Tag Archives: green

How To Wirelessly Charge Electric Cars

The Israelian company ElectReon Wireless Ltd., which develops smart road technology that wirelessly charges electric cars, has signed a cooperation agreement with French-Japanese auto manufacturer Renault-Nissan-Mitsubishi (The Alliance). The Alliance is the largest auto maker in the world, and in the same time has sold the greatest number of electric cars. ElectReon will receive an electric car from Renault-Nissan-Mitsubishi, install its system in the car, and adapt it to smart road technology, thereby facilitating travel through wireless energy transferElectReon was founded in late 2013 by chairperson and CEO Oren Ezer and CTO Hanan Rumbak.

Smart road technology is the next stage in the evolution of global public transportation. It is designed to cut operating costs, completely halt dependence on oil and gasoline, and make the public space cleaner and cheaper. I am confident that this cooperation and other such agreements will make Israel a pioneer in technology-based transportation solutions,” stated Ezer.

ElectReon plans to first use its technology on buses traveling in designated lanes and later in private vehicles. Implementation of the technology also depends on cooperation from regulators (e.g. infrastructure and transportation ministries in Israel and European countries). Last month, ElectReon signed a cooperation agreement with Dan in which an initial public transportation route will be established powered by wireless energy charging. The company has also signed a memorandum of understanding with French company Hutchinson, which is to design and develop a mass production line for the coils infrastructure developed by ElectReon for installation beneath the road surface.

Source: https://www.electreon.com/

Solar Powered Car

The Sion is the first electric car capable of recharging its batteries from the sun. From now on, you’ll have to worry about range a little less. For only 16.000 € excluding the battery (4000 euros or to rent). With the dynamic integration of solar cells in the body work, we set new measures on the road while convincing with an exceptional design concept. The full efficiency of the Sion is guaranteed by the lightweight design. The exterior is mainly made up of rust-proof polycarbonate. It further is scratch-resistant. The most unique feature in the body work are the solar cells, which are located on the roof, on both sides as on the hood and the rear.

The cockpit  uses a very simple design, showing you how fast you are going and the charging level of your battery. On the left side you can see the number of kilometers generated through the viSono System. After 24 hours, these kilometers will be transferred to the right side, where they are added to the total range left. The Sion copes with the requirements of your daily life: A range of 250km, high power rapid charging, and a sophisticated interior concept with an optional trailer hitch.
The Sion is equipped with 330 integrated solar cells, which recharge the battery through the power of the sun. To protect them from harmful environmental influences the solar cells are covered with polycarbonate. It is shatterproof, light and particularly weather resistant. Under proper conditions the solar cells generate enough energy, to cover 30 kilometers per day with the Sion. This system is called  viSono. Thanks to the technology of bidirectional charging the Sion can not only generate but also provide energy. This feature turns the car into a mobile power station. Using a household plug, all common electronic devices with up to 2,7kW can be powered by the Sion. You can plug in your electronic devices and power them with the Sions battery. Over a type 2 plug the Sion can provide even more power with up to 7,6 kW.
For air filtering  a  special moss is integrated into the dashboard. It filters up to twenty percent of the fine dust particles and has a regulating effect on the humidity inside the Sion. No worries, you do not have to water it. It requires no special care at all.

Mass Production of Low-Cost Solar Cells

An international team of university researchers today reports solving a major fabrication challenge for perovskite cells — the intriguing potential challengers to silicon-based solar cells.

These crystalline structures show great promise because they can absorb almost all wavelengths of light. Perovskite solar cells are already commercialized on a small scale, but recent vast improvements in their power conversion efficiency (PCE) are driving interest in using them as low-cost alternatives for solar panels.

In the cover article published online in Nanoscale, a publication of the Royal Society of Chemistry, the research team reveals a new scalable means of applying a critical component to perovskite cells to solve some major fabrication challenges. The researchers were able to apply the critical electron transport layer (ETL) in perovskite photovoltaic cells in a new way — spray coating — to imbue the ETL with superior conductivity and a strong interface with its neighbor, the perovskite layer.

The researchers turned to spray coating, which applies the ETL uniformly across a large area and is suitable for manufacturing large solar panels. They reported a 30 percent efficiency gain over other ETLs – from a PCE of 13 percent to over 17 percent – and fewer defects.

Added Taylor, “Our approach is concise, highly reproducible, and scalable. It suggests that spray coating the PCBM ETL could have broad appeal toward improving the efficiency baseline of perovskite solar cells and providing an ideal platform for record-breaking p-i-n perovskite solar cells in the near future.”

The research is led by André D. Taylor, an associate professor in the NYU Tandon School of Engineering’s Chemical and Biomolecular Engineering Department, with Yifan Zheng, the first author on the paper and a Peking University researcher. Co-authors are from the University of Electronic Science and Technology of China, Yale University, and Johns Hopkins University.

Source: https://engineering.nyu.edu/

Israeli Startup To Grow Meat In The Lab

 Tyson Foods (TSN.N), the largest U.S. meat processor, has invested in an Israeli biotech company developing a way to grow affordable meat in a laboratory that takes live animals out of the equation.

Future Meat Technologies focuses on producing fat and muscle cells that are the core building blocks of meat, and is one of several firms working on technology to match rising demand for meat without adding more pressure on land from livestock. The firm’s founder and chief scientist, Yaakov Nahmias, said cultured meat typically had a production price of about $10,000 per kg but so far his company had reduced that to $800/kg and had “a clear roadmap to $5$10/kg by 2020.” Tyson’s venture capital arm has supported the Jerusalem-based startup by co-leading $2.2 million in seed investment.

We continue to invest significantly in our traditional meat business but also believe in exploring additional opportunities for growth that give consumers more choices,” said Justin Whitmore, Tyson’s executive vice president for corporate strategy. In December, Tyson raised its stake in plant-based protein maker Beyond MeatDemand for meat is expected to double between 2000 and 2050, when the earth’s population is set to surpass 9 billion, and proponents of growing meat in the lab say it is the only way to meet such demand without destroying the environment.

Source: https://www.reuters.com/

Perovskite Solar Cells One Giant Step Closer To The Market

Harnessing energy from the sun, which emits immensely powerful energy from the center of the solar system, is one of the key targets for achieving a sustainable energy supplyLight energy can be converted directly into electricity using electrical devices called solar cells. To date, most solar cells are made of silicon, a material that is very good at absorbing light. But silicon panels are expensive to produce.

Scientists have been working on an alternative, made from perovskite structures. True perovskite, a mineral found in the earth, is composed of calcium, titanium and oxygen in a specific molecular arrangement. Materials with that same crystal structure are called perovskite structuresPerovskite structures work well as the light-harvesting active layer of a solar cell because they absorb light efficiently but are much cheaper than silicon. They can also be integrated into devices using relatively simple equipment. For instance, they can be dissolved in solvent and spray coated directly onto the substrate.

Materials made from perovskite structures could potentially revolutionize solar cell devices, but they have a severe drawback: they are often very unstable, deteriorating on exposure to heat. This has hindered their commercial potential. The Energy Materials and Surface Sciences Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), led by Prof. Yabing Qi, has developed devices using a new perovskite material that is stable, efficient and relatively cheap to produce, paving the way for their use in the solar cells of tomorrow. This material has several key features:

  • First, it is completely inorganic – an important shift, because organic components are usually not thermostable and degrade under heat. Since solar cells can get very hot in the sun, heat stability is crucial. By replacing the organic parts with inorganic materials, the researchers made the perovskite solar cells much more stable..  “The solar cells are almost unchanged after exposure to light for 300 hours,” says Dr. Zonghao Liu, an author on the paper.
  • Second feature: Inorganic perovskite solar cells tend to have lower light absorption than organic-inorganic hybrids, however, but the OIST researchers doped their new cells with manganese in order to improve their performance. Manganese changes the crystal structure of the material, boosting its light harvesting capacity.  “Just like when you add salt to a dish to change its flavor, when we add manganese, it changes the properties of the solar cell,” says Liu.
  • Thirdly, in these solar cells, the electrodes that transport current between the solar cells and external wires are made of carbon, rather than of the usual gold. Such electrodes are significantly cheaper and easier to produce, in part because they can be printed directly onto the solar cells. Fabricating gold electrodes, on the other hand, requires high temperatures and specialist equipment such as a vacuum chamber.

The findings are published in Advanced Energy Materials. Postdoctoral scholars Dr. Jia Liang and Dr. Zonghao Liu made major contributions to this work.

Source: https://www.oist.jp/