Nanoparticle Drug-Delivery To Treat Brain Disorders

In the past few decades, researchers have identified biological pathways leading to neurodegenerative diseases and developed promising molecular agents to target them. However, the translation of these findings into clinically approved treatments has progressed at a much slower rate, in part because of the challenges scientists face in delivering therapeutics across the blood-brain barrier (BBB) and into the brain.

To facilitate successful delivery of therapeutic agents to the brain, a team of bioengineers, physicians, and collaborators at Brigham and Women’s Hospital and Boston Children’s Hospital created a nanoparticle platform, which can facilitate therapeutically effective delivery of encapsulated agents in mice with a physically breached or intact BBB. In a mouse model of traumatic brain injury (TBI), they observed that the delivery system showed three times more accumulation in brain than conventional methods of delivery and was therapeutically effective as well, which could open possibilities for the treatment of numerous neurological disorders.

It’s very difficult to get both small and large molecule therapeutic agents delivered across the BBB,” said corresponding author Nitin Joshi, PhD, an associate bioengineer at the Center for Nanomedicine in the Brigham’s Department of Anesthesiology, Perioperative and Pain Medicine. “Our solution was to encapsulate therapeutic agents into biocompatible nanoparticles with precisely engineered surface properties that would enable their therapeutically effective transport into the brain, independent of the state of the BBB.”

The technology could enable physicians to treat secondary injuries associated with TBI that can lead to Alzheimer’s, Parkinson’s, and other neurodegenerative diseases, which can develop during ensuing months and years once the BBB has healed.

To be able to deliver agents across the BBB in the absence of inflammation has been somewhat of a holy grail in the field,” said co-senior author Jeff Karp, PhD, of the Brigham’s Department of Anesthesiology, Perioperative and Pain Medicine. “Our radically simple approach is applicable to many neurological disorders where delivery of therapeutic agents to the brain is desired.”

Findings were published in Science Advances.

https://www.eurekalert.org/

Comments are closed.