Tag Archives: hydrogen

Highly Stable Catalyst Helps Turn Water Into Fuel

Breaking the bonds between oxygen and hydrogen in water could be a key to the creation of hydrogen in a sustainable manner, but finding an economically viable technique for this has proved difficult. Researchers report a new hydrogen-generating catalyst that clears many of the obstacles – abundance, stability in acid conditions and efficiency.

In the journal Angewandte Chemie, researchers from the University of Illinois at Urbana-Champaign report on an electrocatalytic material made from mixing metal compounds with substance called perchloric acidElectrolyzers use electricity to break water molecules into oxygen and hydrogen. The most efficient of these devices use corrosive acids and electrode materials made of the metal compounds iridium oxide or ruthenium oxide. Iridium oxide is the more stable of the two, but iridium is one of the least abundant elements on Earth, so researchers are in search of an alternative material.

Much of the previous work was performed with electrolyzers made from just two elements – one metal and oxygen,” said Hong Yang, a co-author and professor of chemical and biomolecular engineering at Illinois. “In a recent study, we found if a compound has two metal elements – yttrium and ruthenium – and oxygen, the rate of water-splitting reaction increased.”

The researchers found that when they used perchloric acid as a catalyst and let the mixture react under heat, the physical nature of the yttrium ruthenate product changed. “The material became more porous and also had a new crystalline structure, different from all the solid catalysts we made before,” said Jaemin Kim, the lead author and a postdoctoral researcher. The new porous material the team developed – a pyrochlore oxide of yttrium ruthenate – can split water molecules at a higher rate than the current industry standard. “Because of the increased activity it promotes, a porous structure is highly desirable when it comes electrocatalysts,” Yang said. “These pores can be produced synthetically with nanometer-sized templates and substances for making ceramics; however, those can’t hold up under the high-temperature conditions needed for making high-quality solid catalysts.”

Source: https://news.illinois.edu/

Harvesting Clean Hydrogen Fuel Through Artificial Photosynthesis

A new, stable artificial photosynthesis device doubles the efficiency of harnessing sunlight to break apart both fresh and salt water, generating hydrogen that can then be used in fuel cells.

The device could also be reconfigured to turn carbon dioxide back into fuel.

Hydrogen is the cleanest-burning fuel, with water as its only emission. But hydrogen production is not always environmentally friendly. Conventional methods require natural gas or electrical power. The method advanced by the new device, called direct solar water splitting, only uses water and light from the sun.

If we can directly store solar energy as a chemical fuel, like what nature does with photosynthesis, we could solve a fundamental challenge of renewable energy,” said Zetian Mi, a professor of electrical and computer engineering at the University of Michigan who led the research while at McGill University in Montreal.

Faqrul Alam Chowdhury, a doctoral student in electrical and computer engineering at McGill, said the problem with solar cells is that they cannot store electricity without batteries, which have a high overall cost and limited life.

The device is made from the same widely used materials as solar cells and other electronics, including silicon and gallium nitride (often found in LEDs). With an industry-ready design that operates with just sunlight and seawater, the device paves the way for large-scale production of clean hydrogen fuel.

Previous direct solar water splitters have achieved a little more than 1 percent stable solar-to-hydrogen efficiency in fresh or saltwater. Other approaches suffer from the use of costly, inefficient or unstable materials, such as titanium dioxide, that also might involve adding highly acidic solutions to reach higher efficiencies. Mi and his team, however, achieved more than 3 percent solar-to-hydrogen efficiency.

Source: https://news.umich.edu/