Tag Archives: DARPA

Guided Bullet Can Modify Its Course To Hit Moving Target

DARPA’s Extreme Accuracy Tasked Ordnance (EXACTO) program, which developed a self-steering bullet to increase hit rates for difficult, long-distance shots, completed in February its most successful round of live-fire tests to date. An experienced shooter using the technology demonstration system repeatedly hit moving and evading targets. Additionally, a novice shooter using the system for the first time hit a moving target.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

This video shows EXACTO rounds maneuvering in flight to hit targets that are moving and accelerating. EXACTO’s specially designed ammunition and real-time optical guidance system help track and direct projectiles to their targets by compensating for weather, wind, target movement and other factors that can impede successful hits.

True to DARPA’s mission, EXACTO has demonstrated what was once thought impossible: the continuous guidance of a small-caliber bullet to target,” said Jerome Dunn, DARPA program manager. “This live-fire demonstration from a standard rifle showed that EXACTO is able to hit moving and evading targets with extreme accuracy at sniper ranges unachievable with traditional rounds. Fitting EXACTO’s guidance capabilities into a small .50-caliber size is a major breakthrough and opens the door to what could be possible in future guided projectiles across all calibers.

The EXACTO program developed new approaches and advanced capabilities to improve the range and accuracy of sniper systems beyond the current state of the art. The program sought to improve sniper effectiveness and enhance troop safety by allowing greater shooter standoff range and reduction in target engagement timelines.

Source: https://www.darpa.mil/

Chinese ‘Death Star’ For Submarines

China is developing a satellite with a powerful laser for anti-submarine warfare that researchers hope will be able to pinpoint a target as far as 500 metres below the surface. It is the latest addition to the country’s expanding deep-sea surveillance programme, and aside from targeting submarines – most operate at a depth of less than 500 metres – it could also be used to collect data on the world’s oceansProject Guanlan, meaning “watching the big waves”, was officially launched in May at the Pilot National Laboratory for Marine Science and Technology in Qingdao, Shandong. It aims to strengthen China’s surveillance activities in the world’s oceans, according to the laboratory’s website.

Scientists are working on the satellite’s design at the laboratory, but its key components are being developed by more than 20 research institutes and universities across the country. Song Xiaoquan, a researcher involved in the project, said if the team can develop the satellite as planned, it will make the upper layer of the seamore or less transparent”. “It will change almost everything,” Song said.

While light dims 1,000 times faster in water than in the air, and the sun can penetrate no more than 200 metres below the ocean surface, a powerful artificial laser beam can be 1 billion times brighter than the sun. But this project is ambitious – naval researchers have tried for more than half a century to develop a laser spotlight for hunting submarines using technology known as light detection and ranging (lidar). In theory, it works like this – when a laser beam hits a submarine, some pulses bounce back. They are then picked up by sensors and analysed by computer to determine the target’s location, speed and three-dimensional shape.

But in real life, lidar technology can be affected by the device’s power limitations, as well as cloud, fog, murky water – and even marine life such as fish and whales. Added to that, the laser beam deflects and scatters as it travels from one body of water to another, making it more of a challenge to get a precise calculation. Experiments carried out by the United States and former Soviet Union achieved maximum detection depths of less than 100 metres, according to openly available information. That range has been extended in recent years by the US in research funded by Nasa and the Defence Advanced Research Projects Agency (DARPA).

Source: https://www.scmp.com/

Growing New Cartilage To Eradicate Osteoarthritis Pain

What is graphene foam? It’s a synthetic “wonder material” made from the same carbon atoms that make up the lead in a pencilGraphene foam can be used as a “bioscaffold” to mesh with human stem cells and grow new cartilage. In addition to being incredibly strong, graphene foam conducts heat and electricity which helps neurons, or nerve cells, transmit information. Boise State researchers believe graphene foam-enhanced cartilage could one day be used to treat the joint pain caused by osteoarthritis as well as prevent the need for joint replacement. Osteoarthritis is incurable and affects half the U.S. population over the age of 65.

If we could take graphene foam, adhere a patient’s own stem cells on it then and inject that into someone’s knee to regrow their own cartilage, that would be the ‘pie in the sky,‘” said Dave Estrada, co-director of the Boise State University’s Advanced Nanomaterials and Manufacturing Laboratory.

A Boise State team led by Katie Yocham, a doctoral student in the Micron School of Materials Science and Engineering, and Estrada have published a study, “Mechanical Properties of Graphene Foam and Graphene Foam-Tissue Composites,” in the Advanced Engineering Materials journal.

While earlier studies at Boise State have shown that graphene foam is compatible with cells for growing new cartilage tissue, this is the first study to investigate how that tissue would actually function in a human joint under normal stresses, including high impact activities.

Trevor Lujan, an associate professor in the Department of Mechanical and Biomedical Engineering, and one of the authors of the study, praised Yocham’s work. “Katie’s strong efforts on this project have provided the biomedical community with a rigorous characterization of the bulk mechanical behavior of cellularized graphene foam. This baseline knowledge is an important step in the rising use of graphene foam for biomedical applications,” he said.

Estrada believes the biomedical use of graphene foam may have other applications, including in the military where a majority combat injuries involve the musculoskeletal system. “Our vision is to develop novel bioscaffolds that can expedite healing, reduce the need for amputation, and help save lives,” he added.

Source: https://news.boisestate.edu/