All of Human Knowledge in a Tablespoon of DNA

A tiny strand of DNA has an amazing ability to store some pretty big data. In fact, researchers estimate that all of the world’s digital data could fit into just 20 grams (a little more than a tablespoon) of DNA.

Every time we do anything on the internet, such as upload a photo or send an email, we generate data — which means we generate a lot of data. Most of our data is stored in the “cloud” — which really just means massive data centers around the worldLast year, all of Wikipedia was stored in a few strands of DNA.

However, these centers take up a lot of space, are costly to maintain, and account for nearly 2% of U.S. energy consumption. Plus, we’re going to keep generating more and more.) data, and existing centers won’t be able to store it all. We’ll either need to start discarding a bunch of potentially useful information, or we’ll need to think smaller and figure out how to store more information in less space.

Information in DNA is consistently sequenced, synthesized, copied, and stored… just like the information on your phone or computer’s hard drive. However, when it comes to storage, DNA has some considerable advantages. Aside from being extremely dense, it’s also extremely durable: it can survive passively for millennia. We were able to decode information from the DNA found in the 5,300-year-old corpse of Otzi the Iceman.

That’s clearly not the case with silicon microchips or magnetic tape, which tend to degrade and need replacing every few years. Last year, researchers announced that they had stored the English-version of Wikipedia (yes, all of it!) into a few strands of DNA. This year, we’ve used DNA to store the Wizard of Oz and an episode of Biohackers (a Netflix series). There’ve also been other random works of art saved, too: War and Peace, Shakespeare sonnets, and an OK Go music video.

While you and I won’t be buying synthetic DNA hard drives, considerable efforts are underway to make this a viable storage system for those who need to store a bunch of important, but rarely accessed, archival data (i.e., governments and big corporations). Researchers expect that more consumer-friendly options are at least a decade away.

In order to retrieve the information, you’ll need a DNA sequencing machine (the same machines used for sequencing human genomes), and that’s one of the hurdles to making this a household technology. As CNET points out, one of the machines “would fit easily in your house if you first got rid of your refrigerator, oven and some counter space.”

Another hurdle is the time it takes to retrieve the information. Last year, it took 21 hours to retrieve the word “Hello” (roughly 5 bytes of data) from DNA. If we’re going to use DNA as a storage system, we’ll have to make it many orders of magnitude faster.

Source: https://www.freethink.com/