How To Prevent The Formation Of Alzheimer’s Plaques

People who are affected by Alzheimer’s disease have a specific type of plaque, made of self-assembled molecules called β-amyloid (Aβ) peptides, that build up in the brain over time. This buildup is thought to contribute to loss of neural connectivity and cell death. Researchers are studying ways to prevent the peptides from forming these dangerous plaques in order to halt development of Alzheimer’s disease in the brain.

In a multidisciplinary study, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, along with collaborators from the Korean Institute of Science and Technology (KIST) and the Korea Advanced Institute of Science and Technology (KAIST), have developed an approach to prevent plaque formation by engineering a nano-sized device that captures the dangerous peptides before they can self-assemble.


Transmission Electron Microscopy (TEM) images of Aβ peptide samples in the presence of the Aβ nanodevices (scale bar: 200 nm). The lack of grains in the image indicates the effectiveness of the nanodevice in trapping the peptides

We’ve taken building blocks from nanotechnology and biology to engineer a high-capacity cage’ that traps the peptides and clears them from the brain.” — Elena Rozhkova, scientist, Center for Nanoscale Materials

The β-amyloid peptides arise from the breakdown of an amyloid precursor protein, a normal component of brain cells,” said Rosemarie Wilton, a molecular biologist in Argonne’s Biosciences division.In a healthy brain, these discarded peptides are eliminated.”

In brains prone to the development of Alzheimer’s, however, the brain does not eliminate the peptides, leaving them to conglomerate into the destructive plaques.

The idea is that, eventually, a slurry of our nanodevices could collect the peptides as they fall away from the cells — before they get a chance to aggregate,” added Elena Rozhkova, a scientist at Argonne’s Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility.

Source: https://www.anl.gov/