Tag Archives: water

How To Make Toxic Water Safe And Drinkable

In Australia, UNSW and RMIT researchers have discovered a revolutionary and cheap way to make filters that can turn water contaminated with heavy metals into safe drinking water in a matter of minutes. Recent UNSW SHARP hire Professor Kourosh Kalantar-zadeh and his former colleagues at RMIT showed that nano-filters made of aluminium oxide could be cheaply produced using virtually no energy from a fixed amount of liquid metal gallium.

In a paper published in Advanced Functional Materials, lead author Dr Ali Zavabeti (RMIT) and Professor Kalantar-zadeh explained that when a chunk of aluminium is added to the core of liquid gallium at room temperature, layers of aluminium oxide are quickly produced at the surface of the gallium. The authors discovered that these aluminium oxide nano-sheets were highly porous and went on to prove they were suitable for filtering both heavy metal ions and oil contamination at unprecedented, ultra-fast rates. Professor Kalantar-zadeh, who was recently awarded an ARC Australian Laureate Fellowship soon after joining UNSW‘s School of Chemical Engineering, said that low cost and portable filters produced by this new liquid metal based manufacturing process could be used by people without access to clean drinking water to remove substances like lead and other toxic metals in a matter of minutes.

Because it’s super porous, water passes through very rapidly,” Professor Kalantar-zadeh said. “Lead and other heavy metals have a very high affinity to aluminium oxide. As the water passes through billions of layers, each one of these lead ions get attracted to one of these aluminium oxide sheets. “But at the same time, it’s very safe because with repeated use, the water flow cannot detach the heavy metal ions from the aluminium oxide.”

Professor Kalantar-zadeh believes the technology could be put to good use in Africa and Asia in places where heavy metal ions in the water are at levels well beyond safe human consumption. It is estimated that 790 million people, or one in 10 of the Earth’s population, do not have access to clean water. “If you’ve got bad quality water, you just take a gadget with one of these filters with you,” he said. “You pour the contaminated water in the top of a flask with the aluminium oxide filter. Wait two minutes and the water that passes through the filter is now very clean water, completely drinkable. “And the good thing is, this filter is cheap.”

There are portable filtration products available that do remove heavy metals from water, but they are comparatively expensive, often costing more than $100. By contrast, aluminium oxide filters produced from liquid gallium could be produced for as little as 10 cents, making them attractive to prospective manufacturers.

Source: http://newsroom.unsw.edu.au/

Portable Machine Harvests Water From Air

Driven by the scarcity of supply, climate change and ground watershed depletion, scientists present a design for a first of its kind portable harvester that mines freshwater from the atmosphere. For thousands of years, people in the Middle East and South America have extracted water from the air to help sustain their populations. Researchers and students from the University of Akron drew inspiration from those examples to develop a lightweight, battery-powered freshwater harvester that could someday take as much as 10 gallons (37,8 liters) per hour from the air, even in arid locations.

I was visiting China, which has a freshwater scarcity problem. There’s investment in wastewater treatment, but I thought that effort alone was inadequate,University of Akron professor Shing-Chung (Josh) Wong said.

Instead of relying on treated wastewater, Wong explained, it might be more prudent to develop a new type of water harvester that takes advantage of abundant water particles in the atmosphere. Freshwater makes up less than 3 percent of the earth’s water sources, and three quarters of that is locked up as ice in the north and south poles. Most water sustainability research is directed toward water supply, purification, wastewater treatment and desalination. Little attention has been paid to water harvesting from atmospheric particles.

Harvesting water from the air has a long history. Thousands of years ago, the Incas of the Andean region collected dew and channeled it into cisterns. More recently, some research groups have been developing massive mist and fog catchers in the Andean mountains and in Africa. Wong’s harvester is directed towards the most abundant atmospheric water sources and uses ground-breaking nanotechnology. If successful, it will produce an agile, lightweight, portable, freshwater harvester powered by a lithium-ion battery.

By experimenting with different combinations of polymers that were hydrophilic — which attracts water — and hydrophobic — which discharges water, the team concluded that a water harvesting system could indeed be fabricated using nanofiber technology. Unlike existing methods, Wong’s harvester could work in arid desert environments because of the membrane’s high surface-area-to-volume ratio. It also would have a minimal energy requirement. “We could confidently say that, with recent advances in lithium-ion batteries, we could eventually develop a smaller, backpack-sized device,” Wong said.

Source: https://www.uakron.edu/

Harvesting Clean Hydrogen Fuel Through Artificial Photosynthesis

A new, stable artificial photosynthesis device doubles the efficiency of harnessing sunlight to break apart both fresh and salt water, generating hydrogen that can then be used in fuel cells.

The device could also be reconfigured to turn carbon dioxide back into fuel.

Hydrogen is the cleanest-burning fuel, with water as its only emission. But hydrogen production is not always environmentally friendly. Conventional methods require natural gas or electrical power. The method advanced by the new device, called direct solar water splitting, only uses water and light from the sun.

If we can directly store solar energy as a chemical fuel, like what nature does with photosynthesis, we could solve a fundamental challenge of renewable energy,” said Zetian Mi, a professor of electrical and computer engineering at the University of Michigan who led the research while at McGill University in Montreal.

Faqrul Alam Chowdhury, a doctoral student in electrical and computer engineering at McGill, said the problem with solar cells is that they cannot store electricity without batteries, which have a high overall cost and limited life.

The device is made from the same widely used materials as solar cells and other electronics, including silicon and gallium nitride (often found in LEDs). With an industry-ready design that operates with just sunlight and seawater, the device paves the way for large-scale production of clean hydrogen fuel.

Previous direct solar water splitters have achieved a little more than 1 percent stable solar-to-hydrogen efficiency in fresh or saltwater. Other approaches suffer from the use of costly, inefficient or unstable materials, such as titanium dioxide, that also might involve adding highly acidic solutions to reach higher efficiencies. Mi and his team, however, achieved more than 3 percent solar-to-hydrogen efficiency.

Source: https://news.umich.edu/