This is default featured slide 1 title
This is default featured slide 2 title
This is default featured slide 3 title
This is default featured slide 4 title
This is default featured slide 5 title

A Super Protein Brings The Equivalence Of Meat For Vegeterian Diet

Protein is what’s for dinner, but only if the world’s biggest food companies can keep up. The rise in global appetites for everything from meat to beans and peas is creating what experts call a “perfect storm” for environmental concern, as farmers must increasingly crank out more food with less land and water.

A new startup has one possible solution. called Sustainable Bioproducts, the company sources protein from ingredients found deep inside an unlikely source: the searing volcanic hot springs in Yellowstone National Park. To make the product, the company brews it up using a process similar to that used to make beer.

What comes out, explained CEO Thomas Jonas , is a neutral-tasting, naturally high-protein substance that can either be mixed into yogurt for an alternative to the Greek variety or shaped into patties for the next plant-based burger. Plus, the startup’s product is naturally rich in some of the same key amino acids that the body needs to function. Often found in animal products like eggs, these protein building blocks are especially tough to procure from a vegan or vegetarian diet.

What we have here is a super protein,” Jonas said. “And it comes from one of the most pristine wild places on the planet.”

On Monday, the startup launched publicly with $33 million in funds from Silicon Valley-based venture firm 1955 Capital and the venture arms of two leading global food suppliersgrain company Archer Daniels Midland and multinational food producer Danone. Based in Chicago, the startup is using the funds to build a production plant and cook up several prototype products.

Key to the startup’s operation, Jonas said, is that it will require a fraction of the natural resources needed for making other proteins like meat and nuts. In place of wasteful factory farms or large parcels of land, all they need, according to Jonas, is essentially a series of brewer’s vats. The company’s core technology is the process it uses to ferment a set of unique microorganisms first discovered in Yellowstone by Montana State University scientist Mark Kozubal nearly a decade ago. Now serving as the startup’s chief science officer, Kozubal came across the organisms as part of a research project supported by grants from the Environmental Protection Agency, the National Science Foundation, and NASA. Sustainable Bioproducts also independently received grants from all three organizations.


How To Eradicate Breast Tumors In 11 Days

Despite unbelievable advances in medical science in recent decades, breast cancer kills. Approximately 1 in 8 American women will develop breast cancer cells during the course of their lifetime.

Finding a cure is imperative, and as such, fervent research continues. At the European Breast Cancer Conference in Amsterdam, scientists presented a pair of drugs with an astounding claim: this treatment can eradicate some types of breast cancer in only 11 days, eliminating the need for chemotherapy.

Chemotherapy, whilst an amazing feat of medical-scientific engineering, is known for its uncomfortable and sometimes debilitating side effects. Women undergoing chemotherapy for breast cancer treatment may lose their hair, suffer extreme fatigue, and even loss of cognitive functionCancers may also recur after long, painful months of chemotherapy treatment.

The new trial, raising hopes across the medical community, is focused upon two drugs: Herceptin and Lapatinib. The drugs, in tandem, target a protein known as HER2, which is instrumental in stimulating the growth of certain cancer cells.

A pair of drugs can dramatically shrink and eliminate some breast cancers in just 11 days, UK doctors have shown.

They both target HER2 – a protein that fuels the growth of some women’s breast cancersHerceptin works on the surface of cancerous cells while lapatinib is able to penetrate inside the cell to disable HER2.

The study, which also took place at NHS hospitals in Manchester, gave the treatment to women with tumours measuring between 1 and 3cm. But Prof Bliss believes the findings could eventually mean some women do not need chemotherapy.

In less than two weeks of treatment, the cancer disappeared entirely in 11% of cases, and in a further 17% they were smaller than 5mm.

Current therapy for HER2 positive breast cancers is surgery, followed by chemotherapy and Herceptin. But Prof Bliss believes the findings could eventually mean some women do not need chemotherapy.


How To ConVert Waste Heat Into Electricity

Thermoelectric materials, capable of transforming heat into electricity, are very promising when converting residual heat into electrical energy, since they allow us to utilize hardly usable or almost lost thermal energy in an efficient way. Researchers at the Institute of Materials Science of Barcelona (ICMAB-CSIC) have created a new thermoelectric material: a paper capable of converting waste heat into electricity. These devices could be used to generate electricity from residual heat to feed sensors in the field of the Internet of Things, Agriculture 4.0 or Industry 4.0.

This device is composed of cellulose, produced in situ in the laboratory by bacteria, with small amounts of a conductor nanomaterial, carbon nanotubes, using a sustainable and environmentally friendly strategy” explains Mariano Campoy-Quiles, researcher at the ICMAB.

“In the near future, they could be used as wearable devices, in medical or sports applications, for example. And if the efficiency of the device was even more optimized, this material could lead to intelligent thermal insulators or to hybrid photovoltaic-thermoelectric power generation systems” predicts Campoy-Quiles. In addition “due to the high flexibility of the cellulose and to the scalability of the process, these devices could be used in applications where the residual heat source has unusual forms or extensive areas, as they could be completely covered with this material” indicates Anna Roig, researcher at the ICMAB.

Since bacterial cellulose can be home made, perhaps we are facing the first step towards a new energy paradigm, where users will be able to make their own electric generators. We are still far away, but this study is a beginning. We have to start somewhere. “Instead of making a material for energy, we cultivate it” explains Mariano Campoy-Quiles, a researcher of this study. “Bacteria, dispersed in an aqueous culture medium containing sugars and carbon nanotubes, produce the nanocellulose fibers that will end up forming the device, in which the carbon nanotubes are embedded” continues Campoy-Quiles.”We obtain a mechanically resistant, flexible and deformable material, thanks to the cellulose fibers, and with a high electrical conductivity, thanks to the carbon nanotubes,” adds Anna Laromaine, researcher at the ICMAB. “The intention is to approach the concept of circular economy, using sustainable materials that are not toxic for the environment, which are used in small amounts, and which can be recycled and reused,“says Roig.

The study has been published in the Energy & Environmental Science journal.


Invisible Plastic For Super Efficient Solar Panels

Antireflection (AR) coatings on plastics have a multitude of practical applications, including glare reduction on eyeglasses, computer monitors and the display on your smart-phone when outdoors. Now, researchers at Penn State have developed an AR coating that improves on existing coatings to the extent that it can make transparent plastics, such as Plexiglas, virtually invisible.

Plastic dome coated with a new antireflection coating (right), and uncoated dome (left)

This discovery came about as we were trying to make higher-efficiency solar panels,” said Chris Giebink, associate professor of electrical engineering, Penn State. “Our approach involved concentrating light onto small, high-efficiency solar cells using plastic lenses, and we needed to minimize their reflection loss.”

They needed an antireflection coating that worked well over the entire solar spectrum and at multiple angles as the sun crossed the sky. They also needed a coating that could stand up to weather over long periods of time outdoors. “We would have liked to find an off-the-shelf solution, but there wasn’t one that met our performance requirements,” he said. “So, we started looking for our own solution.”

That was a tall order. Although it is comparatively easy to make a coating that will eliminate reflection at a particular wavelength or in a particular direction, one that could fit all their criteria did not exist. For instance, eyeglass AR coatings are targeted to the narrow visible portion of the spectrum. But the solar spectrum is about five times as broad as the visible spectrum, so such a coating would not perform well for a concentrating solar cell system.

Reflections occur when light travels from one medium, such as air, into a second medium, in this case plastic. If the difference in their refractive index, which specifies how fast light travels in a particular material, is large — air has a refractive index of 1 and plastic 1.5 — then there will be a lot of reflection. The lowest index for a natural coating material such as magnesium fluoride or Teflon is about 1.3. The refractive index can be graded — slowly varied — between 1.3 and 1.5 by blending different materials, but the gap between 1.3 and 1 remains.

In a paper recently posted online ahead of print in the journal Nano Letters, Giebink and coauthors describe a new process to bridge the gap between Teflon and air. They used a sacrificial molecule to create nanoscale pores in evaporated Teflon, thereby creating a graded index Teflon-air film that fools light into seeing a smooth transition from 1 to 1.5, eliminating essentially all reflections.

The interesting thing about Teflon, which is a polymer, is when you heat it up in a crucible, the large polymer chains cleave into smaller fragments that are small enough to volatize and send up a vapor flux. When these land on a substrate they can repolymerize and form Teflon,” Giebink explained.


We’ve been interacting with a number of companies that are looking for improved antireflection coatings for plastic, and some of the applications have been surprising,” he said. “They range from eliminating glare from the plastic domes that protect security cameras to eliminating stray reflections inside virtual/augmented -reality headsets.”


Metallic Wood

Researchers at the School of Engineering and Applied Science, the University of Illinois at Urbana–Champaign, and the University of Cambridge have built a sheet of nickel with nanoscale pores that make it as strong as titanium, but four to five times lighter. The empty space of the pores, and the self-assembly process in which they’re made, make the porous metal akin to a natural material, such as wood. And just as the porosity of wood grain serves the biological function of transporting energy, the empty space in the researchers’ “metallic wood” could be infused with other materials. Infusing the scaffolding with anode and cathode materials would enable this metallic wood to serve double duty: a plane wing or prosthetic leg that’s also a battery. The study was led by James Pikul, assistant professor in the Department of Mechanical Engineering and Applied Mechanics at Penn Engineering.

Metallic wood foil on a plastic backing

The reason we call it metallic wood is not just its density, which is about that of wood, but its cellular nature,” Pikul says. “Cellular materials are porous; if you look at wood grain, that’s what you’re seeing—parts that are thick and dense and made to hold the structure, and parts that are porous and made to support biological functions, like transport to and from cells.

The study has been published in Nature Scientific Reports,


Artificial Skin Opens SuperHuman Perception

A new type of sensor could lead to artificial skin that someday helps burn victimsfeel’ and safeguards the rest of us, University of Connecticut (UConn)  researchers suggest in a paper in Advanced Materials.

Our skin’s ability to perceive pressure, heat, cold, and vibration is a critical safety function that most people take for granted. But burn victims, those with prosthetic limbs, and others who have lost skin sensitivity for one reason or another, can’t take it for granted, and often injure themselves unintentionally. Chemists Islam Mosa from UConn, and James Rusling from UConn and UConn Health, along with University of Toronto engineer Abdelsalam Ahmed, wanted to create a sensor that can mimic the sensing properties of skin. Such a sensor would need to be able to detect pressure, temperature, and vibration. But perhaps it could do other things too, the researchers thought.

It would be very cool if it had abilities human skin does not; for example, the ability to detect magnetic fields, sound waves, and abnormal behaviors,” said Mosa.

Mosa and his colleagues created such a sensor with a silicone tube wrapped in a copper wire and filled with a special fluid made of tiny particles of iron oxide just one billionth of a meter long, called nanoparticles. The nanoparticles rub around the inside of the silicone tube and create an electric current. The copper wire surrounding the silicone tube picks up the current as a signal. When this tube is bumped by something experiencing pressure, the nanoparticles move and the electric signal changes. Sound waves also create waves in the nanoparticle fluid, and the electric signal changes in a different way than when the tube is bumped.

The researchers found that magnetic fields alter the signal too, in a way distinct from pressure or sound waves. Even a person moving around while carrying the sensor changes the electrical current, and the team found they could distinguish between the electrical signals caused by walking, running, jumping, and swimming.

Metal skin might sound like a superhero power, but this skin wouldn’t make the wearer Colossus from the X-men. Rather, Mosa and his colleagues hope it could help burn victimsfeelagain, and perhaps act as an early warning for workers exposed to dangerously high magnetic fields. Because the rubber exterior is completely sealed and waterproof, it could also serve as a wearable monitor to alert parents if their child fell into deep water in a pool, for example.


How To Make Fuel From Tree Waste

Might tree roots, twigs and branches one day be used to power cars? That’s what a Swedish researcher is hoping after developing a pulp byproduct that – on a modest scale – does just that.

Chemical engineering scientist Christian Hulteberg, from Lund University, has used the black liquor residue from pulp and paper manufacturing to create a polymer called lignin.

After purification and filtration, that is then turned into a gasoline mixture.


We’re actually using the stuff of the wood that they don’t use when they make paper and pulp… It adds value to low-value components of the tree,” he told Reuters.

In environmental terms, he says that gives it an advantage over other biofuels such as ethanol. “A lot of the controversy with ethanol production has been the use of feedstock that you can actually eat,” he said.


Atom-Thin Processor

An international team of researchers has reported a breakthrough in fabricating atom-thin processors — a discovery that could have far-reaching impacts on nanoscale chip production and in labs across the globe where scientists are exploring 2D materials for ever-smaller and –faster semiconductors.

The team, headed by New York University Tandon School of Engineering Professor of Chemical and Biomolecular Engineering Elisa Riedo, outlined the research results in the latest issue of Nature Electronics.They demonstrate that lithography using a probe heated above 100 degrees Celsius outperformed standard methods for fabricating metal electrodes on 2D semiconductors such as molybdenum disulfide (MoS₂). Such transitional metals are among the materials that scientists believe may supplant silicon for atomically small chips.

The team’s new fabrication method — called thermal scanning probe lithography (t-SPL) — offers a number of advantages over today’s electron beam lithography (EBL). First, thermal lithography significantly improves the quality of the 2D transistors, offsetting the Schottky barrier, which hampers the flow of electrons at the intersection of metal and the 2D substrate. Also, unlike EBL, the thermal lithography allows chip designers to easily image the 2D semiconductor and then pattern the electrodes where desired. Also, t-SPL fabrication systems promise significant initial savings as well as operational costs: They dramatically reduce power consumption by operating in ambient conditions, eliminating the need to produce high-energy electrons and to generate an ultra-high vacuum. Finally, this thermal fabrication method can be easily scaled up for industrial production by using parallel thermal probes.


Lead-Free Perovskites Boost Generation Of Electric Current

Lead-based perovskites are quite promising in applications of large-scale photovoltaic technology. However, toxicity is one of the crucial issues in these materials.

In the search for Lead-free perovskite, UNIST scientists have taken a major step forward toward a new generation of solar cells. They have developed new perovskite material that works as a charge regenerator with dye‐sensitized solar cells and have higher efficiency and stability.

Scientists used the vacancy‐ordered double perovskite (Cs2SnI6). They primarily examined the charge transfer mechanism of Cs2SnI6 with the aim of clarifying the function of its surface state.

For this reason, a 3‐electrode system was produced to observe charge exchange through the surface state of Cs2SnI6.  “Due to a high volume of electrical charges in organic dyes that show high connectivity with the surface state of Cs2SnI6, more electric current was generated,” said Byung-Man Kim from the Department of Chemistry at UNIST. “Consequently, Cs2SnI6 shows efficient charge transfer with a thermodynamically favorable charge acceptor level, achieving a 79% enhancement in the photocurrent density compared with that of a conventional liquid electrolyte.”


Nanoparticle Targets Tumor-infiltrating Immune Cells, Flips Switch Telling Them To Fight

Immunotherapy’s promise in the fight against cancer drew international attention after two scientists won a Nobel Prize this year for unleashing the ability of the immune system to eliminate tumor cells.

But their approach, which keeps cancer cells from shutting off the immune system’s powerful T-cells before they can fight tumors, is just one way to use the body’s natural defenses against deadly disease. A team of Vanderbilt University bioengineers today announced a major breakthrough in another: penetrating tumor-infiltrating immune cells and flipping on a switch that tells them to start fighting. The team designed a nanoscale particle to do that and found early success using it on human melanoma tissue.

Tumors are pretty conniving and have evolved many ways to evade detection from our immune system,” said John T. Wilson, assistant professor of chemical and biomolecular engineering and biomedical engineering. “Our goal is to rearm the immune system with the tools it needs to destroy cancer cells. “Checkpoint blockade has been a major breakthrough, but despite the huge impact it continues to have, we also know that there are a lot of patients who don’t respond to these therapies. We’ve developed a nanoparticle to find tumors and deliver a specific type of molecule that’s produced naturally by our bodies to fight off cancer.

That molecule is called cGAMP, and it’s the primary way to switch on what’s known as the stimulator of interferon genes (STING) pathway: a natural mechanism the body uses to mount an immune response that can fight viruses or bacteria or clear out malignant cells. Wilson said his team’s nanoparticle delivers cGAMP in a way that jump-starts the immune response inside the tumor, resulting in the generation of T-cells that can destroy the tumor from the inside and also improve responses to checkpoint blockade.

While the Vanderbilt team’s research focused on melanoma, their work also indicates that this could impact treatment of many cancers, Wilson said, including breast, kidney, head and neck, neuroblastoma, colorectal and lung cancer.

The findings are reported in the journal Nature Nanotechnology.