Category Archives: Uncategorized

Better Treat Salmonella Than Face Cancer

An interdisciplinary team of three Virginia Tech faculty members affiliated with the Macromolecules Innovation Institute has created a drug delivery system that could radically expand cancer treatment options. The conventional cancer treatment method of injecting nanoparticle drugs into the bloodstream results in low efficacy. Due to the complexities of the human body, very few of those nanoparticles actually reach the cancer site, and once there, there’s limited delivery across the cancer tissue.

The new system created at Virginia Tech is known as Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS). Researchers have developed a process to chemically attach nanoparticles of anti-cancer drugs onto attenuated bacteria cells, which they have shown to be more effective than the passive delivery of injections at reaching cancer sites.

NanoBEADS has produced results in both in vitro (in tumor spheroids) and in vivo (in living mice) models showing up to 100-fold improvements in the distribution and retention of nanoparticles in cancerous tissues.This is a product of Bahareh Behkam, associate professor of mechanical engineering. Collaborators on this interdisciplinary team are Rick Davis, professor of chemical engineering, and Coy Allen, assistant professor of biomedical sciences and pathobiology in the Virginia-Maryland College of Veterinary Medicine.

You can make the most amazing drugs, but if you cannot deliver it where it needs to go, it cannot be very effective,” Behkam said. “By improving the delivery, you can enhance efficacy.

Humans have noticed, even as far back as Ancient Egypt, that cancer went into remission if the patient also contracted an infection like salmonella. Neither are ideal, but humans can treat salmonella infections more effectively than cancer.

In modern times, Allen said the idea of treating cancer with infections traces back to the late 1800s and has evolved into immunotherapy, in which doctors try to activate the immune system to attack cancerous cells. Of course, salmonella is harmful to humans, but a weakened version could in theory provide the benefits of immunotherapy without the harmful effects of salmonella infection. The concept is similar to humans receiving a weakened flu virus in a vaccine to build immunity.

The work, which combines expertise in mechanical engineering, biomedical engineering, chemical engineering, and veterinary medicine, was recently detailed in Advanced Science.

Source: https://vtnews.vt.edu/

The more words the children had heard by age 3, the better they did on tests of cognitive development

Talking is important for building your baby’s brain. In the first 3 years of life, your baby’s brain triples in size. It also becomes much more complex—and this doesn’t just happen without outside help.  The brain develops as your baby interacts with the world—seeing what will happen if the baby fusses, giggles, blows bubbles, snuggles up to mom, dad, or grandparents, says “mama” or “dada”—or throws  the cereal on the floor.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Many of your baby’s most important experiments are about communicating with parents and other caregivers. Research has shown that lots of talking with children in the first 3 years of life builds the brain architecture that will be needed later to support reading and thinking skills.Some families are talkative.  The parents, grandparents, and other caregivers talk with babies a lot, even before the baby can understand or answer—imitating facial expressions and sounds, giving a “play-by-play” when changing a diaper, telling stories, asking the baby questions, singing, talking about pictures in books, and telling the baby how wonderful the he or she is. Other families don’t talk much with their babies. The parents may not understand how important it is to talk with very young children, or they may not have grown up with that experience, or they may have other things on their minds.  Imagine—research has shown that children from talkative families may have heard 30 million more words directed to them by age 3 than children from less-talkative families!  And the same research study showed that the more words the children had heard by age 3, the better they did on tests of cognitive development.Those same children from talkative families also did better on reading readiness tests in the third grade.  Why?  One reason may be that their brains got more stimulation during that important period of brain growth. Learning to read greatly depends on having and hearing a big vocabulary; lots of talking by parents and other adults, especially when combined with reading, is wonderful for building vocabulary. Of course, it’s not only your baby’s brain that we care about!  Lots of talk from loving adults also builds healthy relationships and social skills.  It’s the relationship that matters—your baby can’t learn language, or much else, from a television set.  You are your baby’s first and best teacher in matters of building trust, dealing with emotional and physical needs, and interacting with others in positive ways. All of these skills will be important for your child’s later success in school and beyond.That’s why many organizations serving young families have come together to bring this message to our community: talk with your baby, a lot, during the brain’s most formative first three years, and set your child on a path to lifelong learning

Source: https://talkwithyourbaby.org/

Short Patients Are More Likely To Die In Intensive Care

If you end up in the intensive care unit (ICU) of a hospital or clinic there’s a number of things that can affect your eventual outcome. How healthy you are, your age, and the conditions that you’re suffering from are all obvious factors, but a new study suggests that your height might actually play a role in whether you’re able to pull through or not.

New research published in Intensive Care Medicine suggests that taller patients tend to survive at a higher rate than shorter individuals. The study reaches a rather bold conclusion in that short stature may actually be a risk factor if you end up in the ICU.

The cohort study looked at over 400,000 cases from the UK in total, with 233,308 men and 184,070 women who passed through a hospital intensive care unit. After accounting for anything that could skew the data one way or another, the team crunched the numbers and discovered that shorter people die more often in the ICU by a significant margin.

Hospital mortality decreased with increasing height; predicted mortality decreased from 24.1 to 17.1% for women and from 29.2 to 21.0% for men across the range of heights,” the study explains. Those are stunning numbers, but why would height affect health outcomes in such a drastic way?

We can’t say for sure why this is happening,” Dr. Hannah Wunsh, co-author of the study, said in a statement. “It’s speculative that all the things we do to people might in some way be harmful to patients who are smaller.”

Source: https://bgr.com/2018/

Perovskite Solar Panels Go To The Market

Across the globe, a clutch of companies from Oxford, England to Redwood City, Calif. are working to commercialize a new solar technology that could further boost the adoption of renewable energy generation. Earlier this year, Oxford PV, a startup working in tandem with Oxford Universityreceived $3 million from the U.K. government to develop the technology, which uses a new kind of material to make solar cells. Two days ago, in the U.S., a company called Swift Solar raised $7 million to bring the same technology to marketaccording to a filing with the Securities and Exchange Commission.

Called a perovskite cell, the new photovoltaic tech uses hybrid organic-inorganic lead or tin halide-based material as the light-harvesting active layer. It’s the first new technology to come along in years to offer the promise of better efficiency in the conversion of light to electric power at a lower cost than existing technologies.

Perovskite has let us truly rethink what we can do with the silicon-based solar panels we see on roofs today,” said Sam Stranks, the lead scientific advisor and one of the co-founders of Swift Solar, in a Ted Talk. “Another aspect that really excites me: how cheaply these can be made. These thin crystalline films are made by mixing two inexpensive readily abundant salts to make an ink that can be deposited in many different ways… This means that perovskite solar panels could cost less than half of their silicon counterparts.”

First incorporated into solar cells by Japanese researchers in 2009, the perovskite solar cells suffered from low efficiencies and lacked stability to be broadly used in manufacturing. But over the past nine years researchers have steadily improved both the stability of the compounds used and the efficiency that these solar cells generate.

Oxford PV, in the U.K., is now working on developing solar cells that could achieve conversion efficiencies of 37 percentmuch higher than existing polycrystalline photovoltaic or thin-film solar cells.

New chemistries for solar cell manufacturing have been touted in the past, but cost has been an obstacle to commercial rollout, given how cheaply solar panels became thanks in part to a massive push from the Chinese government to increase manufacturing capacity.

Source: https://techcrunch.com/

Using Graphene, Munitions Go Further, Much Faster

Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.

This discovery coincides with the one of the Army‘s modernization priorities: Long Range Precision Fires. This research could lead to enhanced energetic performance of metal powders as propellant/explosive ingredients in Army’s munitions.

Lauded as a miracle material, graphene is considered the strongest and lightest material in the world. It’s also the most conductive and transparent, and expensive to produce. Its applications are many, extending to electronics by enabling touchscreen laptops, for example, with light-emitting diode, or LCD, or in organic light-emitting diode, or OLED displays and medicine like DNA sequencing. By oxidizing graphite is cheaper to produce en masse. The result: graphene oxide (GO).

Scanning electron micrograph shows the Al/GO composite.

Although GO is a popular two-dimensional material that has attracted intense interest across numerous disciplines and materials applications, this discovery exploits GO as an effective light-weight additive for practical energetic applications using micron-size aluminum powders (µAl), i.e., aluminum particles one millionth of a meter in diameter.

The research team published their findings in the October edition of ACS Nano with collaboration from the RDECOM Research Laboratory, the Army’s corporate research laboratory (ARL), Stanford University, University of Southern California, Massachusetts Institute of Technology and Argonne National Laboratory.

Source: https://www.arl.army.mil/

CRISPR + Chemotherapy Attack Efficiently Lung Cancer

The CRISPR-Cas9 gene editing system may be able to restore the effectiveness of first-line chemotherapies used to treat lung cancer by deleting or “knocking out” a gene in cancer tumors that helps the tumors develop resistance to the drugs. That was the conclusion of a new study that has been published in the journal Molecular Therapy Oncolytics by scientists from The Gene Editing Institute of the Helen F. Graham Cancer Center & Research Institute at Christiana Care Health System.

The study reports that in both tissue culture and in a mouse, tumor growth stopped and there was a dramatic decrease in the volume of existing tumors when chemotherapy was combined with CRIPSP-Cas9, which was used to disable a tumor gene known as NRF2. Previous studies have shown that the NRF2 gene controls cell functions in lung cancer tumors that helps them thwart the effect of chemotherapies that might otherwise reduce or eliminate them entirely.

Our goal is to see if CRISPR can be used with chemotherapy to provide a safe, affordable way to give patients who are not responding to treatment at least a fighting chance against this very challenging cancer,” said Eric Kmiec, Ph.D., the principal author of the study and the director of the Gene Editing Institute. “We believe that finding ways to use CRISPR to improve existing treatments will lead to some of the first benefits for patients while we tackle the vital ethical issues around the use of CRISPR for edits that can be passed on through DNA. This is an exciting step in the journey of exploring the health benefits of gene editing.”

The study was led by Pawel Bialk, research scientist at the Gene Editing Institute, the nation’s only CRISPR-focused research initiative situated in a community health care system.

Lung cancer is the leading cause of cancer death in the United States. Dr. Kmiec said there are chemotherapies that have helped patients achieve remission or at least live longer and enjoy a better quality of life by significantly slowing the progress of the disease. But he said some patients with non-small-cell lung cancer, the most common form of lung cancer, are resistant to chemotherapy agents used to treat the disease or develop resistance after being exposed to the drugs.

Source: https://www.sciencedirect.com/

Plastic Waste Desintegrates Into Nanoparticles

There is a considerable risk that plastic waste in the environment releases nano-sized particles known as nanoplastics, according to a new study from Lund University in Sweden. The researchers studied what happened when takeaway coffee cup lids, for example, were subjected to mechanical breakdown, in an effort to mimic the degradation that happens to plastic in the ocean.The majority of all marine debris is plastic. Calculations have shown that ten per cent of all plastic produced globally ends up in the sea. This plastic waste is subjected to both chemical and mechanical degradation. The sun’s UV rays contribute to the degradation, as do waves, which cause plastic waste to grind against stones on the water’s edge, against the sea floor or against other debris.

Is there a risk that this plastic waste disintegrates to the extent that nanoplastics are released? The research community is divided on whether the degradation process stops at slightly larger plastic fragmentsmicroplastics – or actually continues and creates even smaller particles. The researchers behind the study have now investigated this issue by subjecting plastic material to mechanical degradation under experimental conditions.

We have been able to show that the mechanical effect on the plastic causes the disintegration of plastic down to nano-sized plastic fragments,” says Tommy Cedervall, chemistry researcher at Lund University.

The emphasis of a number of other recent studies from the research community has been on microplastics and their increased distribution among organisms. There are now intense attempts to also identify nanoplastics in the environment. Last year, in an earlier study from Lund University, researchers showed that nano-sized plastic particles can enter the brains of fish and that this causes brain damage which probably disturbs fish behaviour.

It’s important to begin mapping what happens to disintegrated plastic in nature, concludes Tommy Cedervall.

Source: https://www.lunduniversity.lu.se/

Megalibrary To Boost Discovery of New Materials

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material for a given application—catalysts, light-harvesting structures, biodiagnostic labels, pharmaceuticals and electronic devices—is traditionally a slow and daunting task. The options are nearly infinite, particularly at the nanoscale (a nanometer is one-billionth of a meter) where material propertiesoptical, structural, electrical, mechanical and chemical—can significantly change, even at a fixed composition.

A new study published this week in the Proceedings of the National Academy of Sciences (PNAS) supports the efficacy of a potentially revolutionary new tool developed at Northwestern University to rapidly test millions (even billions) of nanoparticles to determine the best for a specific use.

Laser-induced heating of nanoparticles on micropillars for carbon nanotube growth

When utilizing traditional methods to identify new materials, we have barely scratched the surface of what is possible,” said Northwestern’s Chad A. Mirkin, the study’s corresponding author and a world leader in nanotechnology research and its applications. “This research provides proof-of-concept—that this powerful approach to discovery science works.”

The novel tool utilizes a combinatorial library, or megalibrary, of nanoparticles in a very controlled way. (A combinatorial library is a collection of systematically varied structures encoded at specific sites on a surface). The libraries are created using Mirkin’s Polymer Pen Lithography (PPL) technique, which relies on arrays (sets of data elements) with hundreds of thousands of pyramidal tips to deposit individual polymerdots” of various sizes and composition, each loaded with different metal salts of interest, onto a surface. Once heated, these dots are reduced to metal atoms forming a single nanoparticle at fixed composition and size.

By going small, we create two advantages in high throughput materials discovery,” said Mirkin, the executive director of Northwestern’s International Institute for Nanotechnology (IIN). “First, we can pack millions of features into square-centimeter areas, creating a path for making the largest and most complex libraries, to date. Second, by working at the sub-100 nanometer-length scale, size can become a library parameter, and much of the action, for example, in the field of catalysis, is on this length scale.”

Source: https://news.northwestern.edu/

 

Jell-O To Make Powerful New Hydrogen Fuel Catalyst

A cheap and effective new catalyst developed by researchers at the University of California, Berkeley, can generate hydrogen fuel from water just as efficiently as platinum, currently the best — but also most expensivewater-splitting catalyst out there.

The catalyst, which is composed of nanometer-thin sheets of metal carbide, is manufactured using a self-assembly process that relies on a surprising ingredient: gelatin, the material that gives Jell-O its jiggle.

Two-dimensional metal carbides spark a reaction that splits water into oxygen and valuable hydrogen gas. Berkeley researchers have discovered an easy new recipe for cooking up these nanometer-thin sheets that is nearly as simple as making Jell-O from a box

Platinum is expensive, so it would be desirable to find other alternative materials to replace it,” said senior author Liwei Lin, professor of mechanical engineering at UC Berkeley. “We are actually using something similar to the Jell-O that you can eat as the foundation, and mixing it with some of the abundant earth elements to create an inexpensive new material for important catalytic reactions.

The work appears in the print edition of the journal Advanced Materials.

Source: https://news.berkeley.edu/

, , , , , , , , ,

How To Shrink Objects To The Nanoscale

MIT researchers have invented a way to fabricate nanoscale 3-D objects of nearly any shape. They can also pattern the objects with a variety of useful materials, including metals, quantum dots, and DNA.

MIT engineers have devised a way to create 3-D nanoscale objects by patterning a larger structure with a laser and then shrinking it. This image shows a complex structure prior to shrinking.

It’s a way of putting nearly any kind of material into a 3-D pattern with nanoscale precision,” says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology and an associate professor of biological engineering and of brain and cognitive sciences at MIT. Using the new technique, the researchers can create any shape and structure they want by patterning a polymer scaffold with a laser. After attaching other useful materials to the scaffold, they shrink it, generating structures one thousandth the volume of the original.

These tiny structures could have applications in many fields, from optics to medicine to robotics, the researchers say. The technique uses equipment that many biology and materials science labs already have, making it widely accessible for researchers who want to try it. Boyden, who is also a member of MIT’s Media Lab, McGovern Institute for Brain Research, and Koch Institute for Integrative Cancer Research, is one of the senior authors of the paper, which appears in the Dec. 13 issue of Science. The other senior author is Adam Marblestone, a Media Lab research affiliate, and the paper’s lead authors are graduate students Daniel Oran and Samuel Rodriques.

As they did for expansion microscopy, the researchers used a very absorbent material made of polyacrylate, commonly found in diapers, as the scaffold for their nanofabrication process. The scaffold is bathed in a solution that contains molecules of fluorescein, which attach to the scaffold when they are activated by laser light.

Using two-photon microscopy, which allows for precise targeting of points deep within a structure, the researchers attach fluorescein molecules to specific locations within the gel. The fluorescein molecules act as anchors that can bind to other types of molecules that the researchers add.

You attach the anchors where you want with light, and later you can attach whatever you want to the anchors,” Boyden says. “It could be a quantum dot, it could be a piece of DNA, it could be a gold nanoparticle.” “It’s a bit like film photography — a latent image is formed by exposing a sensitive material in a gel to light. Then, you can develop that latent image into a real image by attaching another material, silver, afterwards. In this way implosion fabrication can create all sorts of structures, including gradients, unconnected structures, and multimaterial patterns,” Oran explains.

Source: http://news.mit.edu/