Tag Archives: carbon

How To Charge In Seconds 3D Batteries

The world is a big place, but it’s gotten smaller with the advent of technologies that put people from across the globe in the palm of one’s hand. And as the world has shrunk, it has also demanded that things happen ever faster – including the time it takes to charge an electronic device.

A cross-campus collaboration led by Ulrich Wiesner, Professor of Engineering in the Department of Materials Science at Cornell University, addresses this demand with a novel energy storage device architecture that has the potential for lightning-quick charges.

The group’s idea: Instead of having the batteries’ anode and cathode on either side of a nonconducting separator, intertwine the components in a self-assembling, 3D gyroidal structure, with thousands of nanoscale pores filled with the components necessary for energy storage and delivery.

A rendering of the 3D battery architecture (top; not to scale) with interpenetrating anode (grey, with minus sign), separator (green), and cathode (blue, plus sign), each about 20 nanometers in size. Below are their respective molecular structures

This is truly a revolutionary battery architecture,” said Wiesner, whose group’s paper, “Block Copolymer Derived 3-D Interpenetrating Multifunctional Gyroidal Nanohybrid for Electrical Energy Storage,” was published in Energy and Environmental Science, a publication of the Royal Society of Chemistry.

This three-dimensional architecture basically eliminates all losses from dead volume in your device,” Wiesner said. “More importantly, shrinking the dimensions of these interpenetrated domains down to the nanoscale, as we did, gives you orders of magnitude higher power density. In other words, you can access the energy in much shorter times than what’s usually done with conventional battery architectures.”

How fast is that? Wiesner said that, due to the dimensions of the battery’s elements being shrunk down to the nanoscale, “by the time you put your cable into the socket, in seconds, perhaps even faster, the battery would be charged.”

The architecture for this concept is based on block copolymer self-assembly, which the Wiesner group has employed for years in other devices, including a gyroidal solar cell and a gyroidal superconductor. Joerg Werner, Ph.D. ’15, lead author on this work, had experimented with self-assembling filtration membranes, and wondered if the same principles could be applied to carbon materials for energy storage.

Source: http://news.cornell.edu/

Perovskite Solar Cells One Giant Step Closer To The Market

Harnessing energy from the sun, which emits immensely powerful energy from the center of the solar system, is one of the key targets for achieving a sustainable energy supplyLight energy can be converted directly into electricity using electrical devices called solar cells. To date, most solar cells are made of silicon, a material that is very good at absorbing light. But silicon panels are expensive to produce.

Scientists have been working on an alternative, made from perovskite structures. True perovskite, a mineral found in the earth, is composed of calcium, titanium and oxygen in a specific molecular arrangement. Materials with that same crystal structure are called perovskite structuresPerovskite structures work well as the light-harvesting active layer of a solar cell because they absorb light efficiently but are much cheaper than silicon. They can also be integrated into devices using relatively simple equipment. For instance, they can be dissolved in solvent and spray coated directly onto the substrate.

Materials made from perovskite structures could potentially revolutionize solar cell devices, but they have a severe drawback: they are often very unstable, deteriorating on exposure to heat. This has hindered their commercial potential. The Energy Materials and Surface Sciences Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), led by Prof. Yabing Qi, has developed devices using a new perovskite material that is stable, efficient and relatively cheap to produce, paving the way for their use in the solar cells of tomorrow. This material has several key features:

  • First, it is completely inorganic – an important shift, because organic components are usually not thermostable and degrade under heat. Since solar cells can get very hot in the sun, heat stability is crucial. By replacing the organic parts with inorganic materials, the researchers made the perovskite solar cells much more stable..  “The solar cells are almost unchanged after exposure to light for 300 hours,” says Dr. Zonghao Liu, an author on the paper.
  • Second feature: Inorganic perovskite solar cells tend to have lower light absorption than organic-inorganic hybrids, however, but the OIST researchers doped their new cells with manganese in order to improve their performance. Manganese changes the crystal structure of the material, boosting its light harvesting capacity.  “Just like when you add salt to a dish to change its flavor, when we add manganese, it changes the properties of the solar cell,” says Liu.
  • Thirdly, in these solar cells, the electrodes that transport current between the solar cells and external wires are made of carbon, rather than of the usual gold. Such electrodes are significantly cheaper and easier to produce, in part because they can be printed directly onto the solar cells. Fabricating gold electrodes, on the other hand, requires high temperatures and specialist equipment such as a vacuum chamber.

The findings are published in Advanced Energy Materials. Postdoctoral scholars Dr. Jia Liang and Dr. Zonghao Liu made major contributions to this work.

Source: https://www.oist.jp/