Antibody-Drug Delivery System Kills Cancer Cells With Extreme Precision

It sounds like the stuff of science fiction: a man-made crystal that can be attached to antibodies and then supercharge them with potent drugs or imaging agents that can seek out diseased cells with the highest precision, resulting in fewer adverse effects for the patient.

However, that is precisely what researchers from the Australian Centre for Blood Diseases at Monash University in collaboration with the TU Graz (Austria) have developed: the world’s first metal-organic framework (MOFs) antibody-drug delivery system that has the potential to fast-track potent new therapies for cancer, cardiovascular and autoimmune diseases.

Schematic illustration of the new MOF Antibody crystals and their ability to specifically seek out cancer cells to detect them and deliver highly potent drugs with unprecedented precision

The in vitro study showed that when MOF antibody crystals bind to their target cancer cells and if exposed to the low pH in the cells, they break down, delivering the drugs directly and solely to the desired area.

The metal-organic framework, a mixture of metal (zinc) and carbonate ions, and a small organic molecule (an imidazole, a colourless solid compound that is soluble in water) not only keeps the payload attached to the antibody but can also acts as a reservoir of personalised therapeutics. This is a benefit with the potential to become a new medical tool to target specific diseases with customised drugs and optimised doses.

The findings are now published in the world-leading journal Advanced Materials.

Source: https://www.monash.edu/

Comments are closed.