Tag Archives: collagen fibers

Cartilage-like Material Boosts Batteries Durability

Your knees and your smartphone battery have some surprisingly similar needs, a University of Michigan professor has discovered, and that new insight has led to a “structural battery” prototype that incorporates a cartilage-like material to make the batteries highly durable and easy to shape.The idea behind structural batteries is to store energy in structural components—the wing of a drone or the bumper of an electric vehicle, for example. They’ve been a long-term goal for researchers and industry because they could reduce weight and extend range. But structural batteries have so far been heavy, short-lived or unsafe.

In a study published in ACS Nano, the researchers describe how they made a damage-resistant rechargeable zinc battery with a cartilage-like solid electrolyte. They showed that the batteries can replace the top casings of several commercial drones. The prototype cells can run for more than 100 cycles at 90 percent capacity, and withstand hard impacts and even stabbing without losing voltage or starting a fire.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

A battery that is also a structural component has to be light, strong, safe and have high capacity. Unfortunately, these requirements are often mutually exclusive,” said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering, who led the research.

To sidestep these trade-offs, the researchers used zinc—a legitimate structural material—and branched nanofibers that resemble the collagen fibers of cartilageAhmet Emrehan Emre, a biomedical engineering PhD candidate, sandwiches a thin sheet of a cartilage-like material between a layer of zinc on top and a layer of manganese oxide underneath to form a battery

Nature does not have zinc batteries, but it had to solve a similar problem,” Kotov said. “Cartilage turned out to be a perfect prototype for an ion-transporting material in batteries. It has amazing mechanics, and it serves us for a very long time compared to how thin it is. The same qualities are needed from solid electrolytes separating cathodes and anodes in batteries.”

In our bodies, cartilage combines mechanical strength and durability with the ability to let water, nutrients and other materials move through it. These qualities are nearly identical to those of a good solid electrolyte, which has to resist damage from dendrites while also letting ions flow from one electrode to the other.

Source: https://news.umich.edu/

Orthodontic Surgery Without Incision

Researchers at the Technion-Israel Institute of Technology have developed a nanotechnology that replaces the surgical scalpel with an “enzymatic blade.” In an article published recently in ACS Nano, the researchers describe the application of this technology in a surgical procedure in the oral cavity. The application spares the pain associated with orthodontic surgeries and significantly reduces tissue recovery time.

The study was led by Dr. Assaf Zinger, within the framework of his doctoral research, mentored by Assistant Professor Avi Schroeder, the director of the Laboratory of Targeted Drug Delivery and Personalized Medicine at the Wolfson Faculty of Chemical Engineering. The novel technology is based on rational use of enzymesbiological molecules the body uses to repair itself, as well as on use of nanoparticles for achieving a targeted therapeutic profile.

In the United States alone, approximately five million people undergo orthodontic treatment each year. To speed up treatment, which typically lasts about two years, many undergo invasive surgery, in which collagen fibers that connect the tooth to the underlying bone tissue are cut.

The technology developed at the Technion softens the collagen fibers via the targeted release of collagenase – an enzyme that specifically breaks down collagen. Using techniques developed in Schroeder’s lab, the collagenase is packaged into liposomesnanometric vesicles. As long as the collagenase particles are packaged in the liposome, they are inactive. But with this special nanotechnology, an ointment is applied on the target site, so that the enzyme begins to gradually leak from the liposome and soften the collagen fibers. The researchers performed a series of tests to determine the collagenase concentration optimal for the procedure and to accelerate tissue repair thereafter.

Source: http://t3news.trdf.co.il/