Category Archives: Uncategorized

This Person Does Not exist

With the help of artificial intelligence, you can manipulate video of public figures to say whatever you like — or now, create images of people’s faces that don’t even exist. You can see this in action on a website called thispersondoesnotexist.com. It uses an algorithm to spit out a single image of a person’s face, and for the most part, they look frighteningly realHit refresh in your browser, and the algorithm will generate a new face. Again, these people do not exist.

The website is the creation of software engineer Phillip Wang, and uses a new AI algorithm called StyleGAN, which was developed by researchers at NvidiaGAN, or Generative Adversarial Networks, is a concept within machine learning which aims to generate images that are indistinguishable from real ones. You can train GANs to remember human faces, as well bedrooms, cars, and cats, and of course, generate images of them.

Wang explained that he created the site to create awareness for the algorithm, and chose facesbecause our brains are sensitive to that kind of image.”  He added that it costs $150 a month to hire out the server, as he needs a good amount of graphical power to run the website.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

It also started off as a personal agenda mainly because none of my friends seem to believe this AI phenomenon, and I wanted to convince them,” Wang said. “This was the most shocking presentation I could send them. I then posted it on Facebook and it went viral from there.

I think eventually, given enough data, a big enough neural [network] can be teased into dreaming up many different kinds of scenarios,” Wang added.

Source: https://thispersondoesnotexist.com/
AND
https://mashable.com/

3D-Printed On-Demand Drugs

A pharmaceutical scientist at the University of Sussex has published a guide to 3D and 4D printing technology in the biomedical and pharmaceutical arenas. Dr Mohammed Maniruzzaman, a lecturer in Pharmaceutics and Drug Delivery, edited 3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing’. He also authored sections of the book, alongside an international panel of academic scholars and industry experts. The book, written for pharmaceutical chemists, medicinal chemists, biotechnologists and pharma engineers, covers the key aspects of the printing of medical and pharmaceutical products and the challenges and advances associated with their development. It explores the process optimization, innovation process, engineering and technology behind printed medicine and provides information on biomedical developments such as shape memory polymers, 4D bio-fabrications and bone printing.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

There are numerous potential applications of this emerging technology. In the future we predict doctors would be able to send a 3D prescription to a Pharmacy, via e-mail or a shared server, and the Pharmacists would then be able to print the required dosage via a 3D printer placed right at the dispensing counter- at the point of need, eliminating the need for paper-based prescriptions. Similarly, we are not far off from when patients would be able to print their own medication on demand by using their small printing unit right at the kitchen or bedside”, explains Dr Maniruzzaman.

Another example can be that a 3D printer or bio-printer placed right by the operation bed in the operation theatre can print the medical implants required for that patient lying on the bed just right at the point of care. The dimensions and geometry of the implants can be tailored specifically for that patient saving both time and cost for manufacturing. Above all, this would enhance the patient compliance significantly,” he adds.

3D printing has appeared as one of the most promising additive manufacturing techniques across many industries, now including the medical and pharmaceutical arenas. 4D printing is an emerging technology that, simply put, refers to a printed object that transforms over time. It is envisaged this technology will revolutionize biomedical developments.

Source: http://www.sussex.ac.uk/

Ai-Da The Artist Robot

A British arts engineering company says it has created the world’s first AI robot capable of drawing people who pose for it. The humanoid called Ai-Da can sketch subjects using a microchip in her eye and a pencil in her robotic hand – coordinated by AI processes and algorithmsAi-Da‘s ability as a life-like robot to draw and paint ultra-realistic portraits from sight has never been achieved before, according to the designers in Cornwall. It is the brainchild of art impresario and galleries Aidan Meller.

Named after Ada Lovelace , the first female computer programmer in the world, Ai-Da the robot has been designed and built by Cornish robotics company Engineered Arts who make robots for communication and entertainment.

In April 2018, Engineered Arts created an ultra-realistic robot to promote the Westworld TV show.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Pioneering a new AI art movement, we are excited to present Ai-Da, the first professional humanoid artist, who creates her own art, as well as being a performance artist. “As an AI robot, her artwork uses AI processes and algorithms. “The work engages us to think about AI and technological uses and abuses in the world today.” explains Aidan Meller.

Professors and post-Phd students at Oxford University and Goldsmiths are providing Ai-Da with the programming and creative design for her art work. While students at Leeds University are custom designing and programming a bionic arm to create her art work.

Ai-Da has a “RoboThespian” body , featuring an expressive range of movements and she has the ability to talk and respond to questions. The robot also has a “Mesmer” head, featuring realistic silicone skin, 3D printed teeth and gums, integrated eye cameras, as well as hair.

Source: http://fortune.com/
AND
https://www.mirror.co.uk/

New Revolutionary All-Electric Pickup Truck Accelerates As A Lamborghini

Following the unveiling of the Rivian R1T all-electric pickup truck, we took a closer look at what is becoming one of the most anticipated EVs scheduled to come out in the next two years.As we already reported, the R1T’s specs are unbelievable.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

It’s equipped with 4 electric motors, each a 147 kW power capacity at the wheel, while the total power output can be configured to different levels from 300 kW to 562 kW (input to gearbox). The acceleration from 0 t0 60 MpH takes 3 seconds!

The different power levels match different choices of battery packs, which are another impressive feature since they have the highest capacity of any other passenger electric vehicle out there: 105 kWh, 135 kWh, and 180 kWhRivian says that it will translate to “230+ miles, 300+ miles, and 400+ miles” of range on a full charge. They’re talking about a charge rate of up to 160 kW at fast-charging stations and an 11-kW onboard charger for level 2 charging.

The entire powertrain is fitted on a slick modular skateboard platform for the different battery capacity: If this thing can really deliver the specs that Rivian is promising, the vehicle is likely to be a success, but the powertrain is only one part of it. The Rivian R1T is a utility vehicle and it has some great utility features – most of them unique in an electric vehicle. First of all, the truck is a 5-seater and it has a ton of enclosed storage space. The frunk is absolutely huge and Rivian also designed another storage space behind the back seat called a “gear tunnel”:

You can actually sit or stand on the door of the gear tunnel when it’s open and it gives you great access to the roof, which can be fitted with different roof racks. It still leaves plenty of room for the cabin and it doesn’t seem to affect the bed too much — though the size of the bed appears to be the most criticized feature so far.

Amazon and GM are in talks to invest massively in Rivian.

Source: https://products.rivian.com
AND
https://electrek.co/

The Ionocraft, Insect-sized Drone That Flies Without Any Moving Parts

Developed by researchers from the University of California, Berkeley, it’s not only described as the smallest flying robot ever made, but one which flies with zero moving parts: meaning no rotors, wings, or similar appendages. Instead, the insect-scale robot relies on atmospheric ion thrusters which allow it to move completely silently.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

To understand how it works, imagine two asymmetric — [such as] a wire and a plate — electrodes,” said Daniel Drew, currently a Postdoctoral Fellow in the Mechanical Engineering department at Stanford University. “When a voltage is applied between the two, the electric field will be stronger in the vicinity of the wire as a function of its geometry. If this field is strong enough, an ambient electron can be pulled in with enough kinetic energy to initiate avalanche breakdown through impact ionization. There’s now a stable plasma, glowing purple in the dark, around the top wire. Generated ions will be ejected from this plasma, drifting in the electric field towards the bottom electrode. Along the way, they collide with neutral air molecules and impart momentum, producing a net thrust.”

Source: https://people.eecs.berkeley.edu/
A
ND
https://www.digitaltrends.com/

Optical Circuits Up To 100 Times Faster Than Electronic Circuits

Optical circuits are set to revolutionize the performance of many devices. Not only are they 10 to 100 times faster than electronic circuits, but they also consume a lot less power. Within these circuits, light waves are controlled by extremely thin surfaces called metasurfaces that concentrate the waves and guide them as needed. The metasurfaces contain regularly spaced nanoparticles that can modulate electromagnetic waves over sub-micrometer wavelength scales.

Metasurfaces could enable engineers to make flexible and ultra-thin optics for a host of applications, ranging from flexible tablet computers to solar panels with enhanced light-absorption characteristics. They could also be used to create flexible sensors for direct placement on a patient’s skin, for example, in order to measure things like pulse and blood pressure or to detect specific chemical compounds.

The catch is that creating metasurfaces using the conventional method, lithography, is a fastidious process that takes several hours and must be done in a cleanroom. But EPFL engineers from the Laboratory of Photonic Materials and Fiber Devices (FIMAP) in Switzerland have now developed a simple method for making them in just a few minutes at low temperatures—or sometimes even at room temperature—with no need for a cleanroom. The EPFL‘s School of Engineering method produces dielectric glass metasurfaces that can be either rigid or flexible. The results of their research appear in Nature Nanotechnology.

The new method employs a natural process already used in : dewetting. This occurs when a thin film of material is deposited on a substrate and then heated. The heat causes the film to retract and break apart into tiny nanoparticles.

Dewetting is seen as a problem in manufacturing—but we decided to use it to our advantage,” says Fabien Sorin, the study’s lead author and the head of FIMAP.

With their method, the engineers were able to create dielectric glass metasurfaces, rather than metallic metasurfaces, for the first time. The advantage of dielectric metasurfaces is that they absorb very little light and have a high refractive index, making it possible to modulate the light that propagates through them.

Source: https://phys.org/

Micromotors Deliver Oral Vaccines

Researchers are working on new generations of oral vaccines for infectious diseases. But to be effective, oral vaccines must survive digestion and reach immune cells within the intestinal wall. As a step in this direction, UC San Diego nanoengineering researchers have developed oral vaccines powered by micromotors that target the mucus layer of the intestine.

The work appears in the ACS journal Nano Letters. It’s a collaboration between the labs of nanoengineering professors Joseph Wang and Liangfang Zhang at the UC San Diego Jacobs School of Engineering.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The lack of needles is one reason oral vaccines are attractive. Another reason: oral vaccines can generate a broad immune response by stimulating immune cells within the mucus layer of the intestine to produce a special class of antibody called immunoglobulin A (IgA). The NanoLetters paper documents the team’s efforts to use magnesium particles as tiny motors to deliver an oral vaccine against the bacterial pathogen Staphylococcus aureus. When coated over most of their surfaces with titanium dioxide, magnesium microparticles use water as fuel to generate hydrogen bubbles that power their propulsion.

To develop the oral vaccine, the researchers coated magnesium micromotors with red blood cell membranes that displayed the Staphylococcal α-toxin, along with a layer of chitosan to help them stick to the intestinal mucus. Then, they added an enteric coating that protects drugs from the acidic conditions of the stomach.

The micromotors safely passed through the stomach to the intestine, at which point the enteric coating dissolved, activating the motors. Imaging of mice that had been given the vaccine showed that the micromotors accumulated in the intestinal wall much better than non-motorized particles. The micromotors also stimulated the production of about ten times more IgA antibodies against the Staphylococcal α-toxin than the static particles.

Source: http://jacobsschool.ucsd.edu/

Ruthenium-based Catalyst Outperforms Platinum To Produce Hydrogen

A novel ruthenium-based catalyst developed at UC Santa Cruz has shown markedly better performance than commercial platinum catalysts in alkaline water electrolysis for hydrogen production. The catalyst is a nanostructured composite material composed of carbon nanowires with ruthenium atoms bonded to nitrogen and carbon to form active sites within the carbon matrix.

The electrochemical splitting of water to produce hydrogen is a crucial step in the development of hydrogen as a clean, environmentally friendly fuel (for car or heating system). Much of the effort to reduce the cost and increase the efficiency of this process has focused on finding alternatives to expensive platinum-based catalysts. At UC Santa Cruz, researchers led by Shaowei Chen, professor of chemistry and biochemistry, have been investigating catalysts made by incorporating ruthenium and nitrogen into carbon-based nanocomposite materials. Their new findings, published February 7 in Nature Communications, not only demonstrate the impressive performance of their ruthenium-based catalyst but also provide insights into the mechanisms involved, which may lead to further improvements.

Electron microscopy of carbon nanowires co-doped with ruthenium and nitrogen shows ruthenium nanoparticles decorating the surface of the nanowires. Elemental mapping analysis shows individual ruthenium atoms within the carbon matrix (red arrows, below).

 

 

 

 

 

 

 

 

This is a clear demonstration that ruthenium can have remarkable activity in catalyzing the production of hydrogen from water,” Chen said. “We also characterized the material on the atomic scale, which helped us understand the mechanisms, and we can use these results for the rational design and engineering of ruthenium-based catalysts.

Electron microscopy and elemental mapping analysis of the material showed ruthenium nanoparticles as well as individual ruthenium atoms within the carbon matrix. Surprisingly, the researchers found that the main sites of catalytic activity were single ruthenium atoms rather than ruthenium nanoparticles.

Source: https://news.ucsc.edu/

Facial Recognition And AI Identify 90% Of Rare Genetic Disorders

A facial recognition scan could become part of a standard medical checkup in the not-too-distant future. Researchers have shown how algorithms can help identify facial characteristics linked to genetic disorders, potentially speeding up clinical diagnoses.

In a study published this month in the journal Nature Medicine, US company FDNA published new tests of their software, DeepGestalt. Just like regular facial recognition software, the company trained their algorithms by analyzing a dataset of faces. FDNA collected more than 17,000 images covering 200 different syndromes using a smartphone app it developed named Face2Gene.

Rare genetic disorders are collectively common, affecting 8 percent of the population

In two first tests, DeepGestalt was used to look for specific disorders: Cornelia de Lange syndrome and Angelman syndrome. Both of these are complex conditions that affect intellectual development and mobility. They also have distinct facial traits, like arched eyebrows that meet in the middle for Cornelia de Lange syndrome, and unusually fair skin and hair for Angelman syndrome.

When tasked with distinguishing between pictures of patients with one syndrome or another, random syndrome, DeepGestalt was more than 90 percent accurate, beating expert clinicians, who were around 70 percent accurate on similar tests. When tested on 502 images showing individuals with 92 different syndromes, DeepGestalt identified the target condition in its guess of 10 possible diagnoses more than 90 percent of the time.

Source: https://www.theverge.com

Self-Healing Coating Protects Metals From Corrosion

It’s hard to believe that a tiny crack could take down a gigantic metal structure. But sometimes bridges collapse, pipelines rupture and fuselages detach from airplanes due to hard-to-detect corrosion in tiny cracks, scratches and dents. A Northwestern University team has developed a new coating strategy for metal that self-heals within seconds when scratched, scraped or cracked. The novel material could prevent these tiny defects from turning into localized corrosion, which can cause major structures to fail.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Localized corrosion is extremely dangerous,” said Jiaxing Huang, who led the research. “It is hard to prevent, hard to predict and hard to detect, but it can lead to catastrophic failure.” Huang is a professor of materials science and engineering in Northwestern’s McCormick School of Engineering.

When damaged by scratches and cracks, Huang’s patent-pending system readily flows and reconnects to rapidly heal right before the eyes. The researchers demonstrated that the material can heal repeatedly — even after scratching the exact same spot nearly 200 times in a row.While a few self-healing coatings already exist, those systems typically work for nanometer- to micron-sized damages. To develop a coating that can heal larger scratches in the millimeter-scale, Huang and his team looked to fluid. “When a boat cuts through water, the water goes right back together,” Huang said. “The ‘cut’ quickly heals because water flows readily. We were inspired to realize that fluids, such as oils, are the ultimate self-healing system.” But common oils flows too readily, Huang noted. So he and his team needed to develop a system with contradicting properties: fluidic enough to flow automatically but not so fluidic that it drips off the metal’s surface.

The team met the challenge by creating a network of lightweight particles — in this case graphene capsules — to thicken the oil. The network fixes the oil coating, keeping it from dripping. But when the network is damaged by a crack or scratch, it releases the oil to flow readily and reconnect. Huang said the material can be made with any hollow, lightweight particlenot just graphene. “The particles essentially immobilize the oil film,” Huang said. “So it stays in place.”

The study was published  in Research, the first Science Partner Journal recently launched by the American Association for the Advancement of Science (AAAS) in collaboration with the China Association for Science and Technology (CAST).

Source: https://news.northwestern.edu/