Daily Archives: November 5, 2019

Gene Therapy Combats Efficiently Age-related Diseases

As we age, our bodies tend to develop diseases like heart failure, kidney failure, diabetes, and obesity, and the presence of any one disease increases the risk of developing others. In traditional drug development, a drug usually only targets one condition, largely ignoring the interconnectedness of age-related diseases, such as obesity, diabetes, and heart failure, and requiring patients to take multiple drugs, which increases the risk of negative side effects.

A new study from the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School (HMS) reports that a single administration of an adeno-associated virus (AAV)-based gene therapy delivering combinations of three longevity-associated genes to mice dramatically improved or completely reversed multiple age-related diseases, suggesting that a systems-level approach to treating such diseases could improve overall health and lifespan. The research is reported in PNAS.

The AAV-based gene therapy improved the function of the heart and other organs in mice with various age-related diseases, suggesting that such an approach could help maintain health during aging.

The results we saw were stunning, and suggest that holistically addressing aging via gene therapy could be more effective than the piecemeal approach that currently exists,” said first author Noah Davidsohn, Ph.D., a former Research Scientist at the Wyss Institute and HMS who is now the Chief Technology Officer of Rejuvenate Bio. “Everyone wants to stay as healthy as possible for as long as possible, and this study is a first step toward reducing the suffering caused by debilitating diseases.

The study was conducted in the lab of Wyss Core Faculty member George Church, Ph.D. as part of Davidsohn’s postdoctoral research into the genetics of aging. Davidsohn, Church, and their co-authors honed in on three genes that had previously been shown to confer increased health and lifespan benefits when their expression was modified in genetically engineered mice: FGF21, sTGFβR2, and αKlotho. They hypothesized that providing extra copies of those genes to non-engineered mice via gene therapy would similarly combat age-related diseases and confer health benefits.

The team created separate gene therapy constructs for each gene using the AAV8 serotype as a delivery vehicle, and injected them into mouse models of obesity, type II diabetes, heart failure, and renal failure both individually and in combination with the other genes to see if there was a synergistic beneficial effect.

Source; https://wyss.harvard.edu/