Tag Archives: coating

Self-Healing Coating Protects Metals From Corrosion

It’s hard to believe that a tiny crack could take down a gigantic metal structure. But sometimes bridges collapse, pipelines rupture and fuselages detach from airplanes due to hard-to-detect corrosion in tiny cracks, scratches and dents. A Northwestern University team has developed a new coating strategy for metal that self-heals within seconds when scratched, scraped or cracked. The novel material could prevent these tiny defects from turning into localized corrosion, which can cause major structures to fail.


Localized corrosion is extremely dangerous,” said Jiaxing Huang, who led the research. “It is hard to prevent, hard to predict and hard to detect, but it can lead to catastrophic failure.” Huang is a professor of materials science and engineering in Northwestern’s McCormick School of Engineering.

When damaged by scratches and cracks, Huang’s patent-pending system readily flows and reconnects to rapidly heal right before the eyes. The researchers demonstrated that the material can heal repeatedly — even after scratching the exact same spot nearly 200 times in a row.While a few self-healing coatings already exist, those systems typically work for nanometer- to micron-sized damages. To develop a coating that can heal larger scratches in the millimeter-scale, Huang and his team looked to fluid. “When a boat cuts through water, the water goes right back together,” Huang said. “The ‘cut’ quickly heals because water flows readily. We were inspired to realize that fluids, such as oils, are the ultimate self-healing system.” But common oils flows too readily, Huang noted. So he and his team needed to develop a system with contradicting properties: fluidic enough to flow automatically but not so fluidic that it drips off the metal’s surface.

The team met the challenge by creating a network of lightweight particles — in this case graphene capsules — to thicken the oil. The network fixes the oil coating, keeping it from dripping. But when the network is damaged by a crack or scratch, it releases the oil to flow readily and reconnect. Huang said the material can be made with any hollow, lightweight particlenot just graphene. “The particles essentially immobilize the oil film,” Huang said. “So it stays in place.”

The study was published  in Research, the first Science Partner Journal recently launched by the American Association for the Advancement of Science (AAAS) in collaboration with the China Association for Science and Technology (CAST).

Source: https://news.northwestern.edu/

Invisible Plastic For Super Efficient Solar Panels

Antireflection (AR) coatings on plastics have a multitude of practical applications, including glare reduction on eyeglasses, computer monitors and the display on your smart-phone when outdoors. Now, researchers at Penn State have developed an AR coating that improves on existing coatings to the extent that it can make transparent plastics, such as Plexiglas, virtually invisible.

Plastic dome coated with a new antireflection coating (right), and uncoated dome (left)

This discovery came about as we were trying to make higher-efficiency solar panels,” said Chris Giebink, associate professor of electrical engineering, Penn State. “Our approach involved concentrating light onto small, high-efficiency solar cells using plastic lenses, and we needed to minimize their reflection loss.”

They needed an antireflection coating that worked well over the entire solar spectrum and at multiple angles as the sun crossed the sky. They also needed a coating that could stand up to weather over long periods of time outdoors. “We would have liked to find an off-the-shelf solution, but there wasn’t one that met our performance requirements,” he said. “So, we started looking for our own solution.”

That was a tall order. Although it is comparatively easy to make a coating that will eliminate reflection at a particular wavelength or in a particular direction, one that could fit all their criteria did not exist. For instance, eyeglass AR coatings are targeted to the narrow visible portion of the spectrum. But the solar spectrum is about five times as broad as the visible spectrum, so such a coating would not perform well for a concentrating solar cell system.

Reflections occur when light travels from one medium, such as air, into a second medium, in this case plastic. If the difference in their refractive index, which specifies how fast light travels in a particular material, is large — air has a refractive index of 1 and plastic 1.5 — then there will be a lot of reflection. The lowest index for a natural coating material such as magnesium fluoride or Teflon is about 1.3. The refractive index can be graded — slowly varied — between 1.3 and 1.5 by blending different materials, but the gap between 1.3 and 1 remains.

In a paper recently posted online ahead of print in the journal Nano Letters, Giebink and coauthors describe a new process to bridge the gap between Teflon and air. They used a sacrificial molecule to create nanoscale pores in evaporated Teflon, thereby creating a graded index Teflon-air film that fools light into seeing a smooth transition from 1 to 1.5, eliminating essentially all reflections.

The interesting thing about Teflon, which is a polymer, is when you heat it up in a crucible, the large polymer chains cleave into smaller fragments that are small enough to volatize and send up a vapor flux. When these land on a substrate they can repolymerize and form Teflon,” Giebink explained.


We’ve been interacting with a number of companies that are looking for improved antireflection coatings for plastic, and some of the applications have been surprising,” he said. “They range from eliminating glare from the plastic domes that protect security cameras to eliminating stray reflections inside virtual/augmented -reality headsets.”

Source: https://news.psu.edu/

Nanorobots Clear Bacteria From Blood

Engineers at the University of California San Diego have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria along with the toxins they produce. These proof-of-concept nanorobots could one day offer a safe and efficient way to detoxify and decontaminate biological fluids.

Researchers built the nanorobots by coating gold nanowires with a hybrid of platelet and red blood cell membranes. This hybrid cell membrane coating allows the nanorobots to perform the tasks of two different cells at once—platelets, which bind pathogens like MRSA bacteria (an antibiotic-resistant strain of Staphylococcus aureus), and red blood cells, which absorb and neutralize the toxins produced by these bacteria. The gold body of the nanorobots responds to ultrasound, which gives them the ability to swim around rapidly without chemical fuel. This mobility helps the nanorobots efficiently mix with their targets (bacteria and toxins) in blood and speed up detoxification.

The work, published May 30 in Science Robotics, combines technologies pioneered by Joseph Wang and Liangfang Zhang, professors in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. Wang’s team developed the ultrasound-powered nanorobots, and Zhang’s team invented the technology to coat nanoparticles in natural cell membranes.

SEM image of a MRSA bacterium attached to a hybrid cell membrane coated nanorobot

By integrating natural cell coatings onto synthetic nanomachines, we can impart new capabilities on tiny robots such as removal of pathogens and toxins from the body and from other matrices,” said Wang. “This is a proof-of-concept platform for diverse therapeutic and biodetoxification applications.”

The idea is to create multifunctional nanorobots that can perform as many different tasks at once,” adds co-first author Berta Esteban-Fernández de Ávila, a postdoctoral scholar in Wang’s research group at UC San Diego. “Combining platelet and red blood cell membranes into each nanorobot coating is synergistic—platelets target bacteria, while red blood cells target and neutralize the toxins those bacteria produce.

Source: http://jacobsschool.ucsd.edu/

How Solar Cells Absorb 20 % More Sunlight

Trapping light with an optical version of a whispering gallery, researchers at the National Institute of Standards and Technology (NIST) have developed a nanoscale coating for solar cells that enables them to absorb about 20 percent more sunlight than uncoated devices. The coating, applied with a technique that could be incorporated into manufacturing, opens a new path for developing low-cost, high-efficiency solar cells with abundant, renewable and environmentally friendly materials.

Illustration shows the nanoresonator coating, consisting of thousands of tiny glass beads, deposited on solar cells. The coating enhances both the absorption of sunlight and the amount of current produced by the solar cells

The coating consists of thousands of tiny glass beads, only about one-hundredth the width of a human hair. When sunlight hits the coating, the light waves are steered around the nanoscale bead, similar to the way sound waves travel around a curved wall such as the dome in St. Paul’s Cathedral in London. At such curved structures, known as acoustic whispering galleries, a person standing near one part of the wall easily hears a faint sound originating at any other part of the wall.

Using a laser as a light source to excite individual nanoresonators in the coating, the team found that the coated solar cells absorbed, on average, 20 percent more visible light than bare cells. The measurements also revealed that the coated cells produced about 20 percent more current.

Source: https://www.nist.gov/