Tag Archives: cancer cells

Drug To Replace Chemotherapy

A class of drugs is emerging that can attack cancer cells in the body without damaging surrounding healthy ones. They have the potential to replace chemotherapy and its disruptive side effects, reshaping the future of cancer care. The complex biological medicines, called antibody drug conjugates (ADCs), have been in development for decades, and are now generating renewed excitement because of the success of one ADC in late-stage testing, a breast cancer treatment called DS-8201.

The fervor over ADCs is such that AstraZeneca Plc in March agreed to pay as much as $6.9 billion to jointly develop DS-8201 with Japan’s Daiichi Sankyo Co., the British drugmaker’s biggest deal in more than a decade. The investment was widely seen to be a validation of DS-8201’s potential — and the ADC class of drugs as a whole — as an alternative for chemotherapy, the most widely used treatment, for some types of cancerDS-8201, which will be filed for U.S. approval by the end of September, is so well-regarded that some analysts already predict it will surpass the $7 billion in annual sales for Roche Holding AG’s breast cancer drug Herceptin, which it aims to replace.

DS-8201 may become one of the largest cancer biologic drugs,’’ said Caroline Stewart, an analyst at Bloomberg Intelligence, who estimates sales of the drug to eventually approach $12 billion globally, a level attained by only a handful of biologic drugs. “While the field has advanced and there are several companies focusing on ADCs, Daiichi in particular seems to have developed a unique expertise.

Source: https://www.bloomberg.com/

Microwave Stimulated Nanoparticles To Fight Efficiently Cancer

A physicist at The University of Texas at Arlington (UTA) has proposed a new concept for treating cancer cells. In a recently published paper in the journal Nanomedicine: Nanotechnology, Biology and Medicine, UTA physics Professor Wei Chen and a team of international collaborators advanced the idea of using titanium dioxide (TiO2) nanoparticles stimulated by microwaves to trigger the death of cancer cells without damaging the normal cells around them.

The method is called microwave-induced radical therapy, which the team refers to as microdynamic therapy, or MDT. The use of TiO2 nanoparticles activated by light and ultrasound in cancer treatments has been studied extensively, but this marks the first time researchers have shown that the nanoparticles can be effectively activated by microwaves for cancer cell destruction—potentially opening new doors to treatment for patients fighting the disease. Chen said the new therapy centers on reactive oxygen species, or ROS, which are a natural byproduct of the body’s metabolism of oxygen. ROS help kill toxins in the body, but can also be damaging to cells if they reach a critical level. TiO2 enters cells and produces ROS, which are able to damage plasma membranes, mitochondria and DNA, causing cell death.

Cancer cells are characterized by a higher steady-state saturation of ROS than normal, healthy cells,” Chen said. “This new therapy allows us to exploit that by raising the saturation of ROS in cancer cells to a critical level that triggers cell death without pushing the normal cells to that same threshold.

The pilot study for this new treatment concept builds upon Chen’s expertise in the use of nanoparticles to combat cancer.

Chen’s collaborators hail from the Guangdong Academy of Medical Sciences and Beihang University. The team conducted experiments that demonstrate the nanoparticles can significantly suppress the growth of osteosarcomas under microwave irradiation.

While TiO2 and low-power microwave irradiation alone did not effectively kill cancer cells, the combination of the two proved successful in creating a toxic effect for the tumor cells. Microwave ablation therapy has already proven to be an effective treatment against bone cancer, obtaining better results than MDT. However, MDT has applications for combatting other types of cancer, not just the osteosarcomas used for this pilot case.

Using light to activate ROS—as is seen in photodynamic therapy—can be challenging for the treatment of tumors deeply located within the body; in contrast, microwaves lend the ability to create deeper penetration that propagates through all types of tissues and non-metallic materials.

This new discovery is exciting because it potentially creates new avenues for treating cancer patients without causing debilitating side effects,” Chen said. “This targeted, localized method allows us to keep healthy cells intact so patients are better equipped to battle the disease.

Source: https://www.uta.edu/

Immunotherapy Technique Specifically Targets Tumor Cells

A new immunotherapy screening prototype developed by University of California, Irvine (UCI) researchers can quickly create individualized cancer treatments that will allow physicians to effectively target tumors without the side effects of standard cancer drugsUCI’s Weian Zhao and Nobel laureate David Baltimore with Caltech led the research team that developed a tracking and screening system that identifies T cell receptors with 100-percent specificity for individual tumors within just a few days.

In the human immune system, T cells have molecules on their surfaces that bind to antigens on the surface of foreign or cancer cells. To treat a tumor with T cell therapy, researchers must identify exactly which receptor molecules work against a specific tumor’s antigens. UCI researchers have sped up that identification process.

This technology is particularly exciting because it dismantles major challenges in cancer treatments,” said Zhao, an associate professor of pharmaceutical sciences. “This use of droplet microfluidics screening significantly reduces the cost of making new cancer immunotherapies that are associated with less systemic side effects than standard chemotherapy drugs, and vastly speeds up the timeframe for treatment.

Zhao added that traditional cancer treatments have offered a one-size-fits-all disease response, such as chemotherapy drugs which can involve systemic and serious side effects.

Research findings appear in Lab on a Chip.

Source: https://news.uci.edu/