Tag Archives: virus

Universal Antibody Drug for HIV

A research team led by scientists at AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine of The University of Hong Kong (HKU) invents a universal antibody drug against HIV/AIDS. By engineering a tandem bi-specific broadly neutralizing antibody, the team found that this novel antibody drug is universally effective not only against all genetically divergent global HIV-1 strains tested but also promoting the elimination of latently infected cells in a humanized mouse model. The new findings are now published in the Journal of Clinical Investigation, one of the world’s leading biomedical journals.


AIDS remains an incurable disease. In the world, HIV/AIDS has resulted in estimated 40 million deaths while 36.9 million people are still living with the virus.  To end the HIV/AIDS pandemic, it is important to discover either an effective vaccine or a therapeutic cure. There are, however, two major scientific challenges: the tremendous HIV-1 diversity and the antiviral drug-unreachable latency. Since it is extremely difficult to develop an appropriate immunogen to elicit broadly neutralizing antibodies (bnAbs) against genetically divergent HIV-1 subtypes, developing existing bnAbs as passive immunization becomes a useful approach for HIV-1 prophylaxis and immunotherapy.

Previous studies have investigated the potency, breadth and crystal structure of many bnAbs including their combination both in vitro and in vivo. Naturally occurring HIV-1 resistant strains, however, are readily found against these so-called bnAbs and result in the failure of durable viral suppression in bnAb-based monotherapy. To improve HIV-1 neutralization breadth and potency, bispecific bnAb, which blocks two essential steps of HIV-1 entry into target cells, have been engineered and show promising efficacy in animal models. Before the publication, tandem bi-specific bnAb has not been previously investigated in vivo against HIV-1 infection.

Source: https://www.med.hku.hk/

Non-toxic Virus Quickly Dissipate Heat From Electronic Devices

The researcher team of Tokyo Tech discovered that the film constructed by assembling a nontoxic filamentous virus functions as a heat dissipation material, and that can be simply prepared by drying the virus aqueous solution at room temperature. This discovery is expected to elucidate the mechanism of new heat transport in electronics.

Organic polymeric materials generally have low thermal conductivity and are not suitable for rapid heat dissipation of electric and electronic equipment in the past. In order to improve its thermal conductivity, it has been considered effective to heat transfer through a covalent bond by “orientation processing” in which molecules are aligned in the same direction, or to composite with an inorganic material.

A research team led by Assistant Professor Toshiki Sawada and Professor Takeshi Serizawa is focusing on the capability to form regularly assembled structures in a wide scale from nano to macro (so called hierarchical assembly) observed in the natural systems and the hierarchically assembled structures prepared in this way, the phenomenon where molecules accumulate around the perimeter as an aqueous solution in which molecules are dissolved evaporates (coffee ring effect) was utilized to assemble a filamentous virus for the film preparation. As a result, it was found that the thermal diffusivity at the edge of the film drastically enhanced to a value comparable to that of inorganic glass, and that facilitates the utilization of the hierarchically assembled biomacromolecule. This helps future development of electric and electronic devices composed of not only viruses but also various naturally derived molecules.

(a) Phage and (b) hexagonally assembled structures of the phages in the film.

Until now, orientation processing and compositing with inorganic materials have been considered effective for the high thermal conductivity of organic polymeric materials. However, since this virus film can be prepared by evaporating an aqueous solution of a filamentous virus at room temperature, it is expected to lead to the establishment of a method for easily constructing heat dissipation materials under mild conditions that do not require special operations.

Source: https://www.titech.ac.jp/