Tag Archives: sensors

Chinese ‘Death Star’ For Submarines

China is developing a satellite with a powerful laser for anti-submarine warfare that researchers hope will be able to pinpoint a target as far as 500 metres below the surface. It is the latest addition to the country’s expanding deep-sea surveillance programme, and aside from targeting submarines – most operate at a depth of less than 500 metres – it could also be used to collect data on the world’s oceansProject Guanlan, meaning “watching the big waves”, was officially launched in May at the Pilot National Laboratory for Marine Science and Technology in Qingdao, Shandong. It aims to strengthen China’s surveillance activities in the world’s oceans, according to the laboratory’s website.

Scientists are working on the satellite’s design at the laboratory, but its key components are being developed by more than 20 research institutes and universities across the country. Song Xiaoquan, a researcher involved in the project, said if the team can develop the satellite as planned, it will make the upper layer of the seamore or less transparent”. “It will change almost everything,” Song said.

While light dims 1,000 times faster in water than in the air, and the sun can penetrate no more than 200 metres below the ocean surface, a powerful artificial laser beam can be 1 billion times brighter than the sun. But this project is ambitious – naval researchers have tried for more than half a century to develop a laser spotlight for hunting submarines using technology known as light detection and ranging (lidar). In theory, it works like this – when a laser beam hits a submarine, some pulses bounce back. They are then picked up by sensors and analysed by computer to determine the target’s location, speed and three-dimensional shape.

But in real life, lidar technology can be affected by the device’s power limitations, as well as cloud, fog, murky water – and even marine life such as fish and whales. Added to that, the laser beam deflects and scatters as it travels from one body of water to another, making it more of a challenge to get a precise calculation. Experiments carried out by the United States and former Soviet Union achieved maximum detection depths of less than 100 metres, according to openly available information. That range has been extended in recent years by the US in research funded by Nasa and the Defence Advanced Research Projects Agency (DARPA).

Source: https://www.scmp.com/

‘WasteShark’, The Aquadrone That Cleans The Ocean Waste

A swarm of autonomous robots that can swim across bodies of water to collect garbage might be the key to saving the oceans. A few years ago, RanMarine Technology, a company from the Netherlands, has introduced WasteShark, an aquadrone that works like a smart vacuum cleaner (essentially, a Roomba for the seas) to gather wastes that end up in waterways before they accumulate into a great big patch in the middle of the Pacific Ocean.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The operational cost of the vehicle… will be almost nothing. You are basically using compressed air. You are not paying for fuel and also you do not need cooling,” said Mahmoud Yasser, a student who helped design it. The team is now looking to raise funding to expand the project and mass produce the vehicles. They believe they can eventually get the vehicles to top 100 kilometers an hour and run for 100 kilometers before needing to come up for air.

Every year, about 1.4 billion pounds of trash end up in the ocean. Plastics, styrofoam, and other nonbiodegradable materials get dumped into the waters, eaten by fishes and birds or collect into what has become the Great Pacific Garbage Patch — a gyre of debris between California and Hawaii bigger than AlaskaTrash in seas and oceans have become a huge problem, but the WasteShark might be able to help.

RanMarine said that its aquadrones are inspired by whale sharks, “nature’s most efficient harvesters of marine biomass.” The company claims that the vessels can collect up to 200 liters of waste before it needs to be emptied and swim across the water for 16 hours. The WasteShark are autonomous as it can intelligently wade through water and collect trash using sensors. It is equipped with a GPS to track its movements.

Source: https://www.techtimes.com/

Teaching a car how to drive itself in 20 minutes

Researchers from Wayve, a company founded by a team from the Cambridge University engineering department, have developed a neural network sophisticated enough to learn how to drive a car in 15 to 20 minutes using nothing but a computer and a single camera. The company showed off its robust deep learning methods last week in a company blog post showcasing the no-frills approach to driverless car development. Where companies like Waymo and Uber are relying on a variety of sensors and custom-built hardware, Wayve is creating the world’s first autonomous vehicles based entirely on reinforcement learning.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The AI powering Wayve’s self-driving system is remarkable for its simplicity. It’s a four layer convolutional neural network (learn about neural networks here) that performs all of its processing on a GPU inside the car. It doesn’t require any cloud connectivity or use pre-loaded mapsWayve’s vehicles are early-stage level five autonomous. There’s a lot of work to be done before Wayve’s AI can drive any car under any circumstances. But the idea that driverless cars will require tens of thousands of dollars worth of extraneous hardware is taking a serious blow in the wake of the company’s amazing deep learning techniques. According to Wayve, these algorithms are only going to get smarter.

Source: https://wayve.ai/
AND
https://thenextweb.com/