Gut Microbiome Unlocks The Secrets Of Aging

A new study has shown how the gut microbiota of older mice can promote neural growth in young mice, leading to promising developments in future treatments. The research group, based in Nanyang Technological University (NTU) in Singapore, transferred the gut microbiota of older mice into the gut of younger mice with less developed gut fauna. This resulted in enhanced neurogenesis (neuron growth) in the brain and altered aging, suggesting that the symbiotic relationship between bacteria and their host can have significant benefits for health.

The past 20 years have seen a significant increase in the amount of research into the relationship between the host and the bacteria that live in or on it. The results of these studies have established an important role for this relationship in nutrition, metabolism, and behavior. The medical community hopes that these latest results could lead to the development of food-based treatment to help slow down the aging process.

In this study, the research team attempted to uncover the functional characteristics of the gut microbiota of an aging host. The researchers transplanted gut microbiota from old or young mice into young, germ-free mouse recipients.

Using mice, the team led by Professor Sven Pettersson from the NTU Lee Kong Chian School of Medicine, transplanted gut microbes from old mice (24 months old) into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis.
The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate.
 We’ve found that microbes collected from an old mouse have the capacity to support neural growth in a younger mouse,” said Prof Pettersson. “This is a surprising and very interesting observation, especially since we can mimic the neuro-stimulatory effect by using butyrate alone.”
 “These results will lead us to explore whether butyrate might support repair and rebuilding in situations like stroke, spinal damage and to attenuate accelerated ageing and cognitive decline”.
The study was published in Science Translational Medicine, and was undertaken by researchers from Singapore, UK, and Australia.