Tag Archives: GUT

New Vaccine Brings Revolution In Preventing Chronic Inflammation Related To 60% Of Death

As we learn more and more about health, well-being, and all the factors that affect both, inflammation has become a major player in the conversation. Linked with symptoms ranging from bloating and acne to more serious things like depression and cancer, chronic inflammation, researchers believe, could continue to increase in prevalence. But a new vaccine offers hope for the future of preventing inflammatory diseases.

The vaccine, which is currently for animals, was developed by Institut Cochin in France. Researchers already knew about a connection between inflammation, gut health, and the protein flagellin: Flagellin essentially allows into the rest of the body, resulting in inflammation, and while antibodies exist within that intestinal barrier to help prevent leaky gut, it’s harder to keep all the bacteria contained if your microbiome is out of balance. Researchers hypothesized they could boost the flagellin antibodies within the gut, thereby keeping harmful bacteria from spreading into the body. They administered a flagellin vaccine to mice by injecting it directly into their intestinal lining, spurring the production of the flagellin-fighting antibodies. Chronic inflammation is thought to be related to 60% of deaths worldwide, due to its connection to stroke, diabetes, cancer, and more. This vaccine could be a game-changer if scientists are able to replicate the findings in a version for humans, which researcher Benoît Chassaing says they’re working on.

This vaccine strategy can be envisaged in humans, because such abnormalities of the microbiota have been observed in patients with inflammatory and metabolic diseases. With this in mind, we are currently working on a means of locally administering flagellin to the intestinal mucosa,” he says.

They’re also looking into testing the vaccine on animals that already have chronic inflammatory diseases, to see if it can be used for inflammatory treatment, as opposed to just prevention. But until such a vaccine for humans exists, there are lots of ways to combat inflammation naturally. If you’re still looking for more information, check out the Ultimate Guide to Inflammation class.. When inflammation was induced, the unvaccinated mice became obese, and the vaccinated mice did not. Immunization quelled intestinal inflammation by lowering levels of the flagellin-expressing bacteria in their microbiota, intestines, and intestinal lining.

Source: https://www.mindbodygreen.com/

How To Strengthen Your Immune System

There’s another reason to celebrate the gut microbiome—a healthy gut might actually be able to save lives. According to scientists at the Lawson Health Research Institute, all it takes to strengthen your immune system is to improve your gut health, a process that we know is as easy as increasing your ingestion of probiotics and dietary fiber. How’s that for functional food?

These Lawson Health Research Institute scientists are implementing a preliminary study that would discover whether a fecal transplant of a healthy microbiome can help patients with melanoma become more receptive to immunotherapy treatments. During immunotherapy treatments, patients take certain drugs to stimulate their immune systems in order to attack tumors in their bodies. A fecal transplant, according to these researchers, would make their immune systems more receptive to the drugs and, in turn, could help more people successfully fight their cancer.

We know that some people’s immune systems don’t respond well, and it seems to be associated with the microbes within your gut,” Michael Silverman, M.D., a Lawson associate scientist, said in a video filmed by the research institute. “The goal is to give people healthy microbes to replenish the microbes in their gut so that their immune system responds optimally, and they’re able to control the tumor.”

Source: https://www.mindbodygreen.com/

The Brain In Your Gut

From moods to memory, the brain in our guts has a big impact on the brain in our heads. Pioneering neuroscientist Associate Professor Elisa Hill-Yardin from RMIT in Australia has spent years delving deep into the gut-brain connection, an emerging field in health research. Here she shares the five critical things we should know about our “gut brain”.

The gut has similar types of neurons to the brain. The gut brain is a big nervous system, about the same size as the spinal cord, which controls the contractions of the gut and its secretions. There are very rare gene mutations that affect brain connectivity and we’ve learned that the vast majority of those gene mutations are also found in the gut. If those mutations change the wiring in the brain, they’re also likely to change the wiring and the action of the gut brain – the enteric nervous system. To date, we’ve only ever examined the effect of those mutations in the brain. Now we’re starting to look at them in our second brain, the gut.

We now know that microbes in the gut do change our mood and behaviour, and microbes even change brain activity. There’s a great study that looked at women, doing MRI brain scans and showing that if they ate yoghurt for a certain number of days their resting brain activity was different – which is amazing! But we also know from animal studies that microbes have an impact on mental health. You can breed mice that are germ free and we know that those mice show differences in their anxiety behaviours – in other words, they’re less anxious without the microbes. So you could say we’re being controlled by the microbes in our gut. They’re much more important to our feelings than we ever thought.

What’s come out in research in recent years, though it’s been known for a long time in the autism community, is that the majority of children with autism have serious gut problems. Now we don’t know the cause of autism but we do know that there are hundreds and hundreds of rare gene mutations that alter brain connectivity. And we now know that some of those mutated genes are also found in the gut. We’re also learning that diseases that affect cognition and memory, like dementia, may also have a gut component. Researchers are starting to look at traditional brain diseases like Alzheimer’s, Parkinson’s, Multiple Sclerosis, and finding difference in the microbes in the gut. So they’re starting to think about how we can make changes in our microbes to make changes to our brain health.

The Gut-Brain Axis team that I lead at RMIT is focused on understanding how the enteric nervous system is altered in neurological disorders such as autism. This includes researching how the gut nervous system interacts with microbes in the intestine and changes in inflammatory pathways. We’re trying to identify the basic mechanisms, examining the connections between the gastrointestinal tract and changes in mood and behaviour, including the impact of genetics on microbiota in the gut. The ultimate the aim is to find novel therapies that can improve daily life for people with autism, but our work also has broader application for other neurological disorders, such Parkinson’s disease.

Many of the great enteric physiologist pioneers are in Australia and they were the first to describe different types of neurons based on their activity and neurochemical content. This work has been done on animal models, due to the possibilities of emulating human genetic diseases in these models. So, a lot of basic anatomy and physiology has been studied. But what we need now is to move the field towards using the latest sophisticated techniques and capitalising on the recent interest in the gut-brain axis, which of course involves understanding how the gastrointestinal tract works in concert with the trillions of microbes that live inside it.

Professor Elisa Hill-Yardin has presented her work to the US Air Force Office of Scientific Research

Source: https://www.rmit.edu.au/