Tag Archives: titanium dioxide

Micromotors Deliver Oral Vaccines

Researchers are working on new generations of oral vaccines for infectious diseases. But to be effective, oral vaccines must survive digestion and reach immune cells within the intestinal wall. As a step in this direction, UC San Diego nanoengineering researchers have developed oral vaccines powered by micromotors that target the mucus layer of the intestine.

The work appears in the ACS journal Nano Letters. It’s a collaboration between the labs of nanoengineering professors Joseph Wang and Liangfang Zhang at the UC San Diego Jacobs School of Engineering.


The lack of needles is one reason oral vaccines are attractive. Another reason: oral vaccines can generate a broad immune response by stimulating immune cells within the mucus layer of the intestine to produce a special class of antibody called immunoglobulin A (IgA). The NanoLetters paper documents the team’s efforts to use magnesium particles as tiny motors to deliver an oral vaccine against the bacterial pathogen Staphylococcus aureus. When coated over most of their surfaces with titanium dioxide, magnesium microparticles use water as fuel to generate hydrogen bubbles that power their propulsion.

To develop the oral vaccine, the researchers coated magnesium micromotors with red blood cell membranes that displayed the Staphylococcal α-toxin, along with a layer of chitosan to help them stick to the intestinal mucus. Then, they added an enteric coating that protects drugs from the acidic conditions of the stomach.

The micromotors safely passed through the stomach to the intestine, at which point the enteric coating dissolved, activating the motors. Imaging of mice that had been given the vaccine showed that the micromotors accumulated in the intestinal wall much better than non-motorized particles. The micromotors also stimulated the production of about ten times more IgA antibodies against the Staphylococcal α-toxin than the static particles.

Source: http://jacobsschool.ucsd.edu/

A stamp-sized nanofilm stores more data than 200 DVDs

Ninety percent of the world’s data has been created in the last two years, with a massive 2.5 quintillion bytes generated every single day. As you might suspect, this causes some challenges when it comes to storage. While one option is to gradually turn every square inch of free land into giant data centers, researchers from the  Center for Advanced Optoelectronic Functional Material Research, Northeast Normal University (China) may have come up with a more elegant solution. In a potential breakthrough, they have developed a new nanofilm80 times thinner than a human hair — that is able to store large amounts of data holographically. A single 10-by-10 cm piece of this film could archive more than 1,000 times the amount of data found on a DVD. By our count, that means around 8.5 TB of data. This data can also be retrieved incredibly quickly, at speeds of up to 1GB per second: The equivalent of 20 times the reading speed of modern flash memory.

In the journal Optical Materials Express, the researchers detail the fabrication process of the new film. This involves using a laser to write information onto silver nanoparticles on a titanium dioxide (titania) semiconductor film. This stores the data in the form of 3D holograms, thereby allowing it to be compressed into smaller spaces than regular optical systems.

That’s exciting enough, but what really makes the work promising is the fact that the data is stored in a way that is stable. Previous attempts at creating films for holographic data storage have proven less resilient than alternate storage methods since they can be wiped by exposure to ultraviolet light. That makes them less-than-viable options for long-term information storage. The creators of this new film, however, have shown that it has a high stability even in the presence of such light. This environmental stability means that the device could be used outside — or even conceivably in harsher radiation conditions like outer space.

Going forward, the researchers aim to test their new film by putting it through its paces outdoors. Should all go according to plan, it won’t be too long before this is available on the market. We might be willing to throw down a few bucks on Kickstarter for a piece!

Source: https://www.osapublishing.org