Tag Archives: big data

AI and Big Data To Fight Eye Diseases

In future, it will be possible to diagnose diabetes from the eye using automatic digital retinal screening, without the assistance of an ophthalmologist‘: these were the words used by Ursula Schmidt-Erfurth, Head of MedUni Vienna‘s Department of Ophthalmology and Optometrics. The scientist has opened the press conference about the ART-2018 Specialist Meeting on new developments in retinal therapy. The automatic diabetes screening, has been recently implemented at MedUni Vienna.
Patients flock to the Department to undergo this retinal examination to detect any diabetic changes. It takes just a few minutes and is completely non-invasive

Essentially this technique can detect all stages of diabetic retinal diseasehigh-resolution digital retinal images with two million pixels are taken and analyzed within seconds – but Big Data offers even more potential: nowadays it is already possible to diagnose an additional 50 other diseases in this way. Diabetes is just the start. And MedUni Vienna is among the global leaders in this digital revolution.

The Division of Cardiology led by Christian Hengstenberg within the Department of Medicine II is working on how digital retinal analysis can also be used in future for the early diagnosis of cardiovascular diseases.

This AI medicine is ‘super human’,” emphasizes Schmidt-Erfurth. “The algorithms are quicker and more accurate. They can analyze things that an expert cannot detect with the naked eye.” And yet the commitment to Big Data and Artificial Intelligence is not a plea for medicine without doctors, which some experts predict for the not-to-distant future. “What we want are ‘super doctors’, who are able to use the high-tech findings to make the correct, individualized therapeutic decision for their patients, in the spirit of precision medicine, rather than leaving patients on their own.”

However, it is not only in the diagnosis of diseases that Artificial Intelligence and Big Data, plus virtual reality, provide better results. “We are already performing digitized operations with support from Artificial Intelligence. This involves projecting a virtual and precise image of the area of the eye being operated on onto a huge screen – and the surgeon then performs the operation with a perfect viewon screen” as it were, while actually operating on the patient with a scalpel.”

Source: https://www.news-medical.net/

Quantum Computer Controls One Billion Electrons Per Second One-by-One.

University of Adelaide-led research in Australia has moved the world one step closer to reliable, high-performance quantum computing. An international team has developed a ground-breaking single-electronpump”. The electron pump device developed by the researchers can produce one billion electrons per second and uses quantum mechanics to control them one-by-one. And it’s so precise they have been able to use this device to measure the limitations of current electronics equipment. This paves the way for future quantum information processing applications, including in defence, cybersecurity and encryption, and big data analysis.

This research puts us one step closer to the holy grail – reliable, high-performance quantum computing,” says project leader Dr Giuseppe C. Tettamanzi, Senior Research Fellow, at the University of Adelaide’s Institute for Photonics and Advanced Sensing.

Published in the journal Nano Letters, the researchers also report observations of electron behaviour that’s never been seen before – a key finding for those around the world working on quantum computing.

Quantum computing, or more broadly quantum information processing, will allow us to solve problems that just won’t be possible under classical computing systems,” says Dr Tettamanzi. “It operates at a scale that’s close to an atom and, at this scale, normal physics goes out the window and quantum mechanics comes into play.  To indicate its potential computational power, conventional computing works on instructions and data written in a series of 1s and 0s – think about it as a series of on and off switches; in quantum computing every possible value between 0 and 1 is available. We can then increase exponentially the number of calculations that can be done simultaneously.”

Source: https://www.adelaide.edu.au/