injuries to joints such as knees, shoulders, and hips can prove extremely painful and debilitating. In addition, conditions that cause cartilage degeneration, like arthritis and temporomandibular joint disorder (TMJ), affect 350 million people in the world and cost the US public health system more than $303 billion every year. Patients suffering from these conditions experience increased pain and discomfort over time.

However, an exciting study led by faculty at The Forsyth Institute suggests new strategies for making cartilage cells with huge implications in regenerative medicine for future cartilage injuries and degeneration treatments. In a paper, entitled “GATA3 mediates nonclassical β-catenin signaling in skeletal cell fate determination and ectopic chondrogenesis,” co-first authors Takamitsu Maruyama and Daigaku Hasegawa, and senior author Wei Hsu, describe two breakthrough discoveries, including a new understanding of a multifaced protein called β-catenin. Dr. Hsu is a senior scientist at the Forsyth Insitute and a Professor of Developmental Biology at Harvard University. He is also an affiliate faculty member of the Harvard Stem Cell Institute.

The goal of this study,” said Dr. Maruyama of Forsyth, “was to figure out how to regenerate cartilage. We wanted to determine how to control cell fate, to cause the somatic cell to become cartilage instead of bone.

You must be logged in to view this content.

Comments are closed.