Tag Archives: sun

Solar Powered Car

The Sion is the first electric car capable of recharging its batteries from the sun. From now on, you’ll have to worry about range a little less. For only 16.000 € excluding the battery (4000 euros or to rent). With the dynamic integration of solar cells in the body work, we set new measures on the road while convincing with an exceptional design concept. The full efficiency of the Sion is guaranteed by the lightweight design. The exterior is mainly made up of rust-proof polycarbonate. It further is scratch-resistant. The most unique feature in the body work are the solar cells, which are located on the roof, on both sides as on the hood and the rear.

The cockpit  uses a very simple design, showing you how fast you are going and the charging level of your battery. On the left side you can see the number of kilometers generated through the viSono System. After 24 hours, these kilometers will be transferred to the right side, where they are added to the total range left. The Sion copes with the requirements of your daily life: A range of 250km, high power rapid charging, and a sophisticated interior concept with an optional trailer hitch.
The Sion is equipped with 330 integrated solar cells, which recharge the battery through the power of the sun. To protect them from harmful environmental influences the solar cells are covered with polycarbonate. It is shatterproof, light and particularly weather resistant. Under proper conditions the solar cells generate enough energy, to cover 30 kilometers per day with the Sion. This system is called  viSono. Thanks to the technology of bidirectional charging the Sion can not only generate but also provide energy. This feature turns the car into a mobile power station. Using a household plug, all common electronic devices with up to 2,7kW can be powered by the Sion. You can plug in your electronic devices and power them with the Sions battery. Over a type 2 plug the Sion can provide even more power with up to 7,6 kW.
For air filtering  a  special moss is integrated into the dashboard. It filters up to twenty percent of the fine dust particles and has a regulating effect on the humidity inside the Sion. No worries, you do not have to water it. It requires no special care at all.

Harvesting Clean Hydrogen Fuel Through Artificial Photosynthesis

A new, stable artificial photosynthesis device doubles the efficiency of harnessing sunlight to break apart both fresh and salt water, generating hydrogen that can then be used in fuel cells.

The device could also be reconfigured to turn carbon dioxide back into fuel.

Hydrogen is the cleanest-burning fuel, with water as its only emission. But hydrogen production is not always environmentally friendly. Conventional methods require natural gas or electrical power. The method advanced by the new device, called direct solar water splitting, only uses water and light from the sun.

If we can directly store solar energy as a chemical fuel, like what nature does with photosynthesis, we could solve a fundamental challenge of renewable energy,” said Zetian Mi, a professor of electrical and computer engineering at the University of Michigan who led the research while at McGill University in Montreal.

Faqrul Alam Chowdhury, a doctoral student in electrical and computer engineering at McGill, said the problem with solar cells is that they cannot store electricity without batteries, which have a high overall cost and limited life.

The device is made from the same widely used materials as solar cells and other electronics, including silicon and gallium nitride (often found in LEDs). With an industry-ready design that operates with just sunlight and seawater, the device paves the way for large-scale production of clean hydrogen fuel.

Previous direct solar water splitters have achieved a little more than 1 percent stable solar-to-hydrogen efficiency in fresh or saltwater. Other approaches suffer from the use of costly, inefficient or unstable materials, such as titanium dioxide, that also might involve adding highly acidic solutions to reach higher efficiencies. Mi and his team, however, achieved more than 3 percent solar-to-hydrogen efficiency.

Source: https://news.umich.edu/

Perovskite Solar Cells One Giant Step Closer To The Market

Harnessing energy from the sun, which emits immensely powerful energy from the center of the solar system, is one of the key targets for achieving a sustainable energy supplyLight energy can be converted directly into electricity using electrical devices called solar cells. To date, most solar cells are made of silicon, a material that is very good at absorbing light. But silicon panels are expensive to produce.

Scientists have been working on an alternative, made from perovskite structures. True perovskite, a mineral found in the earth, is composed of calcium, titanium and oxygen in a specific molecular arrangement. Materials with that same crystal structure are called perovskite structuresPerovskite structures work well as the light-harvesting active layer of a solar cell because they absorb light efficiently but are much cheaper than silicon. They can also be integrated into devices using relatively simple equipment. For instance, they can be dissolved in solvent and spray coated directly onto the substrate.

Materials made from perovskite structures could potentially revolutionize solar cell devices, but they have a severe drawback: they are often very unstable, deteriorating on exposure to heat. This has hindered their commercial potential. The Energy Materials and Surface Sciences Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), led by Prof. Yabing Qi, has developed devices using a new perovskite material that is stable, efficient and relatively cheap to produce, paving the way for their use in the solar cells of tomorrow. This material has several key features:

  • First, it is completely inorganic – an important shift, because organic components are usually not thermostable and degrade under heat. Since solar cells can get very hot in the sun, heat stability is crucial. By replacing the organic parts with inorganic materials, the researchers made the perovskite solar cells much more stable..  “The solar cells are almost unchanged after exposure to light for 300 hours,” says Dr. Zonghao Liu, an author on the paper.
  • Second feature: Inorganic perovskite solar cells tend to have lower light absorption than organic-inorganic hybrids, however, but the OIST researchers doped their new cells with manganese in order to improve their performance. Manganese changes the crystal structure of the material, boosting its light harvesting capacity.  “Just like when you add salt to a dish to change its flavor, when we add manganese, it changes the properties of the solar cell,” says Liu.
  • Thirdly, in these solar cells, the electrodes that transport current between the solar cells and external wires are made of carbon, rather than of the usual gold. Such electrodes are significantly cheaper and easier to produce, in part because they can be printed directly onto the solar cells. Fabricating gold electrodes, on the other hand, requires high temperatures and specialist equipment such as a vacuum chamber.

The findings are published in Advanced Energy Materials. Postdoctoral scholars Dr. Jia Liang and Dr. Zonghao Liu made major contributions to this work.

Source: https://www.oist.jp/