Articles from September 2022

Crispr Can Edit Directly Genes Inside Human Bodies

A decade ago, biologists Jennifer Doudna and Emmanuelle Charpentier published a landmark paper describing a natural immune system found in bacteria and its potential as a tool for editing the genes of living organisms. A year later, in 2013, Feng Zhang and his colleagues at the Broad Institute of MIT and Harvard reported that they’d harnessed that systemknown as Crispr, to edit human and animal cells in the lab. The work by both teams led to an explosion of interest in using Crispr to treat genetic diseases, as well as a 2020 Nobel Prize for Doudna and Charpentier.

Many diseases arise from gene mutations, so if Crispr could just snip out or replace an abnormal gene, it could in theory correct the disease. But one of the challenges of turning test tube Crispr discoveries into cures for patients has been figuring ouhow to get the gene-editing components to the place in the body that needs treatment.

One biotech company, Crispr Therapeutics, has gotten around that issue by editing patients’ cells outside the body. Scientists there have used the tool to treat dozens of people with sickle cell anemia and beta thalassemia—two common blood disorders. In those trials, investigators extract patients’ red blood cells, edit them to correct a disease-causing mutation, then infuse them back into the body.

But this “ex vivo” approach has downsides. It’s complex to administer, expensive, and has limited uses. Most diseases occur in cells and tissues that can’t be easily taken out of the body, treated, and put back in. So the next wave of Crispr research is focused on editingin vivo”—that is, directly inside a patient’s body. Last year, Intellia Therapeutics was the first to demonstrate that this was possible for a disease called transthyretin amyloidosis. And last week, the Cambridge, Massachusetts-based biotech company showed in-the-body editing in a second disease.


Electric Airplane Takes First Flight

Alice, the commuter aircraft designed by the start-up Eviation, has soared to 3,500 feet in successful test in US. The plane was built to carry nine passengers and two pilots and took off from Moses Lake, Washington, at 7:10 a.m. Tuesday. The plane reached an altitude of 3,500 feet (1,066 meters) and landed eight minutes later. The company’s goal is to show such electric planes are viable as commuter aircraft for regional travel, flying at an altitude of about 15,000 feet (4,572 meters).

The plane, designed by engineers in Israel and Washington state, is powered by 21,500 small Tesla-style battery cells that weigh over 4 tons. Eviation founder Omer Bar-Yohav hailed the plane as a “new age of aviation” in an interview with The Times of Israel last year.
Previous post with  detailed tech informations

New Alzheimer’s Drug Slows Cognitive Decline by 27%

A new Alzheimer’s drug from Japanese pharmaceutical company Eisai and US drugmaker Biogen has shown promising results in a large-scale clinical trial. The companies announced the trial’s success in a press release, saying their drug — called lecanemab — was observed to have slowed cognitive decline in Alzheimer’s patients by 27% over 18 months.

The companies said 1,795 patients with early-stage Alzheimer’s were randomly selected to receive a placebo treatment or doses of lecanemab every two weeks. Their cognitive decline was then measured on six fronts, including “memory, orientation, judgment and problem solving, community affairs, home and hobbies, and personal care.” According to the statement, lecanemab significantlyreduced clinical decline” over the 18-month timeframe.

Lecanemab, per Eisai, is a monoclonal antibody treatment, which targets toxic amyloid plaques protein clumps that researchers proposed were the cause of the neurodegeneration seen in Alzheimer’s.

The companies noted that around 21% of the patients who received the lecanemab treatment experienced brain swelling that was visible on PET scans.

Today’s announcement gives patients and their families hope that lecanemab, if approved, can potentially slow the progression of Alzheimer’s disease, and provide a clinically meaningful impact on cognition and function,” said Michel Vounatsos, Biogen‘s chief executive officer in the companies’ joint press release.

Eisai’s chief executive Haruo Naito said in the company’s press release that the lecanemab study’s success was “an important milestone for Eisai in fulfilling our mission to meet the expectations of the Alzheimer’s disease community.”


NanoRobots Deliver Antibiotics and Improve Dramatically Survival Rate

Tiny robots made of algae are swimming through the lung fluids of mice, delivering antibiotics straight to the bacteria that cause a deadly form of pneumonia. It’s happening now in UC San Diego ( UCSD) labs and it shows the tremendous potential of microrobotics. Nanoparticles, loaded with medicine, are attached to the microrobots and introduced into the lungs.

Microscopic and colorized view of an algae robot covered with drug-carrying particles

“They can actively swim in the body fluid, dip into the thick part of the tissue and carry a lot of these therapeutic payloads to the disease site, and then very effectively kill the bacteria,” said professor of nanoengineering Liangfang Zhang, one of the lead researchers.

Zhang said the results of the experiment were dramatic. The mice treated with drugs in a conventional way died within days.

But when we loaded the drugs into our formulation — the nanoparticle and the algae system — we found that all the animals survived,” he said. “We achieved a remarkable 100% survival rate from the study.

Anyone who has swallowed an aspirin knows one very conventional way of delivering drugs. The medication is ingested and is carried throughout the body. “You take the pill and it’s all passive. The drug goes slowly by diffusion,” explained Joseph Wang, a distinguished professor of nanoengineering at UC San Diego. “By having dynamic active delivery, we are accelerating targeted delivery to the right location.”

Wang’s lab at UCSD shows many examples of microrobots, designed to navigate the body’s channels and cavities. The algae robot is organic, and swims with its flagella. Another robot, made from zinc, reacts with gastric fluid and generates hydrogen gas, which propels it like a true rocket.

Wang points out the algae robot is not attracted to the bacteria, but they move so effectively through the fluids of the lung that it greatly improves the dispersion of the drug. Wang has actually loaded robots into pills, including aspirin. “This we showed with pigs, actually, and showed that when you have the active delivery there is much better uptake by the blood,” Wang said.

The purpose of the research, of course, is not to treat pigs or mice, but humans. Zhang said the study of algae robots in the lungs is very innovative and experimental, and human trials are still a ways away.

We demonstrated the feasibility of the technology and what I foresee is, we need to study more to demonstrate the efficacy in large animal species,” he added, “before we can translate it to a human study.”


Low Cost Batteries for Renewable Energy Sources

As the world builds out ever larger installations of wind and solar power systems, the need is growing fast for economical, large-scale backup systems to provide power when the sun is down and the air is calm. Today’s lithium-ion batteries are still too expensive for most such applications, and other options such as pumped hydro require specific topography that’s not always available. Now, researchers at MIT and elsewhere have developed a new kind of battery, made entirely from abundant and inexpensive materials, that could help to fill that gap. The new battery architecture, which uses aluminum and sulfur as its two electrode materials, with a molten salt electrolyte in between, is described today in the journal Nature, in a paper by MIT Professor Donald Sadoway, along with 15 others at MIT and in China, Canada, Kentucky, and Tennessee.

I wanted to invent something that was better, much better, than lithium-ion batteries for small-scale stationary storage, and ultimately for automotive [uses],” explains Sadoway, who is the John F. Elliott Professor Emeritus of Materials Chemistry. In addition to being expensive, lithium-ion batteries contain a flammable electrolyte, making them less than ideal for transportation. So, Sadoway started studying the periodic table, looking for cheap, Earth-abundant metals that might be able to substitute for lithium. The commercially dominant metal, iron, doesn’t have the right electrochemical properties for an efficient battery, he says. But the second-most-abundant metal in the marketplace — and actually the most abundant metal on Earth — is aluminum. “So, I said, well, let’s just make that a bookend. It’s gonna be aluminum,” he says.


Cancer-killing Virus Shrinks Tumours of A Third of the Patients

A new type of cancer therapy that uses a common virus to infect and destroy harmful cells is showing big promise in early  human trials, say UK scientists. One patient’s cancer vanished, while others saw their tumours shrink. The drug is a weakened form of the cold sore virusherpes simplex – that has been modified to kill tumours. Larger and longer studies will be needed, but experts say the injection might ultimately offer a lifeline to more people with advanced cancers.

Krzysztof Wojkowski, a 39-year-old builder from west London, is one of the patients who took part in the ongoing phase one safety trial, run by the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust. He was diagnosed in 2017 with cancer of the salivary glands, near the mouth. Despite surgery and other treatments at the time, his cancer continued to grow.

I was told there was no options left for me and I was receiving end-of-life care. It was devastating, so it was incredible to be given the chance to join the trial.” A short course of the virus therapy – which is a specially modified version of the herpes virus which normally causes cold sores – appears to have cleared his cancer. “I had injections every two weeks for five weeks which completely eradicated my cancer. I’ve been cancer-free for two years now.”

The injections, given directly into the tumour, attacks cancer in two ways – by invading the cancerous cells and making them burst, and by activating the immune system. About 40 patients have tried the treatment as part of the trial. Some were given the virus injection, called RP2, on its own. Others also received another cancer drug – called nivolumab – as well.

The findings, presented at a medical conference in Paris, France, show that three out of nine patients given RP2 only, which included Krzysztof, saw their tumours shrink.


New Tooth Engineered Coating Stronger Than Enamel

Scientists in Russia  have perfected hydroxyapatite, a material for mineralizing bones and teeth. By adding a complex of amino acids to hydroxyapatite, they were able to form a dental coating that replicates the composition and microstructure of natural enamel. Improved composition of the material repeats the features of the surface of the tooth at the molecular and structural level, and in terms of strength surpasses the natural tissue. The new method of dental restoration can be used to reduce the sensitivity of teeth in case of abrasion of enamel or to restore it after erosion or improper diet.
Hydroxyapatite is a compound that is a major component of human bones and teeth. Scientists selected a complex of polyfunctional organic and polar amino acids, including, for example, lysine, arginine, and histidine, which are important for the formation and repair of bone and muscle structures. The chosen amino acids made it possible to obtain hydroxyapatite, which is morphologically completely similar to apatite (the main component of tissues) of dental enamel. The researchers also described the conditions of the environment in which the processes of binding of hydroxyapatite to the dental tissue should occur. Only if these conditions are met it is possible to fully reproduce the structure of natural enamel.

Traditionally in dentistry, composite restorative materials are used in enamel restoration. To increase the bonding efficiency of enamel and composite, the restoration technique involves acid etching of the enamel beforehand. The etching products left behind may not always have a positive effect on the bonding of enamel and synthetic materials. To reproduce the enamel layers with biomimetic techniques, we neutralized the media and removed the etching products using calcium alkali. In this way we improved the binding of the new hydroxyapatite layers,” explains Pavel Seredin.
The formation of a mineralized layer with properties resembling those of natural hard tissue was confirmed by field emission electron and atomic force microscopy as well as by chemical imaging of surface areas using Raman microspectroscopy. The study was conducted on healthy teeth to eliminate the influence of extraneous factors on the resulting layer and to be able to compare the results with healthy teeth. Next, the researchers will tackle the challenge of repairing larger defects, which can be of varying nature from the initial stages of caries to cracks and volumetric fractures.

The joint research was conducted by scientists from the Research and Education Center “Nanomaterials and Nanotechnologies” of Ural Federal University, Voronezh State University, Voronezh State Medical University, Al-Azhar University, and the National Research Center (Egypt).

The study and experimental results are published in Results in Engineering.


Cooling Everything Without Electricity

As the world gets warmer, the use of power-hungry air conditioning systems is projected to increase significantly, putting a strain on existing power grids and bypassing many locations with little or no reliable electric power. Now, an innovative system developed at MIT offers a way to use passive cooling to preserve food crops and supplement conventional air conditioners in buildings, with no need for power and only a small need for water. The system, which combines radiative cooling, evaporative cooling, and thermal insulation in a slim package that could resemble existing solar panels, can provide up to about 19 degrees Fahrenheit (9.3 degrees Celsius) of cooling from the ambient temperature, enough to permit safe food storage for about 40 percent longer under very humid conditions. It could triple the safe storage time under dryer conditions.

The findings are reported today in the journal Cell Reports Physical Science, in a paper by MIT postdoc Zhengmao Lu, Arny Leroy PhD ’21, professors Jeffrey Grossman and Evelyn Wang, and two others. While more research is needed in order to bring down the cost of one key component of the system, the researchers say that eventually such a system could play a significant role in meeting the cooling needs of many parts of the world where a lack of electricity or water limits the use of conventional cooling systems.The system cleverly combines previous standalone cooling designs that each provide limited amounts of cooling power, in order to produce significantly more cooling overall — enough to help reduce food losses from spoilage in parts of the world that are already suffering from limited food supplies.

This technology combines some of the good features of previous technologies such as evaporative cooling and radiative cooling,” Lu says. By using this combination, he explains, “we show that you can achieve significant food life extension, even in areas where you have high humidity,” which limits the capabilities of conventional evaporative or radiative cooling systems.

In places that do have existing air conditioning systems in buildings, the new system could be used to significantly reduce the load on these systems by sending cool water to the hottest part of the system, the condenser. “By lowering the condenser temperature, you can effectively increase the air conditioner efficiency, so that way you can potentially save energy,” Lu says. Other groups have also been pursuing passive cooling technologies, he adds, but “by combining those features in a synergistic way, we are now able to achieve high cooling performance, even in high-humidity areas where previous technology generally cannot perform well.”

The system consists of three layers of material, which together provide cooling as water and heat pass through the device. The only maintenance required is adding water for the evaporation, but the consumption is so low that this need only be done about once every four days in the hottest, driest areas, and only once a month in wetter areas.


Russia Makes Veiled Threat to Destroy SpaceX’s Starlink

Russia has issued a veiled threat to “retaliate” against SpaceX’s satellite internet system Starlink for aiding the Ukrainian military.

A Russian representative named Konstantin Vorontsov issued the warning last week at a United Nations working group meeting on reducing space threats.

Vorontsov—who was reportedly a former acting Deputy Director of Russia’s Foreign Ministry Department—didn’t name SpaceX or Starlink by name. But he noted: “We would like to underline an extremely dangerous trend that goes beyond the harmless use of outer space technologies and has become apparent during the events in Ukraine. Namely, the use by the United States and its allies of the elements of civilian, including commercial, infrastructure in outer space for military purposes,” according to the unofficial translation  of his statement.

Vorontsov then issued his veiled threat by saying: “It seems like our colleagues do not realize that such actions in fact constitute indirect involvement in military conflicts. Quasi-civilian infrastructure may become a legitimate target for retaliation.”

How to Convert 100% Of CO2 Into Ethylene

A team of researchers led by Meenesh Singh at University of Illinois Chicago (UIC) has discovered a way to convert 100% of carbon dioxide captured from industrial exhaust into ethylene, a key building block for plastic products.  While researchers have been exploring the possibility of converting carbon dioxide to ethylene for more than a decade, the UIC team’s approach is the first to achieve nearly 100% utilization of carbon dioxide to produce hydrocarbons. Their system uses electrolysis to transform captured carbon dioxide gas into high purity ethylene, with other carbon-based fuels and oxygen as byproducts.  

The process can convert up to 6 metric tons of carbon dioxide into 1 metric ton of ethylene, recycling almost all carbon dioxide captured. Because the system runs on electricity, the use of renewable energy can make the process carbon negative.  According to Singh, his team’s approach surpasses the net-zero carbon goal of other carbon capture and conversion technologies by actually reducing the total carbon dioxide output from industry.

It’s a net negative,” he said. “For every 1 ton of ethylene produced, you’re taking 6 tons of CO2 from point sources that otherwise would be released to the atmosphere.” 

Previous attempts at converting carbon dioxide into ethylene have relied on reactors that produce ethylene within the source carbon dioxide emission stream. In these cases, as little as 10% of COemissions typically converts to ethylene. The ethylene must later be separated from the carbon dioxide in an energy-intensive process often involving fossil fuels.   In UIC’s approach, an electric current is passed through a cell, half of which is filled with captured carbon dioxide, the other half with a water-based solution. An electrified catalyst draws charged hydrogen atoms from the water molecules into the other half of the unit separated by a membrane, where they combine with charged carbon atoms from the carbon dioxide molecules to form ethylene. 

Among manufactured chemicals worldwide, ethylene ranks third for carbon emissions after ammonia and cement. Ethylene is used not only to create plastic products for the packaging, agricultural and automotive industries, but also to produce chemicals used in antifreeze, medical sterilizers and vinyl siding for houses. Ethylene is usually made in a process called steam cracking that requires enormous amounts of heat. Cracking generates about 1.5 metric tons of carbon emissions per ton of ethylene created. On average, manufacturers produce around 160 million tons of ethylene each year, which results in more than 260 million tons of carbon dioxide emissions worldwide

In addition to ethylene, the UIC scientists were able to produce other carbon-rich products useful to industry with their electrolysis approach. They also achieved a very high solar energy conversion efficiency, converting 10% of energy from the solar panels directly to carbon product output. This is well above the state-of-the-art standard of 2%. For all the ethylene they produced, the solar energy conversion efficiency was around 4%, approximately the same rate as photosynthesis.
Their findings are published in Cell Reports Physical Science.