This is default featured slide 1 title
This is default featured slide 2 title
This is default featured slide 3 title
This is default featured slide 4 title
This is default featured slide 5 title

How To Reverse Congenital Blindness

Researchers funded by the  American National Eye Institute (NEI) have reversed congenital blindness in mice by changing supportive cells in the retina called Müller glia into rod photoreceptors. The findings advance efforts toward regenerative therapies for blinding diseases such as age-related macular degeneration and retinitis pigmentosa. A report of the findings appears online today in Nature. NEI is part of the National Institutes of Health.

This is the first report of scientists reprogramming Müller glia to become functional in the mammalian ,” said Thomas N. Greenwell, Ph.D., NEI program director for retinal neuroscience. “Rods allow us to see in low light, but they may also help preserve cone photoreceptors, which are important for color vision and high visual acuity. Cones tend to die in later-stage eye diseases. If rods can be regenerated from inside the eye, this might be a strategy for treating diseases of the eye that affect photoreceptors.”

Photoreceptors are light-sensitive cells in the retina in the back of the eye that signal the brain when activated. In mammals, including and humans, photoreceptors fail to regenerate on their own. Like most neurons, once mature they don’t divide.

Scientists have long studied the regenerative potential of Müller glia because in other species, such as zebrafish, they divide in response to injury and can turn into photoreceptors and other retinal neurons. The zebrafish can thus regain vision after severe retinal injury. In the lab, however, scientists can coax mammalian Müller glia to behave more like they do in the fish. But it requires injuring the tissue.

From a practical standpoint, if you’re trying to regenerate the retina to restore a person’s vision, it is counterproductive to injure it first to activate the Müller glia,” said Bo Chen, Ph.D., associate professor of ophthalmology and director of the Ocular Stem Cell Program at the Icahn School of Medicine at Mount Sinai, New York.

We wanted to see if we could program Müller glia to become rod photoreceptors in a living mouse without having to injure its retina,” added Chen, the study’s lead investigator.


Nanospheres Dissolve Clots In A Few Minutes

Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have developed a drug-delivery system that allows rapid response to heart attacks without surgical intervention. In laboratory and animal testing, the system proved to be effective at dissolving clots, limiting long-term scarring to heart tissue and preserving more of the heart’s normal function.

Our approach would allow health-care providers to begin treating heart attacks before a patient reaches a surgical suite, hopefully improving patient outcomes,” says Ashley Brown, corresponding author of a paper on the work and an assistant professor in the Joint Biomedical Engineering Program (BME) at NC State and UNC. “And because we are able to target the blockage, we are able to use powerful drugs that may pose threats to other parts of the body; the targeting reduces the risk of unintended harms.”

Heart attacks, or myocardial infarctions, occur when a thrombus – or clotblocks a blood vessel in the heart. In order to treat heart attacks, doctors often perform surgery to introduce a catheter to the blood vessel, allowing them to physically break up or remove the thrombus. But not all patients have quick access to surgical care. And more damage can occur even after the blockage has been removed. That’s because the return of fresh blood to tissues that had been blocked off can cause damage of its own, called reperfusion injury. Reperfusion injury can cause scarring, stiffening cardiac tissue and limiting the heart’s normal functionality.

To address these problems, researchers have developed a solution that relies on porous nanogel spheres, about 250 nanometers in diameter, which target a thrombus and deliver a cocktail of two drugs: tPA and Y-27632.

In in vitro testing, the researchers found that the targeted tPA/Y-27632 cocktail dissolved clots in a matter of minutes. While this has yet to be tested in trials, it may work more quickly than surgical interventions, which require time to prep the patient and get the catheter in place. In tests using laboratory rats, the researchers also found that their technique limited scarring and preserved heart function after heart attack better than targeted tPA or Y-27632 by themselves – and far better than a control group in which animals received neither drug.

The paper was recently published in the journal ACS Nano. Trials on larger animals are now being planned.


Nanoparticles Destroy Dental Plaque, Prevent Tooth Decay

Combine a diet high in sugar with poor oral hygiene habits and dental cavities, or caries, will likely result. The sugar triggers the formation of an acidic biofilm, known as plaque, on the teeth, eroding the surface. Early childhood caries is a severe form of tooth decay that affects one in every four children in the United States and hundreds of millions more globally. It’s a particularly severe problem in underprivileged populations.

Treatment with a nanoparticle and hydrogen peroxide (right panel) left little in the way of bacteria (in blue) or the sticky biofilm matrix (in red), making the combination a potent force against dental plaque

In a study published in Nature Communications, researchers led by Hyun (Michel) Koo of the University of Pennsylvania School of Dental Medicine in collaboration with David Cormode of Penn’s Perelman School of Medicine and School of Engineering and Applied Science used FDA-approved nanoparticles to effectively disrupt biofilms and prevent tooth decay in both an experimental human-plaque-like biofilm and in an animal model that mimics early-childhood caries. The nanoparticles break apart dental plaque through a unique pH-activated antibiofilm mechanism.

It displays an intriguing enzyme-like property whereby the catalytic activity is dramatically enhanced at acidic pH but is ‘switched off’ at neutral pH conditions,” says Koo, professor in Penn Dental Medicine’s Department of Orthodontics. “The nanoparticles act as a peroxidase, activating hydrogen peroxide, a commonly used antiseptic, to generate free radicals that potently dismantle and kill biofilms in pathological acidic conditions but not at physiological pH, thus providing a targeted effect.”

Because the caries-causing plaque is highly acidic, the new therapy is able to precisely target areas of the teeth harboring pathogenic biofilms without harming the surrounding oral tissues or microbiota. The particular iron-containing nanoparticle used in the experiments, ferumoxytol, is already FDA-approved to treat iron-deficiency, a promising indication that a topical application of the same nanoparticle, used at several-hundred-fold lower concentration, would also be safe for human use.


Electronic Skin To Restore Sense Of Pain

Amputees often experience the sensation of a “phantom limb”—a feeling that a missing body part is still there. That sensory illusion is closer to becoming a reality thanks to a team of engineers at the Johns Hopkins University that has created an electronic skin. When layered on top of prosthetic hands, this e-dermis brings back a real sense of touch through the fingertips.


After many years, I felt my hand, as if a hollow shell got filled with life again,” says the anonymous amputee who served as the team’s principal volunteer tester.

Made of fabric and rubber laced with sensors to mimic nerve endings, e-dermis recreates a sense of touch as well as pain by sensing stimuli and relaying the impulses back to the peripheral nerves.

We’ve made a sensor that goes over the fingertips of a prosthetic hand and acts like your own skin would,” explains Luke Osborn, a graduate student in biomedical engineering. “It’s inspired by what is happening in human biology, with receptors for both touch and pain“This is interesting and new,” Osborn adds, “because now we can have a prosthetic hand that is already on the market and fit it with an e-dermis that can tell the wearer whether he or she is picking up something that is round or whether it has sharp points.”

The work in the journal Science Robotics – shows it is possible to restore a range of natural, touch-based feelings to amputees who use prosthetic limbs. The ability to detect pain could be useful, for instance, not only in prosthetic hands but also in lower limb prostheses, alerting the user to potential damage to the device.

Human skin contains a complex network of receptors that relay a variety of sensations to the brain. This network provided a biological template for the research team, which includes members from the Johns Hopkins departments of Biomedical Engineering, Electrical and Computer Engineering, and Neurology, and from the Singapore Institute of Neurotechnology.

Bringing a more human touch to modern prosthetic designs is critical, especially when it comes to incorporating the ability to feel pain, Osborn states. “Pain is, of course, unpleasant, but it’s also an essential, protective sense of touch that is lacking in the prostheses that are currently available to amputees,” he says. “Advances in prosthesis designs and control mechanisms can aid an amputee’s ability to regain lost function, but they often lack meaningful, tactile feedback or perception.


Solar Powered Car

The Sion is the first electric car capable of recharging its batteries from the sun. From now on, you’ll have to worry about range a little less. For only 16.000 € excluding the battery (4000 euros or to rent). With the dynamic integration of solar cells in the body work, we set new measures on the road while convincing with an exceptional design concept. The full efficiency of the Sion is guaranteed by the lightweight design. The exterior is mainly made up of rust-proof polycarbonate. It further is scratch-resistant. The most unique feature in the body work are the solar cells, which are located on the roof, on both sides as on the hood and the rear.

The cockpit  uses a very simple design, showing you how fast you are going and the charging level of your battery. On the left side you can see the number of kilometers generated through the viSono System. After 24 hours, these kilometers will be transferred to the right side, where they are added to the total range left. The Sion copes with the requirements of your daily life: A range of 250km, high power rapid charging, and a sophisticated interior concept with an optional trailer hitch.
The Sion is equipped with 330 integrated solar cells, which recharge the battery through the power of the sun. To protect them from harmful environmental influences the solar cells are covered with polycarbonate. It is shatterproof, light and particularly weather resistant. Under proper conditions the solar cells generate enough energy, to cover 30 kilometers per day with the Sion. This system is called  viSono. Thanks to the technology of bidirectional charging the Sion can not only generate but also provide energy. This feature turns the car into a mobile power station. Using a household plug, all common electronic devices with up to 2,7kW can be powered by the Sion. You can plug in your electronic devices and power them with the Sions battery. Over a type 2 plug the Sion can provide even more power with up to 7,6 kW.
For air filtering  a  special moss is integrated into the dashboard. It filters up to twenty percent of the fine dust particles and has a regulating effect on the humidity inside the Sion. No worries, you do not have to water it. It requires no special care at all.

3D-Printed Mars Habitat Competition

The lander seals to the ground to provide a protected, pressurised environment for the structure to be printed. Once complete, the lander would lift its legs to reveal the structure and move on to the next location to build another, creating a small series of rooms.


AI spacefactory came in second place, presenting an egg-shaped structure, designed with a double shell to combat the aggressive thermal effects of mars. Like the zopherus habitat, the team envisions the marsha design to use materials sourced from mars including basalt fibre, extracted from martian rock, and renewable bioplastic (polylactic acid) derived from plants that could be grown on the planet.


Colorful 3D Printing

People are exploring the use of 3D printing for wide-ranging applications, including manufacturing, medical devices, fashion and even food. But one of the most efficient forms of 3D printing suffers from a major drawback: It can only print objects that are gray or black in color. Now, researchers have tweaked the method so it can print in all of the colors of the rainbow.


Selective laser sintering (SLS) printers use a laser to heat specific regions of a powdered material, typically nylon or polyamide, so that the powder melts or sinters to form a solid mass. The printer adds then selectively sinters new powdered material layer by layer until the desired 3D structure is obtained. To reduce the energy requirements of the process, researchers have added compounds called photosensitizers to the polymer powders. These materials, such as carbon nanotubes, carbon black and graphene, absorb light much more strongly than the polymers and transfer heat to them, enabling the use of cheaper, lower-power lasers. However, the carbon-based photosensitizers can only produce printed objects that are gray or black. Gerasimos Konstantatos, Romain Quidant and their coworkers at The Institute of Photonic Sciences (IFCO) wanted to find a photosensitizer that would enable color printing by the SLS method.

The researchers designed gold nanorods to strongly absorb in the near-infrared region of the spectrum while being almost transparent to visible light. They coated them with silica and then mixed them with polyamide powders to print 3D objects. They found that the gold nanorods were much better at converting light from the laser to heat than carbon black, the industry standard. Also, the new photosensitizers could produce much whiter and — when mixed with dyes — brightly colored 3D objects. Importantly, the materials are cost-effective for large-scale production. The researchers have filed several patent applications related to the new technology.

The findings are reported in the ACS journal Nano Letters.


Electric Car Made Of Flax And Sugar

Noah is an electric city car with two comfortable seats and a spacious trunk, a top speed of 110 kilometers per hour and a range of 240 kilometers. The expected consumption in urban traffic is approximately equal to 300 kilometers to 1 liter of petrol. This is partly due to the low weight. Without batteries Noah weighs 360 kg, which is less than half that of comparable production cars. The car only needs 60 kilos of batteries, whereas regular electric cars need several hundreds kilos. The low total weight of 420 kg enables particularly good road holding. The prototype will soon be certified for use on public roads.


TU/ecomotive is a student team of TU Eindhoven (Netherlands) that devises and builds a new sustainable car every year. The aim of this year was to show that it is possible to make a car that has a low environmental impact over its entire life cycle, without being Spartan.

A special aspect of Noah is the use of a bioplastic which can be made from sugar. The chassis and the interior are made of particularly strong sandwich panels, made of this bioplastic and flax fiber. The body is made of flax mats that are injected with a bio-based resin. These biological and particularly light materials require up to six times less energy to produce than the usual lightweight car materials such as aluminum or carbon. Still, the students claim that they have the necessary strength, and it is also possible to create a crumple-zone-like structure. Flax is a widely used intermediate crop that is essential to soil enrichment, so its cultivation does not compete with food production.

During the summer months, the team is visiting European car manufacturers, suppliers and universities, among others. The students have no plans to bring the car to market. “It’s about awareness,” says team member Cas Verstappen, a student of Automotive Technology at TU/e. “We want to show that a circular economy is already possible in complex products such as cars.” He does not expect similar cars to come onto the market immediately, but he sees the use of bioplastic panels in the structural parts and the interior as a real option. Not only because of their durability, but also because they are strong and light.


Red-Blood-Cell “Hitchhikers” Transport Drugs to Specific Targets

A new drug-delivery technology which uses red blood cells (RBCs) to shuttle nano-scale drug carriers, called RBC-hitchhiking (RH), has been found in animal models to dramatically increase the concentration of drugs ferried precisely to selected organs, according to a study published in Nature Communications this month by researchers from the Perelman School of Medicine at the University of Pennsylvania. This proof-of-principle study points to ways to improve drug delivery for some of the nation’s biggest killers, such as acute lung disease, stroke, and heart attack.

The vast majority of drugs fail because they spread throughout the body, landing in nearby organs where they can cause intolerable side effects, as opposed to directly targeting the areas that are really in need,” said first author Jake Brenner, MD, PhD, an assistant professor of Pulmonary Medicine and Critical Care and of Pharmacology. “By massively increasing the drug concentrations that are hitting specific tissues, the RBC hitchhikers should decrease potential side effects and improve the efficacy of drugs delivered to target organs.”

The team showed that RH can safely transport nano-scale carriers of drugs to chosen organs by targeted placement of intravascular catheters, in mice, pigs, and in ex vivo human lungs, without causing RBC or organ toxicities.

Red blood cells are a particularly attractive carrier due to their biocompatibility and known safety in transfusions,” said senior author Vladimir Muzykantov, MD, PhD, a professor of Systems Pharmacology and Translational Therapeutics. “In just a few short years since we began this work, we are now on the brink of mapping out ways to test it in clinical trials.”

The researchers found that RH drug carriers injected intravenously increased drug uptake by about 40-fold in the lungs compared to absorption of freely circulating drug carriers in blood. In addition, injecting the RH drug carriers into the carotid artery (a major blood vessel in the neck that delivers blood to the brain, neck, and face) delivers 10 percent of the injected dose to the brain, which is about 10 times higher than what is achieved through older methods such using antibodies to guide drugs to their intended targets. Such impressive drug delivery to the brain could be used to treat acute strokes, the fourth leading cause of death in the U.S.

Development of RH technology has also revealed a potentially fundamental process that hold enormous clinical promise. “The body’s largest surface area of cell-to-cell interaction is observed between red blood cells and blood vessel linings, so it is intriguing to think that our RH technology has uncovered a phenomenon in which RBCs naturally transport cargo on their surfaces,” said Muzykantov.


Breakthrough In The Fight Against Alzheimer’s

Eisai Co.,  a company located in Tokyo, and Biogen Inc. in Cambridge, United States, announced positive topline results from the Phase II study with BAN2401, an anti-amyloid beta protofibril antibody, in 856 patients with early Alzheimer’s disease. The study achieved statistical significance on key predefined endpoints evaluating efficacy at 18 months on slowing progression in Alzheimer’s Disease Composite Score (ADCOMS) and on reduction of amyloid accumulated in the brain as measured using amyloid-PET (positron emission tomography).

Study 201  is a placebo-controlled, double-blind, parallel-group, randomized study in 856 patients with mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) or mild Alzheimer’s dementia (collectively known as early Alzheimer’s disease) with confirmed amyloid pathology in the brain. Efficacy was evaluated at 18 months by predefined conventional statistics on ADCOMS, which combines items from the Alzheimer’s Disease Assessment Scalecognitive subscale (ADAS-Cog), the Clinical Dementia Rating Sum of Boxes (CDR-SB) scale and the Mini-Mental State Examination (MMSE) to enable sensitive detection of changes in early AD symptoms. Patients were randomized to five dose regimens, 2.5 mg/kg biweekly, 5 mg/kg monthly, 5 mg/kg biweekly, 10 mg/kg monthly and 10 mg/kg biweekly, or placebo.

Topline results of the final analysis of the study demonstrated a statistically significant slowing of disease progression on the key clinical endpoint (ADCOMS) after 18 months of treatment in patients receiving the highest treatment dose (10 mg/kg biweekly) as compared to placebo. Results of amyloid PET analyses at 18 months, including reduction in amyloid PET standardized uptake value ratio (SUVR) and amyloid PET image visual read of subjects converting from positive to negative for amyloid in the brain, were also statistically significant at this dose. Dose-dependent changes from baseline were observed across the PET results and the clinical endpoints. Further, the highest treatment dose of BAN2401 began to show statistically significant clinical benefit as measured by ADCOMS as early as 6 months including at 12 months.


Electric Car: How To Make Super-Fast Charging Batteries

Researchers have identified a group of materials that could be used to make even higher power batteries. The researchers, from the University of Cambridge, used materials with a complex crystalline structure and found that lithium ions move through them at rates that far exceed those of typical electrode materials, which equates to a much faster-charging battery. Although these materials, known as niobium tungsten oxides, do not result in higher energy densities when used under typical cycling rates, they come into their own for fast charging applications. Additionally, their physical structure and chemical behaviour give researchers a valuable insight into how a safe, super-fast charging battery could be constructed, and suggest that the solution to next-generation batteries may come from unconventional materials.

Many of the technologies we use every day have been getting smaller, faster and cheaper each year – with the notable exception of batteries. Apart from the possibility of a smartphone which could be fully charged in minutes, the challenges associated with making a better battery are holding back the widespread adoption of two major clean technologies: electric cars and grid-scale storage for solar power.

We’re always looking for materials with high-rate battery performance, which would result in a much faster charge and could also deliver high power output,” said Dr Kent Griffith, a postdoctoral researcher in Cambridge’s Department of Chemistry and the paper’s first author.

In their simplest form, batteries are made of three components: a positive electrode, a negative electrode and an electrolyte. When a battery is charging, lithium ions are extracted from the positive electrode and move through the crystal structure and electrolyte to the negative electrode, where they are stored. The faster this process occurs, the faster the battery can be charged. In the search for new electrode materials, researchers normally try to make the particles smaller. “The idea is that if you make the distance the lithium ions have to travel shorter, it should give you higher rate performance,” said Griffith. “But it’s difficult to make a practical battery with nanoparticles: you get a lot more unwanted chemical reactions with the electrolyte, so the battery doesn’t last as long, plus it’s expensive to make.

Nanoparticles can be tricky to make, which is why we’re searching for materials that inherently have the properties we’re looking for even when they are used as comparatively large micron-sized particles. This means that you don’t have to go through a complicated process to make them, which keeps costs low,” explained Professor Clare Grey, also from the Department of Chemistry and the paper’s senior author. “Nanoparticles are also challenging to work with on a practical level, as they tend to be quite ‘fluffy’, so it’s difficult to pack them tightly together, which is key for a battery’s volumetric energy density.”

The results are reported in the journal Nature.


Teaching a car how to drive itself in 20 minutes

Researchers from Wayve, a company founded by a team from the Cambridge University engineering department, have developed a neural network sophisticated enough to learn how to drive a car in 15 to 20 minutes using nothing but a computer and a single camera. The company showed off its robust deep learning methods last week in a company blog post showcasing the no-frills approach to driverless car development. Where companies like Waymo and Uber are relying on a variety of sensors and custom-built hardware, Wayve is creating the world’s first autonomous vehicles based entirely on reinforcement learning.


The AI powering Wayve’s self-driving system is remarkable for its simplicity. It’s a four layer convolutional neural network (learn about neural networks here) that performs all of its processing on a GPU inside the car. It doesn’t require any cloud connectivity or use pre-loaded mapsWayve’s vehicles are early-stage level five autonomous. There’s a lot of work to be done before Wayve’s AI can drive any car under any circumstances. But the idea that driverless cars will require tens of thousands of dollars worth of extraneous hardware is taking a serious blow in the wake of the company’s amazing deep learning techniques. According to Wayve, these algorithms are only going to get smarter.


Drug Encapsulation System Selectively Targets Senescent Cells

A team headed by Manuel Serrano at IRB Barcelona has designed a drug encapsulation system that selectively targets senescent cellsThe study paves the way for therapeutic approaches to eliminate senescent cells in many diseases, such as pulmonary fibrosis and cancer.

Senescent cells are damaged cells that do not perform their normal roles anymore but that are not dead –hence they are commonly known as zombi cells. These cells interfere with the functioning of the tissue in which they accumulate. Senescence is a cell program that is triggered by many types of damage and senescent cells are present in many diseases. They accumulate in diverse types of tissues during aging, thus contributing to the progressive deterioration associated to aging. Eliminating these zombi cells is one of the challenges facing science today.

In the Cellular Plasticity and Disease lab headed by the ICREA researcher Manuel Serrano at the Institute for Research in Biomedicine (IRB Barcelona) and supported by “la Caixa” Banking Foundation, the researchers devise strategies to eliminate senescent cells.  In a study published in EMBO Molecular Medicine, they present a proof of principle of a drug delivery system with selectivity for tissues that harbour senescent cells.

In collaboration with a team headed by Ramón Martínez-Máñez at the Universidad Politécnica de Valencia, the IRB Barcelona scientists have exploited a particular hallmark of senescent cells in order to design a delivery system that specifically targets them. They have demonstrated its efficacy in cells in vitro and in two experimental mouse models, namely pulmonary fibrosis and cancer. These diseases are characterized by the presence of damaged cells, and in the case of cancer this is particularly true after treatment with chemotherapy.

The figure shows two views, frontal and lateral, of the image obtained by CT of the lungs of a mouse with fibrosis (grey areas) before and after receiving nano-therapy directed at senescent cells

In these models, the senescent cells take up the carrier more efficiently than other cells and once inside the cell the casing of the carrier degrades to release the drug cargo. When the nano-vehicles contained cytotoxic compounds, the senescent cells were killed and this resulted in therapeutic improvements in mice with pulmonary fibrosis or with cancer.

This nano-carrier may pave the way for new therapeutic approaches for serious conditions, such as pulmonary fibrosis or to eliminate chemotherapy-induced senescent cells, explains Manuel Serrano. Another outcome of this study is that these nano-carriers could be used for diagnostic tests of senescence as they can transport a fluorescent compound or marker.


2D Material Revolutionizes Solar Fuel Generation

Following the isolation of graphene in 2004, a race began to synthesize new two-dimensional materials. 2D materials are single-layer substances with a thickness of between one atom and a few nanometers (billionths of a meter). They have unique properties linked to their reduced dimensionality and play a key role in the development of nanotechnology and nanoengineering.

An international group of researchers including Brazilian scientists affiliated with the University of Campinas (UNICAMP) have succeeded in producing a new material with these characteristics.

The researchers extracted a 2D material they call hematene from ordinary iron ore like that mined in many parts of the world, including Brazil. The material is only three atoms thick and is thought to have enhanced photocatalytic properties.

International group of researchers including Brazilian scientists obtain new material from iron ore with application as a photocatalyst

The research was conducted at the Center for Computational Engineering and Sciences (CCES), one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP, and during a research internship abroad that was also supported by FAPESP via a specific scholarship.

Douglas Soares Galvão, a researcher at CCES and one of the authors of the study, told Agência FAPESP about the discovery. “The material we synthesized can act as a photocatalyst to split water into hydrogen and oxygen, so that electricity can be generated from hydrogen, for example, as well as having several other potential applications,” he said.

The new material was exfoliated from hematite, one of the most common minerals on earth and the main source of iron, which is the cheapest metal, used in many products and above all to make steel.

Unlike carbon and its 2D form graphene, hematite is a non-van der Waals material, meaning it is held together by 3D bonding networks rather than by nonchemical and comparatively weaker atomic van der Waals interactions, which are noncovalent (they do not involve the sharing of one or more pairs of electrons by the atoms that participate in the bond).

Because it is a naturally occurring mineral, has highly oriented, large crystals and is a non-van der Waals material, the researchers believe that hematite is an excellent precursor for the exfoliation of novel 2D materials.

Most of the 2D materials synthesized to date were derived from samples of van der Waals solids. Non-van der Waals 2D materials with highly ordered atomic layers and large grains are still rare,” Galvão said.

Hematene was synthesized by the liquid-phase exfoliation of hematite ore in an organic solvent, N,N-dimethylformamide (DMF). Transmission electron microscopy confirmed the exfoliation and formation of hematene in single sheets with a thickness of only three iron and oxygen atoms (monolayer) and in randomly stacked sheets (bilayer).

The innovation is described in an article published in Nature Nanotechnology.



Crab Shells and Trees Combine To Create New Food Packaging

From liquid laundry detergent packaged in cardboard to compostable plastic cups, consumer products these days are increasingly touting their sustainable and renewable origins. Now researchers at Georgia Institute of Technology have created a material derived from crab shells and tree fibers that has the potential to replace the flexible plastic packaging used to keep food fresh. The new material, which is described in the journal ACS Sustainable Chemistry and Engineering, is made by spraying multiple layers of chitin from crab shells and cellulose from trees to form a flexible film similar to plastic packaging film.


The main benchmark that we compare it to is PET, or polyethylene terephthalate, one of the most common petroleum-based materials in the transparent packaging you see in vending machines and soft drink bottles,” said J. Carson Meredith, a professor in Georgia Tech’s School of Chemical and Biomolecular Engineering. “Our material showed up to a 67 percent reduction in oxygen permeability over some forms of PET, which means it could in theory keep foods fresher longer.”

Cellulose, which comes from plants, is the planet’s most common natural biopolymer, followed next by chitin, which is found in shellfish, insects and fungi.


Brain function partly replicated by nanomaterials

The brain requires surprisingly little energy to adapt to the environment to learn, make ambiguous recognitions, have high recognition ability and intelligence, and perform complex information processing.

The two key features of neural circuits are “learning ability of synapses” and “nerve impulses or spikes.” As brain science progresses, brain structure has been gradually clarified, but it is too complicated to completely emulate. Scientists have tried to replicate brain function by using simplified neuromorphic circuits and devices that emulate a part of the brain’s mechanisms.

Spontaneous spikes being similar to nerve impulses of neurons was generated from a POM/CNT complexed network

In developing neuromorphic chips to artificially replicate the circuits that mimic brain structure and function, the functions of generation and transmission of spontaneous spikes that mimic nerve impulses (spikes) have not yet been fully utilized.

A joint group of researchers from Kyushu Institute of Technology and Osaka University studied current rectification control in junctions of various molecules and particles absorbed on single-walled carbon nanotube (SWNT), using conductive atomic force microscopy (C -AFM), and discovered that a negative differential resistance was produced in polyoxometalate (POM) molecules absorbed on SWNT. This suggests that an unstable dynamic non-equilibrium state occurs in molecular junctions.

In addition, the researchers created extremely dense, random SWNT/POM network molecular neuromorphic devices, generating spontaneous spikes similar to nerve impulses of neurons.

POM consists of metal atoms and oxygen atoms to form a 3-dimensional framework. Unlike ordinary organic molecules, POM can store charges in a single molecule. In this study, it was thought that negative differential resistance and spike generation from the network were caused by nonequilibrium charge dynamics in molecular junctions in the network.

Thus, the joint research group led by Megumi Akai-Kasaya conducted simulation calculations of the random molecular network model complexed with POM molecules, which are able to store electric charges, replicating spikes generated from the random molecular network.  They also demonstrated that this molecular model would very likely become a component of reservoir computing devices. Reservoir computing is anticipated as next-generation artificial intelligence (AI). Their research results were published in Nature Communications.

The significance of our study is that a portion of brain function was replicated by nano-molecular materials. We demonstrated the possibility that the random molecular network itself can become neuromorphic AI,” says lead author Hirofumi Tanaka.


Nano Packets Of Genetic Code Seed Cells Against Brain Cancer

In a “proof of concept” study, scientists at Johns Hopkins Medicine say they have successfully delivered nano-size packets of genetic code called microRNAs to treat human brain tumors implanted in mice. The contents of the super-small containers were designed to target cancer stem cells, a kind of cellularseed” that produces countless progeny and is a relentless barrier to ridding the brain of malignant cells.

Nanoparticles releasing microRNAs (light blue) inside a human brain cancer cell

Brain cancer is one of the most widely understood cancers in terms of its genetic makeup, but we have yet to develop a good treatment for it,” says John Laterra, MD, PhD, professor of neurology, oncology and neuroscience at the Johns Hopkins University School of Medicine and a research scientist at the Kennedy Krieger Institute. “The resilience of cancer stem cells and the blood-brain barrier are major hurdles.

Blood that enters the brain is filtered through a series of vessels that act as a protective barrier. But this blood-brain barrier blocks molecular medicines that have the potential to revolutionize brain cancer therapy by targeting cancer stem cells, says Laterra.

To modernize brain tumor treatments, we need tools and methods that bypass the blood-brain barrier,” says Jordan Green, PhD, professor of biomedical engineering, ophthalmology, oncology, neurosurgery, materials science and engineering and chemical and biomolecular engineering at the Johns Hopkins University School of Medicine. “We need technology to safely and effectively deliver sensitive genetic medicines directly to tumors without damaging normal tissue.

A case in point, Green says, is glioblastoma, the form of brain cancer that Arizona Sen. John McCain is battling, which often requires repeated surgeries. Doctors remove the brain tumor tissue that they can see, but the malignancy often returns quickly, says Laterra. Most patients with glioblastoma live less than two years after diagnosis.

Results of the experiments were published online in Nano Letters.


Digital Files Let Anyone 3-D Print Untraceable Guns

Five years ago, 25-year-old radical libertarian Cody Wilson stood on a remote central Texas gun range and pulled the trigger on the world’s first fully 3-D-printed gun. When, to his relief, his plastic invention fired a .380-caliber bullet into a berm of dirt without jamming or exploding in his hands, he drove back to Austin and uploaded the blueprints for the pistol to his website,

He’d launched the site months earlier along with an anarchist video manifesto, declaring that gun control would never be the same in an era when anyone can download and print their own firearm with a few clicks. In the days after that first test-firing, his gun was downloaded more than 100,000 times. Wilson made the decision to go all in on the project, dropping out of law school at the University of Texas, as if to confirm his belief that technology supersedes law.


Instead, Wilson has spent the last years on an unlikely project for an anarchist: Not simply defying or skirting the law but taking it to court and changing it. In doing so, he has now not only defeated a legal threat to his own highly controversial gunsmithing project. He may have also unlocked a new era of digital DIY gunmaking that further undermines gun control across the United States and the world—another step toward Wilson’s imagined future where anyone can make a deadly weapon at home with no government oversight.

Two months ago, the Department of Justice quietly offered Wilson a settlement to end a lawsuit he and a group of co-plaintiffs have pursued since 2015 against the United States government. Wilson and his team of lawyers focused their legal argument on a free speech claim: They pointed out that by forbidding Wilson from posting his 3-D-printable data, the State Department was not only violating his right to bear arms but his right to freely share information. By blurring the line between a gun and a digital file, Wilson had also successfully blurred the lines between the Second Amendment and the First.

The law caught up. Less than a week later, Wilson received a letter from the US State Department demanding that he take down his printable-gun blueprints or face prosecution for violating federal export controls. Under an obscure set of US regulations known as the International Trade in Arms Regulations (ITAR), Wilson was accused of exporting weapons without a license, just as if he’d shipped his plastic gun to Mexico rather than put a digital version of it on the internet. He took offline, but his lawyer warned him that he still potentially faced millions of dollars in fines and years in prison simply for having made the file available to overseas downloaders for a few days. “I thought my life was over,” Wilson says.

If code is speech, the constitutional contradictions are evident,” Wilson explained when he first launched the lawsuit in 2015. “So what if this code is a gun?” The Department of Justice‘s surprising settlement, confirmed in court documents earlier this month, essentially surrenders to that argument.


Record For The Fastest Trip To The Space Station

The ISS Progress 56 resupply spacecraft, packed with almost three tons of cargo, automatically docked to the International Space Station’s Pirs docking compartment at 11:31 p.m. EDT Wednesday, less than six hours after its launch from the Baikonur Cosmodrome in Kazakhstan. At the time of docking, the station was soaring 259 miles over the Pacific Ocean off the west coast of South America. The Soyuz rocket carrying Progress 56 launched from Baikonur at 5:44 p.m. (3:44 a.m., Baikonur time) to send the cargo ship on its expedited, 4-orbit trek to the station.

Usually it takes 4 days to complete the same task.


The new Progress is loaded with 1,764 pounds of propellant, 48 pounds of oxygen, 57 pounds of air, 926 pounds of water and 2,910 pounds of spare parts, experiment hardware and other supplies for the Expedition 38 crew. Expedition 40 Flight Engineers Alexander Skvortsov and Max Suraev will open the hatch to Progress Thursday morning to begin unloading the cargo.

The ISS Progress 55 cargo craft, which undocked from Pirs on Monday, is now a safe distance from the complex for a series of engineering tests prior to being sent to a destructive re-entry over the Pacific Ocean on July 31.

The station’s crew began the workday at 6 a.m. Wednesday, four hours later than the usual 2 a.m. reveille to accommodate the late-night arrival of Progress.


New Hope To Fight Alzheimer’s

It is known that the onset of Alzheimer’s disease (AD) is associated with the accumulation of Amyloid beta () peptides in small molecular clusters known as oligomers. These trigger the formation of so-called ‘neurofibrillary tangles’ within neurons hamper their workings, ultimately causing cell death and so significant cognitive decline. Very large Aβ oligomers which form plaques outside neurons, alongside neuroinflammation have also been found to play a key part in the progression of the disease.

The EU-funded iRhom2 in AD project took as its starting point the protein iRhom2, which has been identified as a genetic risk factor for AD due to its pro-inflammatory properties. The team were able to explore further the influence of iRhom2 on neuroinflammation in mice. iRhom2 recently emerged as a protein of note in AD as it aids the maturation of an enzyme called TACE (tumor necrosis factor-α converting enzyme) guiding it towards a cell’s plasma membrane where the enzyme releases a cell-signalling cytokine (TNFα), implicated in the regulation of inflammatory processes. While mice studies have shown that TNFα-dependent inflammation can lead to sepsis and rheumatoid arthritis, it is also thought that the process contributes to neuroinflammatory signalling events, which can cause harm in the brain.

The EU-funded iRhom2 in AD project worked with mice that are prone to develop the hallmarks of AD, amyloid plaques and memory deficits. The team genetically altered iRhom2 in the mice then analysed the progression of the pathology using an array of biochemical and histological methods, together with a number of behavioural tests to assess cognitive decline. The results were somewhat surprising.

We initially hypothesised that iRhom2 would affect one specific aspect of neuroinflammation in AD. What we discovered was even more exciting as it actually affects several different aspects of neuroinflammation simultaneously. So modulating iRhom2 appears particularly well suited to interfere with AD,” explains project coordinator Prof. Dr. Stefan Lichtenthaler.


Super Conductive Graphene Will Boost Solar Technology

In 2010, the Nobel Prize in Physics went to the discoverers of graphene. A single layer of carbon atoms, graphene possesses properties that are ideal for a host of applications. Among researchers, graphene has been the hottest material for a decade. In 2017 alone, more than 30,000 research papers on graphene were published worldwide.

Now, two researchers from the University of Kansas (KU), Professor Hui Zhao and graduate student Samuel Lane, both of the Department of Physics & Astronomy, have connected a graphene layer with two other atomic layers (molybdenum diselenide and tungsten disulfide) thereby extending the lifetime of excited electrons in graphene by several hundred times. The finding will be published on Nano Futures, a newly launched and highly selective journal.

The work at KU may speed development of ultrathin and flexible solar cells with high efficiency.

For electronic and optoelectronic applications, graphene has excellent charge transport property. According to the researchers, electrons move in graphene at a speed of 1/30 of the speed of light — much faster than other materials. This might suggest that graphene can be used for solar cells, which convert energy from sunlight to electricity. But graphene has a major drawback that hinders such applications – its ultrashort lifetime of excited electrons (that is, the time an electron stays mobile) of only about one picosecond (one-millionth of one-millionth of a second, or 10-12 second).

These excited electrons are like students who stand up from their seats — after an energy drink, for example, which activates students like sunlight activates electrons,” Zhao said. “The energized students move freely in the classroom — like human electric current.

The KU researcher said one of the biggest challenges to achieving high efficiency in solar cells with graphene as the working material is that liberated electrons — or, the standing students — have a strong tendency to losing their energy and become immobile, like students sitting back down.

The number of electrons, or students from our example, who can contribute to the current is determined by the average time they can stay mobile after they are liberated by light,” explains Zhao. “In graphene, an electron stays free for only one picosecond. This is too short for accumulating a large number of mobile electrons. This is an intrinsic property of graphene and has been a big limiting factor for applying this material in photovoltaic or photo-sensing devices. In other words, although electrons in graphene can become mobile by light excitation and can move quickly, they only stay mobile too short a time to contribute to electricity.”

In their new paper, Zhao and Lane report this issue could be solved by using the so-called van der Waals materials. The principle of their approach is rather simple to understand. “We basically took the chairs away from the standing students so that they have nowhere to sit,” Zhao said. “This forces the electrons to stay mobile for a time that is several hundred times longer than before.”

To achieve this goal, working in KU’s Ultrafast Laser Lab, they designed a tri-layer material by putting single layers of MoSe2, WS2 and graphene on top of each other.


High Power Generator Utilizes Thermal Difference Of Only 5ºC

Objects in our daily lives, such as speakers, refrigerators, and even cars, are becoming “smarter” day by day as they connect to the internet and exchange data, creating the Internet of Things (IoT), a network among the objects themselves. Toward an IoT-based society, a miniaturized thermoelectric generator is anticipated to charge these objects, especially for those that are portable and wearable.

Due to advantages such as its relatively low thermal conductance but high electric conductance, silicon nanowires have emerged as a promising thermoelectric material. Silicon-based thermoelectric generators conventionally employed long, silicon nanowires of about 10-100 nanometers, which were suspended on a cavity to cutoff the bypass of the heat current and secure the temperature difference across the silicon nanowires. However, the cavity structure weakened the mechanical strength of the devices and increased the fabrication cost. To address these problems, a team of Japanese researchers from Waseda University, Osaka University, and Shizuoka University designed and successfully developed a novel silicon-nanowire thermoelectric generator, which experimentally demonstrated a high power density of 12 microwatts per 1cm2, enough to drive sensors or realize intermittent wireless communication, at a small thermal difference of only 5ºC.

Because our generator uses the same technology to manufacture semiconductor integrated circuits, its processing cost could be largely cut through mass production,” says Professor Takanobu Watanabe of Waseda University, the leading researcher of this study. “Also, it could open up a pathway to various, autonomously-driven IoT devices utilizing environmental and body heats. For instance, it may be possible to charge your smartwatch during your morning jog someday.”

The newly developed thermoelectric generator lost the cavity structure but instead shortened the silicon nanowires to 0.25 nanometers, since simulations showed that the thermoelectric performance improved by minimizing the device. Professor Watanabe explains that despite its new structure, the new thermoelectric generator demonstrated the same power density as the conventional devices. More surprisingly, thermal resistance was suppressed, and the power density multiplied by ten times by thinning the generator’s silicon substrate from the conventional 750 nanometers to 50 nanometers with backside grinding.


Growing New Cartilage To Eradicate Osteoarthritis Pain

What is graphene foam? It’s a synthetic “wonder material” made from the same carbon atoms that make up the lead in a pencilGraphene foam can be used as a “bioscaffold” to mesh with human stem cells and grow new cartilage. In addition to being incredibly strong, graphene foam conducts heat and electricity which helps neurons, or nerve cells, transmit information. Boise State researchers believe graphene foam-enhanced cartilage could one day be used to treat the joint pain caused by osteoarthritis as well as prevent the need for joint replacement. Osteoarthritis is incurable and affects half the U.S. population over the age of 65.

If we could take graphene foam, adhere a patient’s own stem cells on it then and inject that into someone’s knee to regrow their own cartilage, that would be the ‘pie in the sky,‘” said Dave Estrada, co-director of the Boise State University’s Advanced Nanomaterials and Manufacturing Laboratory.

A Boise State team led by Katie Yocham, a doctoral student in the Micron School of Materials Science and Engineering, and Estrada have published a study, “Mechanical Properties of Graphene Foam and Graphene Foam-Tissue Composites,” in the Advanced Engineering Materials journal.

While earlier studies at Boise State have shown that graphene foam is compatible with cells for growing new cartilage tissue, this is the first study to investigate how that tissue would actually function in a human joint under normal stresses, including high impact activities.

Trevor Lujan, an associate professor in the Department of Mechanical and Biomedical Engineering, and one of the authors of the study, praised Yocham’s work. “Katie’s strong efforts on this project have provided the biomedical community with a rigorous characterization of the bulk mechanical behavior of cellularized graphene foam. This baseline knowledge is an important step in the rising use of graphene foam for biomedical applications,” he said.

Estrada believes the biomedical use of graphene foam may have other applications, including in the military where a majority combat injuries involve the musculoskeletal system. “Our vision is to develop novel bioscaffolds that can expedite healing, reduce the need for amputation, and help save lives,” he added.


How To Generate Hot Water For Free

The HERU is a world-first global solution that literally gives you the power of generating hot water for your home from everyday items you previously had little option but to discard as waste.


The patented, micro-scale Home Energy Resources Unit (HERU) is designed to fit seamlessly into the curtilage of your domestic property, changing the life course of most items and materials in your home. It provides a method to keep most household items as a resource by using them to power your boiler, moving you away from a linear approach to consumerism (buy, use, dispose), into a circular one, whereby ‘wastes’ never become. Imagine buying an item, bringing it home, putting the item into use and using the packaging it was wrapped up in to energise your home. The HERU enables you to utilise 100% of most products you buy, without the need to discard anything.

The ground-breaking process is simple to operate, akin to other white goods in the home such as your washing machine or dishwasher. Similarly to other white goods, the HERU requires a water supply, a standard 13-amp electrical power supply and a sewer pipe connection. We synchronise it with your gas or oil boiler so your boiler becomes a hybrid water heating system – meaning it can run via HERU, or revert back to oil or gas as and when needed. The process then uses heat treatment to break materials down and produce an average of 2.5 times the amount of energy used to run the HERU – and all at a standard oven temperature of up to 300°C.


A Weapon To Fight Lung Cancer

Researchers at the Children’s Medical Center Research Institute at UT Southwestern (CRI) have discovered a new metabolic vulnerability in small cell lung cancer (SCLC) that can be targeted by existing drug therapies.

SCLC is a deadly and aggressive form of lung cancer with few therapeutic options and an incredibly low five-year survival rate of 5 percent. Researchers at CRI believe the key to finding new therapies for this disease lies in better understanding the metabolism of SCLC.

Cancerous cells reprogram their metabolic pathways to grow and spread rapidly through the body. In some forms of cancer, cancer cells become highly dependent or “addicted” to specific metabolic pathways as a result of genetic mutations. Identifying these pathways can lead to new treatment options.

SCLC metabolism has not previously been studied in-depth,” said Dr. Ralph DeBerardinis, Professor at CRI and Director of CRI’s Genetic and Metabolic Disease Program.If we identify the metabolic pathways SCLC uses to grow and spread, then maybe we can find drugs to inhibit them. This could effectively cut off the fuel supply to these tumors.”

To discover new vulnerabilities in SCLC, researchers at CRI analyzed metabolism and gene expression in cells obtained from more than 25 human SCLC tumors. From the data, they identified two distinct categories of SCLC defined by the level of two oncogenes: MYC and ASCL1. Oncogenes are genes known to promote cancer formation and growth.

The study, published in Cell Metabolism, found that MYC stimulated synthesis of purine molecules. Purines are essential for cells to produce RNA and DNA, both of which are required for growth and division. MYC-expressing cells had a particular need for a specific type of purine called guanosine.

We were excited to discover that purine synthesis was so important for this subset of SCLC cells. There are already safe and effective inhibitors of guanosine synthesis used in patients for other diseases besides cancer. Our findings suggested that mice with MYC-expressing SCLC might benefit from treatment with drugs that inhibit purine synthesis,” said Dr. Fang Huang, a visiting scholar at CRI and first author on the paper.

To test the hypothesis, researchers treated mice from multiple different mouse models of SCLC with the drug mizoribine, a purine synthesis inhibitor. Treatment with this drug suppressed tumor growth and significantly extended the lifespan in mice with MYC-expressing SCLC.

Our findings suggest purine synthesis inhibitors could be effective in SCLC patients whose tumors have high levels of MYC. If we are right, this could quickly provide a new treatment for this disease, which has few options at present,” said Dr. DeBerardinis.


Quantum Computer Controls One Billion Electrons Per Second One-by-One.

University of Adelaide-led research in Australia has moved the world one step closer to reliable, high-performance quantum computing. An international team has developed a ground-breaking single-electronpump”. The electron pump device developed by the researchers can produce one billion electrons per second and uses quantum mechanics to control them one-by-one. And it’s so precise they have been able to use this device to measure the limitations of current electronics equipment. This paves the way for future quantum information processing applications, including in defence, cybersecurity and encryption, and big data analysis.

This research puts us one step closer to the holy grail – reliable, high-performance quantum computing,” says project leader Dr Giuseppe C. Tettamanzi, Senior Research Fellow, at the University of Adelaide’s Institute for Photonics and Advanced Sensing.

Published in the journal Nano Letters, the researchers also report observations of electron behaviour that’s never been seen before – a key finding for those around the world working on quantum computing.

Quantum computing, or more broadly quantum information processing, will allow us to solve problems that just won’t be possible under classical computing systems,” says Dr Tettamanzi. “It operates at a scale that’s close to an atom and, at this scale, normal physics goes out the window and quantum mechanics comes into play.  To indicate its potential computational power, conventional computing works on instructions and data written in a series of 1s and 0s – think about it as a series of on and off switches; in quantum computing every possible value between 0 and 1 is available. We can then increase exponentially the number of calculations that can be done simultaneously.”


Modified Polio Vaccine Helps Fight Deadly Brain Tumors

A modified version of the polio vaccine, infused straight into aggressive brain tumors, helped some patients live for years longer than they normally would have, doctors reported. It’s no miracle cure — only about 20 percent of patients with gliomas were helped — but some are alive six years later, the team reported in the New England Journal of Medicine. 


“It’s a hopeful enough finding to move forward and test the vaccine in more people”, the team at the Duke University School of Medicine said.  “It’s very unusual, almost unprecedented to get this kind of long-term survival,” adds neurologist Dr. Darell Bigner, who led the study team.

The Duke team tested 61 glioma patients over five years. They all had grade IV gliomas, a group of brain tumors that includes glioblastoma. These patients have a “dismal” prognosis, the Duke team wrote in the New England Journal of Medicine. “There is currently no effective therapy.” Standard treatment of brain tumors includes surgery if the tumor is somewhere reachable; chemotherapy; and radiation. But if the tumor is aggressive, it’s usually fatal.

These are people who failed everything,” Bigner said. “Virtually all patients, no matter what you treat them with, are dead within in two years.” About a third of all brain tumors are gliomas, according to the National Brain Tumor Society. About 80,000 people a year are diagnosed with a brain tumor, and about 24,000 of those are malignant. “The average survival rate for all malignant brain tumor patients is only 34.7 percent,” the group says. But there’s evidence that some viruses can home in on tumors and kill them. It’s not clear why, but viruses can also make tumors more visible to the immune system. 

The team at Duke worked with the National Cancer Institute to design and manufacture a modified version of polio vaccine virusPolio viruses are attracted to nerve cells — that’s why they cause paralysis. The medical team used polio viruses already weakened and altered for use in polio vaccines, and genetically engineered them to carry parts of a common cold virus, called a rhinovirus, known to be attracted to glioma cells.


VR Model Of The Milky Way Opens New Doors In Surgery

Using data from over a billion stars, a research team at Lund University in Sweden are developing an interactive 3D model of the Milky Way galaxy. This could enable new types of discoveries that aren’t possible with current tools – perhaps even unraveling how the Milky Way was formed. The data being used is from the Gaia satellite that was launched in 2013. It orbits the Earth and collects data from over a billion stars.


This will be the best map of the Milky Way we have so far. A Virtual Reality immersion is something we are very keen on exploring, as it can help us identify patterns and structures in very complex data”, explains Oscar Agertz, astronomy researcher at Lund University.

The research could also potentially allow surgeons to work together in medical examinations despite being on separate continents.


Robot Can Turn Around 120 Freshly-Cooked Pizzas Every Hour

The traditional hand-crafted pizza has a shiny new rival — pizza made by robotFrench startup Ekim wants to speed up the way pizza is made using a three-armed autonomous pizzaiolo robot. Ekim hopes to install its cutting-edge pizza-maker, which is capable of churning out a freshly-made pizza every 30 seconds, in an autonomous 24/7 restaurant soon. The robot’s gestures have been programmed to match those of real-life pizzaiolos, or pizza-makers, and all three arms working independently to enable the robot to make several pizzas at the same time.


We are not faster than a pizzaiolo as we make a pizza in four minutes and 30 seconds because the pizzas are made on demand in front of the customer, we take time to cook them well, to put the ingredients,’ Ekim CEO Philippe Goldman said. ‘But the robot has three arms, can co-ordinate tasks and make several pizzas at once. ‘So yes, making a pizza takes four minutes 30 seconds but we deliver one pizza every 30 seconds, which allows us to deliver 120 pizzas an hour when a pizzaiolo can only make 40 pizzas an hour.’

The idea originated when two Ekim engineers from when they were students after they grew tired of eating low-quality fast food, the only meals they could afford at the time. The robot is currently in a showroom outside Paris while Ekim searches for a location to start a pizza-making service, using produce from France and Italy. Like with a vending machine, the concept would allow customers to order a freshly-made pizza at any time. Using an automated screen, they can chose from an array of pizzas, including the traditional Margherita and richer four cheese.


5G Technology, 22 Times More Powerful Than 4G

Researchers at the universities of Lund (Sweden) and Bristol (UK) have conducted a number of experiments using a form of 5G technology called Massive MIMO (multiple input, multiple output), and set not one but two world records in so-called spectrum efficiency for wireless communication. Spectrum efficiency measures how much data can successfully be packed into a radio signal transmitted from an antenna.

This 5G technology developed by the researchers is extremely efficient – in fact, the most efficient technology ever when it comes to managing many simultaneous users. The latest world record was set when researchers from Lund and Bristol attained more than 20 times the total data speed of today’s 4G technology, thereby almost doubling the previous record where they, using the same technology, achieved a twelve-fold improvement.

Setting a new world record was a significant event as it demonstrated that it is possible to transmit 22 times more data compared to current wireless systems. Although the goal is for 5G to increase the total transmission capacity by a factor 1 000, this is still a big step”, says Steffen Malkowsky, researcher in Electrical and Information Technology at the Lund University Faculty of Engineering.


Graphene Strengthens Neuronal Activity

A work led by SISSA in Italy and published on Nature Nanotechnology reports for the first time experimentally the phenomenon of iontrapping’ by graphene carpets and its effect on the communication between neurons.The researchers have observed an increase in the activity of nerve cells grown on a single layer of graphene. Combining theoretical and experimental approaches they have shown that the phenomenon is due to the ability of the material to ‘trap’ several ions present in the surrounding environment on its surface, modulating its composition.

Graphene is the thinnest bi-dimensional material available today, characterisedby incredible properties of conductivity, flexibility and transparency. Although there are great expectations for its applications in the biomedical field, only very few works have analysed its interactions with neuronal tissue.
A study conducted by SISSAScuola Internazionale Superiore di Studi
Avanzati, and the University of Trieste in association with the University of Antwerp (Belgium), the Institute of Science and Technology of Barcelona (Spain), has analysed the behaviour of neurons grown on a single layer of graphene, observing a strengthening in their activity. Through theoretical and experimental approaches the researchers have shown that such behaviour is due to reduced ion mobility, in particular of potassium, to the neuron-graphene interface. This phenomenon is commonly called ‘ion trapping’, already known at theoretical level, but observed experimentally for the first time only now.

“It is as if graphene behaves as an ultra-thin magnet on whose surface some of the potassium ions present in the extra cellular solution between the cells and the graphene remain trapped.
It is this small variation that determines the increase in neuronal
excitability” comments Denis Scaini, researcher at SISSA who has led the research alongside Laura Ballerini.
The study has also shown that this strengthening occurs when the graphene itself is supported by an insulator, like glass, or suspended in solution, while it disappears when lying on a conductor. “Graphene is a highly conductive material which could potentially be used to coat any surface. Understanding how its behaviour varies according to the substratum on which it is laid is essential for its future applications, above all in the neurological field” continues Scaini, “considering the unique properties of graphene it is natural to think for example about the development of innovative electrodes of cerebral stimulation or visual devices“.


Brain Metals Drive Alzheimer’s Progression

Alzheimer’s disease could be better treated, thanks to a breakthrough discovery of the properties of the metals in the brain involved in the progression of the neurodegenerative condition, by an international research collaboration including the University of Warwick.

Iron is an essential element in the brain, so it is critical to understand how its management is affected in Alzheimer’s disease. The advanced X-ray techniques that we used in this study have delivered a step-change in the level of information that we can obtain about iron chemistry in the amyloid plaques. We are excited to have these new insights into how amyloid plaque formation influences iron chemistry in the human brain, as our findings coincide with efforts by others to treat Alzheimer’s disease with iron-modifying drugs,” commented Dr Joanna Collingwood, from Warwick’s School of Engineering, who was part of a research team which characterised iron species associated with the formation of amyloid protein plaques in the human brainabnormal clusters of proteins in the brain. The formation of these plaques is associated with toxicity which causes cell and tissue death, leading to mental deterioration in Alzheimer’s patients.

They found that in brains affected by Alzheimer’s, several chemically-reduced iron species including a proliferation of a magnetic iron oxide called magnetite – which is not commonly found in the human brainoccur in the amyloid protein plaques. The team had previously shown that these minerals can form when iron and the amyloid protein interact with each other. Thanks to advanced measurement capabilities at synchrotron X-ray facilities in the UK and USA, including the Diamond Light Source I08 beamline in Oxfordshire, the team has now shown detailed evidence that these processes took place in the brains of individuals who had Alzheimer’s disease. They also made unique observations about the forms of calcium minerals present in the amyloid plaques.

The team, led by an EPSRC-funded collaboration between University of Warwick and Keele University – and which includes researchers from University of Florida and The University of Texas at San Antonio – made their discovery by extracting amyloid plaque cores from two deceased patients who had a formal diagnosis of Alzheimer’s. The researchers scanned the plaque cores using state-of-the-art X-ray microscopy at the Advanced Light Source in Berkeley, USA and at beamline I08 at the Diamond Light Source synchrotron in Oxfordshire, to determine the chemical properties of the minerals within them.


New Cathode Triples the Energy Storage of Lithium-Ion Batteries

As the demand for smartphones, electric vehicles, and renewable energy continues to rise, scientists are searching for ways to improve lithium-ion batteries—the most common type of battery found in home electronics and a promising solution for grid-scale energy storage. Increasing the energy density of lithium-ion batteries could facilitate the development of advanced technologies with long-lasting batteries, as well as the widespread use of wind and solar energy. Now, researchers have made significant progress toward achieving that goal. A collaboration led by scientists at the University of Maryland (UMD), the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, and the U.S. Army Research Lab have developed and studied a new cathode material that could triple the energy density of lithium-ion battery electrodes

Lithium-ion batteries consist of an anode and a cathode,” said Xiulin Fan, a scientist at UMD and one of the lead authors of the paper. “Compared to the large capacity of the commercial graphite anodes used in lithium-ion batteries, the capacity of the cathodes is far more limited. Cathode materials are always the bottleneck for further improving the energy density of lithium-ion batteries.

Scientists at UMD synthesized a new cathode material, a modified and engineered form of iron trifluoride (FeF3), which is composed of cost-effective and environmentally benign elements—iron and fluorine. Researchers have been interested in using chemical compounds like FeF3 in lithium-ion batteries because they offer inherently higher capacities than traditional cathode materials.

The materials normally used in lithium-ion batteries are based on intercalation chemistry,” said Enyuan Hu, a chemist at Brookhaven and one of the lead authors of the paper. “This type of chemical reaction is very efficient; however, it only transfers a single electron, so the cathode capacity is limited. Some compounds like FeF3 are capable of transferring multiple electrons through a more complex reaction mechanism, called a conversion reaction.

The findings are published in Nature Communications.


Mass Production of Low-Cost Solar Cells

An international team of university researchers today reports solving a major fabrication challenge for perovskite cells — the intriguing potential challengers to silicon-based solar cells.

These crystalline structures show great promise because they can absorb almost all wavelengths of light. Perovskite solar cells are already commercialized on a small scale, but recent vast improvements in their power conversion efficiency (PCE) are driving interest in using them as low-cost alternatives for solar panels.

In the cover article published online in Nanoscale, a publication of the Royal Society of Chemistry, the research team reveals a new scalable means of applying a critical component to perovskite cells to solve some major fabrication challenges. The researchers were able to apply the critical electron transport layer (ETL) in perovskite photovoltaic cells in a new way — spray coating — to imbue the ETL with superior conductivity and a strong interface with its neighbor, the perovskite layer.

The researchers turned to spray coating, which applies the ETL uniformly across a large area and is suitable for manufacturing large solar panels. They reported a 30 percent efficiency gain over other ETLs – from a PCE of 13 percent to over 17 percent – and fewer defects.

Added Taylor, “Our approach is concise, highly reproducible, and scalable. It suggests that spray coating the PCBM ETL could have broad appeal toward improving the efficiency baseline of perovskite solar cells and providing an ideal platform for record-breaking p-i-n perovskite solar cells in the near future.”

The research is led by André D. Taylor, an associate professor in the NYU Tandon School of Engineering’s Chemical and Biomolecular Engineering Department, with Yifan Zheng, the first author on the paper and a Peking University researcher. Co-authors are from the University of Electronic Science and Technology of China, Yale University, and Johns Hopkins University.


Compound to treat Alzheimer’s shows promise in mice

Researchers at The Rockefeller University in New York have made a component, RU-505, which can be used to slow the progression of Alzheimer’s disease in mice.


The investigations build on Alzheimer’s studies conducted in Rockefeller University labs, particularly research focused on how the cells of the brain process the amyloid precursor protein (APP). Faulty regulation of APP processing — in which APP is chopped into smaller pieces during normal brain cell metabolism — is believed to contribute to the development of Alzheimer’s. Scientists in the Fisher Center work on understanding why APP can sometimes produce protein fragments that are safely secreted from the cell and at other times produce a protein called amyloid-ß, a major component of the brain plaques that are a hallmark of Alzheimer’s disease.


Universal Antibody Drug for HIV

A research team led by scientists at AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine of The University of Hong Kong (HKU) invents a universal antibody drug against HIV/AIDS. By engineering a tandem bi-specific broadly neutralizing antibody, the team found that this novel antibody drug is universally effective not only against all genetically divergent global HIV-1 strains tested but also promoting the elimination of latently infected cells in a humanized mouse model. The new findings are now published in the Journal of Clinical Investigation, one of the world’s leading biomedical journals.


AIDS remains an incurable disease. In the world, HIV/AIDS has resulted in estimated 40 million deaths while 36.9 million people are still living with the virus.  To end the HIV/AIDS pandemic, it is important to discover either an effective vaccine or a therapeutic cure. There are, however, two major scientific challenges: the tremendous HIV-1 diversity and the antiviral drug-unreachable latency. Since it is extremely difficult to develop an appropriate immunogen to elicit broadly neutralizing antibodies (bnAbs) against genetically divergent HIV-1 subtypes, developing existing bnAbs as passive immunization becomes a useful approach for HIV-1 prophylaxis and immunotherapy.

Previous studies have investigated the potency, breadth and crystal structure of many bnAbs including their combination both in vitro and in vivo. Naturally occurring HIV-1 resistant strains, however, are readily found against these so-called bnAbs and result in the failure of durable viral suppression in bnAb-based monotherapy. To improve HIV-1 neutralization breadth and potency, bispecific bnAb, which blocks two essential steps of HIV-1 entry into target cells, have been engineered and show promising efficacy in animal models. Before the publication, tandem bi-specific bnAb has not been previously investigated in vivo against HIV-1 infection.


Plastic Waste In Antarctica

Plastic waste and toxic chemicals found in remote parts of the Antarctic this year add to evidence that pollution is spreading to the ends of the Earth, environmental group Greenpeace said.

Microplasticstiny bits of plastic from the breakdown of everything from shopping bags to car tires – were detected in nine of 17 water samples collected off the Antarctic peninsula by a Greenpeace vessel in early 2018, it said. And seven of nine snow samples taken on land in Antarctica found chemicals known as PFAs (polyfluorinated alkylated substances), which are used in industrial products and can harm wildlife.

 We may think of the Antarctic as a remote and pristine wilderness,” Frida Bengtsson of Greenpeace’s Protect the Antarctic campaign said in a statement about the findings. But from pollution and climate change to industrial krill fishing, humanity’s footprint is clear,” she said. “These results show that even the most remote habitats of the Antarctic are contaminated with microplastic waste and persistent hazardous chemicals.”

The United Nations’ environment agency says plastic pollution has been detected from the Arctic to Antarctica and in remote places including the Mariana Trench, the deepest part of the world’s oceans in the Pacific.

UN agency said that less than a 10th of all the plastic ever made has been recycled, and governments should consider banning or taxing single-use bags or food containers to stem a tide of pollution.


Carlos Ghosn: “Driverless Cars Similar To Antibiotics”

Carlos Ghosn, CEO of the Renault-Nissan-Mitsubishi Alliance car maker (ranked 1 in the world),  has detailed the impact of the driverless car on human daily lives (Interview at the French TV BFM). There are between 1,3 million and 1,4 million death on roads every year in the world. The driverless car will eliminate 90% of the fatal accidents.

 “We are five years from safe, driverless cars for all“, adds Ghosn. “Driverless cars impact will be similar to the discovery of antibiotics“.

Famously given the moniker “Le Cost Killer” for his work transforming two ailing brands into one profit-making success story, Carlos Ghosn has achieved celebrity status in the car industry — and was once even portrayed as a superhero in a Japanese comic book.

Today the auto industry is experiencing a paradigm shift with the growth of the global electric vehicle (EV) market, as well as the vast potential offered by disruptive new areas like the autonomously-driven vehicle, using massively Artificial Intelligence. Despite the challenge of staying competitive and profitable in this changing environment, the Brazilian-born 64-year old believes the brands under his watch are already in pole position — and plan to stay there. But he has to stay vigilant and is aware of the dangers, acknowledging that businesses are pushing hard for driverless vehicles. “Amazon, Alibaba, Uberwhy are they interested in this? It’s very simple. The driver is the biggest cost they have — you make a quick calculation about a car running 24-7 for a month: the electricity bill is about $250 a month; the lease of the car is $300; plus three drivers, since you’re running for 24 hours a day, are going to cost you $15,000 per month.  So getting rid of the driver is a 90% reduction in costs.

That’s why Uber, DiDi all want to be the first to have this … because if my competitor gets this before me, I’m dead.”

Electric Road For Electric Cars

In recent years, electric roads have emerged as potential alternatives to the heavy and expensive batteries currently needed in electric road vehicles. Now researchers at Lund University in Sweden have developed an even smarter technology – that doesn’t require digging up stretches of road to install the system. Instead, a small conductive rail is laid on top of segments of the road.


The vehicle has three contact points with the road through which it connects to the power supply. It works much in the same way as a charging pole; except the vehicle charges both while moving and standing still”, explains Mats Alaküla, professor of industrial electrical engineering and automation at Lund University.

The rail is only active when covered by the vehicle, making it a safe option for cities. The system notices when you leave a driving lane and automatically disconnects the “pick up”– reconnecting when you are back. As a driver you wouldn’t notice anything beyond a symbol on your dashboard.

The current challenges for electric vehicles include the large and expensive batteries needed and the limitations in driving range. An electric road solution reduces the need for batteries by up to 80%.

Modern conventional electric vehicles have a driving range of 300-500 kilometers. With an electric road system covering the national and European road network,  you only need a battery range of 50-100 kilometers, to keep you covered if you come to the end of an electric road”, says Mats Alaküla. For longer distances, around 50% of the national and European road network  (e.g 10 out of 20 km on average) needs the rail installed for vehicles to keep running non-stop. The implementation would be different in cities than in other areas, stresses Mats Alaküla. In cities, the rail would be installed strategically on select road segments, bus stops, loading docks for trucks or waiting lanes for taxis, for example. This way, more complicated areas like intersections or roundabouts can be avoided.


E- textiles Control Home Appliances With The Swipe Of A Finger

Electronic textiles could allow a person to control household appliances or computers from a distance simply by touching a wristband or other item of clothing — something that could be particularly helpful for those with limited mobility. Now researchers, reporting in ACS Nano, have developed a new type of e-textile that is self-powered, highly sensitive and washable.


E-textiles are not new, but most existing versions have poor air permeability, can’t be laundered or are too costly or complex to mass-produce. Chinese researchers Jiaona Wang, Hengyu Guo, Congju Li and coworkers wanted to develop an E-textile that overcomes all of these limitations and is highly sensitive to human touch.

The researchers made a self-powered triboelectric nanogenerator by depositing an electrode array of conductive carbon nanotubes on nylon fabric. To make the E-textile washable, they incorporated polyurethane into the carbon nanotube ink, which made the nanotubes firmly adhere to the fabric. They covered the array with a piece of silk and fashioned the textile into a wristband. When swiped with a finger in different patterns, the E-textile generated electrical signals that were coupled to computers to control programs, or to household objects to turn on lights, a fan or a microwave from across the room. The E-textile is breathable for human skin, washable and inexpensive to produce on a large scale, the researchers say.


MIT Artificial Intelligence System Detects 85 Percent Of Cyber Attacks

While the number of cyber attacks continues to increase it is becoming even more difficult to detect and mitigate them in order to avoid serious consequences. A group of researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is working on an ambitious project, the development of a technology that is able to early detect cyber attacks. The experts in collaboration with peers from the startup PatternEx have designed an Artificial Intelligence system that is able to detect 85 percent of attacks by using data from more than 3.6 Billion lines of log files each day.

The researchers have developed a system that combines an Artificial Intelligence engine with human inputs. , which researchers call Analyst Intuition (AI), which is why it has been given the name of AI2. The AI2 system first performs an automatic scan of the content with machine-learning techniques and then reports the results to human analysts which have to discriminate events linked to cyber attacks. According to the experts at the MIT the approach implemented by the AI2 system is 3 times better than modern automated cyber attack detection systems.

“The team showed that AI2 can detect 85 percent of attacks, which is roughly three times better than previous benchmarks, while also reducing the number of false positives by a factor of 5. The system was tested on 3.6 billion pieces of data known as “log lines,” which were generated by millions of users over a period of three months.” states a description of the AI2 published by the MIT.

The greater the number of analyzes carried out by the system, the more accurate the subsequent estimates thanks to the feedback mechanism.

“You can think about the system as a virtual analyst,” says CSAIL research scientist Kalyan Veeramachaneni, who developed AI2 with Ignacio Arnaldo, a chief data scientist at PatternEx and a former CSAIL postdoc. “It continuously generates new models that it can refine in as little as a few hours, meaning it can improve its detection rates significantly and rapidly.”


Tesla’s Autopilot to get ‘full self-driving feature’ in August

Shares of Tesla Inc (TSLA.O) rose as much as 5 percent on Monday after Chief Executive Officer Elon Musk tweeted that its Autopilot driver assistance system will get full self-driving features following a software upgrade in August. Autopilot, a form of advanced cruise control, handles some driving tasks and warns those behind the wheel they are always responsible for the vehicle’s safe operation. But a spate of recent crashes has brought the system under regulatory scrutiny.


To date, Autopilot resources have rightly focused entirely on safety. With V9, we will begin to enable full self-driving features,” Musk tweeted, replying to a Twitter user. Musk said the autopilot issue during lane-merging is better in the current software and will be fully fixed in the August update.

However, it was not clear what self-driving features would be included in the August updateTesla has been gradually upgrading its Autopilot features with regular software updates.

Tesla’s documentation on its website about the “full self-driving capabilities” package says that it is not possible to know exactly when each element of the functionality will be available, as this is highly dependent on local regulatory approval.

A consumer advocacy group on Friday urged Tesla to fix what it termed as “flaws” in Autopilot after a preliminary government report said a Model X driver did not have his hands on the vehicle’s steering wheel in the final six seconds before a fatal crash on March 23.

The software update is good news,” said analyst Chaim Siegel from Elazar Advisors, adding the stock was still benefiting from last week’s prediction by Musk that it would finally hit its production target for its Model 3 sedan.


Genetic Codes Mapping Of 3,000 Dangerous Bacteria

Scientists seeking new ways to fight drug-resistant superbugs have mapped the genomes of more than 3,000 bacteria, including samples of a bug taken from Alexander Fleming’s nose and a dysentery-causing strain from a World War One soldier. The DNA of deadly strains of plague, dysentery and cholera were also decoded in what the researchers said was an effort to better understand some of the world’s most dangerous diseases and develop new ways to fight them. The samples from Fleming – the British scientist credited with discovering the first antibiotic, penicillin, in 1928 – were among more than 5,500 bugs at Britain’s National Collection of Type Cultures (NCTC) one of the world’s largest collections of clinically relevant bacteria. The first bacteria to be deposited in the NCTC was a strain of dysentery-causing Shigella flexneri that was isolated in 1915 from a soldier in the trenches of World War One.

“Knowing very accurately what bacteria looked like before and during the introduction of antibiotics and vaccines, and comparing them to current strains, … shows us how they have responded to these treatments,” said Julian Parkhill of Britain’s Wellcome Sanger Institute who co-led the research. “This in turn helps us develop new antibiotics and vaccines.”

Specialists estimate that around 70 percent of bacteria are already resistant to at least one antibiotic that is commonly used to treat them. This has made the evolution of “superbugs” that can evade one or multiple drugs one of the biggest threats facing medicine today. Among the most serious risks are tuberculosis – which infects more than 10.4 million people a year and killed 1.7 million in 2016 alone – and gonorrhea, a sexually transmitted disease that infects 78 million people a year and which the World Health Organization says is becoming almost untreatable.


Driverless Taxi Service in US and France By The End Of The Year

The City of Lyon in France, will operate a regular cab service by the end of this year, using driverless electric vehicles from the french company Navya. As a pioneer and specialist in the autonomous vehicle market, Navya has conceived, developed and produced the Autonom Cab, the very first autonomous, personalized and shared mobility solution. The cab was designed from the outset to be autonomous, just like all the vehicles in the Autonom range, meaning that there is no cockpit, steering wheel nor pedals.


At the heart of the smart city, Autonom Cab provides an intelligent transport service for individual trips in urban centers. Able to carry 1 to 6 passengers, The driverless taxi is a fluid, continuous and effective solution that answers user expectations in terms of service before, during and after their trip. Available as either a private or shared service, Autonom Cab places an emphasis on conviviality and comfort. On board, passengers can for example choose to work, benefiting from fully connected technology, or partake in an interactive cultural visit of the city. They can also choose a playlist, or buy their cinema or museum tickets.

As well,  the american company Waymo says that their self-driving car service will begin operations by the end of the year in Phoenix, Arizona. Waymo is a subsidiary of Alphabet, the parent company of Google, and the CEO John Krafcik said engineers at both companies were hard at work on the AI backing their self-driving cars.

People will be able to download a Waymo app and secure rides on autonomous vehicles through it, with no driver present, Krafcik said. Waymo has been operating autonomous vehicles on the roads of Phoenix since October, and is one of the first companies to do so in the US. Originally, Waymo was a part of Google before it was spun off into its own company under the Alphabet umbrella. Despite the separation, members of Google‘s Brain team have helped Waymo engineers by beefing up the neural networks underpinning the AI operating the vehicles.


Electric Car For MegaCities

Uniti Swedish startup is building Uniti One, an electric car for crammed cities. There have been 3,000 pre-orders for its first model. Uniti One will have “75% lessenvironmental impact than standard electric vehicles. Uniti aims for its first cars hit European roads in 2019.

Uniti is betting on a small and affordable electric car to meet an explosion of interest in the coming decade. And if Swedish car fans are anything to go by, it may work. Just a couple of months after making its first model available for pre-order through Swedish electronics retailer Mediamarkt, more than 3,000 people have queued up for the company’s sleek two-seater. The total value of the pre-orders, which are fully refundable, now correspond to some 500 million krona (€50 million). “This is an important milestone for our new company,” says Robin Eriksson, Chief Marketing Officer at Uniti in a press release, adding: “We are now working intensively with our development and production partners to finalise supply potential so we can scale accordingly.

Uniti One was unveiled in December and will retail for around 150k SEK ($17,000) a piece. After releasing the vehicle for pre orders this winter, interest has exploded in Sweden. Uniti’s two-seater has been designed with megacities in mind. Initially developed out of Lund University in Southern Sweden, Uniti’s dream of a small-scale electric urban vehicle became a freestanding project in 2016, when the new startup took in just over SEK 12 million ($1,35M) to create a production-ready prototype.

Uniti‘s vehicle is expected to have a range of 150 to 300 kilometers, and will be tailored for urban environments on account of its small size. Uniti claims its car emits 75 percent less carbon-dioxide over a lifecycle than many of today’s electric vehicles.

We see our vehicle as a complement to the bigger cars and will be a second car for many customers. A small two-seater is easier sell,” Eriksson said.


Electrified Roads Slash Cost Of Electric Vehicles

An electrified road in Sweden that is the first in the world to charge vehicles as they drive along is showing promise and could potentially help cut the high cost of electric cars, project backers Vattenfall [VATN.UL] and Elways saidThe state-funded project, named eRoadArlanda and costing about 50 million crowns ($5.82 million), uses a modified electric truck that moves cargo from Stockholm’s Arlanda airport to Postnord’s nearby logistics hub to test the technology.

A electrified rail embedded in the tarmac of the 2-km-long (1.24 miles) road charges the truck automatically as it travels above it. A movable arm attached to the truck detects the rail’s location in the road, and charging stops when the vehicle is overtaking or coming to a halt. The system also calculates the vehicle’s energy consumption, which enables electricity costs to be debited per vehicle and user. 

Elways’ chief executive Gunnar Asplund said the charging while driving would mean electric cars no longer need big batteries — which can be half the cost of an electric car — to ensure they have enough power to travel a useful distance.

The technology offers infinite range — range anxiety disappears” he said. “Electrified roads will allow smaller batteries and can make electric cars even cheaper than fossil fuel ones.”

Asplund reports the Swedish state, which is funding the project, was happy with the results so far, with the only issue — now resolved — having been dirt accumulating on the rail. Elways has patented the electric rail technology and is part of a Swedish consortium backing the eRoadArlanda project that also includes infrastructure company NCC and utility Vattenfall, which provides power from the national grid to the rail.

Such roads will allow (electric vehicles) to move long distances without big, costly and heavy batteries,” said Markus Fischer, a Vattenfall spokesman, adding that installing the arm in new cars would be cheaper than retrofitting current models.


New Combination To Eradicate Staph Aureus

CF-301 is a bacteriophage-derived lysin with potent activity against Staphylococcus aureus (“Staph aureus”) bloodstream infections. CF-301 is the first and only lysin to enter human clinical trials in the US and has recently completed a Phase 1 trial in healthy volunteers. This compound is being developed for the treatment of Staph aureus bloodstream infections (BSI; bacteremia), including endocarditis, caused by methicillin-resistant and susceptible Staphaureus (MRSA and MSSA) strains.


New drug-resistant strains of Staph aureus have been identified which demonstrate resistance against vancomycin and daptomycin, the only two standard-of-care (SOC) antibiotics indicated for the treatment of MRSA BSI in the US. CF-301 has the potential to be a first-in-class, new treatment for Staph aureus bacteremia. CF-301 has specific and rapid bactericidal activity against Staph aureus. Combinations of CF-301 with vancomycin or daptomycin increased survival significantly in animal models of disease when compared to treatment with SOC antibiotics or CF-301 alone. CF-301 targets a highly conserved region of the cell wall that is vital to bacteria, thus making resistance less likely to develop. When used in combination with SOC antibiotics, the result is a novel combination therapy that has the potential to combat the high unmet clinical need of Staph aureus infections.

Advantages are important:

  • Combination with antibiotics offers a superior treatment approach based on animal models
  • Act at least 12x faster than current antibiotics
  • Specifically kills Staph aureus and spares good bacteria
  • Clears biofilm


Genes Behind Humankind’s Big Brain

Scientists have pinpointed three genes that may have played a pivotal role in an important milestone in human evolution: the striking increase in brain size that facilitated cognitive advances that helped define what it means to be human. These genes, found only in people, appeared between 3 and 4 million years ago, just prior to a period when the fossil record demonstrates a dramatic brain enlargement in ancestral species in the human lineage, researchers said. The three nearly identical genes, as well as a fourth nonfunctional one, are called NOTCH2NL genes, arising from a gene family dating back hundreds of millions of years and heavily involved in embryonic development. 

The NOTCH2NL genes are particularly active in the reservoir of neural stem cells of the cerebral cortex, the brain’s outer layer responsible for the highest mental functions such as cognition, language, memory, reasoning and consciousness. The genes were found to delay development of cortical stem cells into neurons in the embryo, leading to the production of a higher number of mature nerve cells in this brain region.

The cerebral cortex defines to a large extent what we are as a species and who we are as individuals. Understanding how it emerged in evolution is a fascinating question, touching at the basic origins of mankind,” said developmental neurobiologist Pierre Vanderhaeghen of Université Libre de Bruxelles and VIB/KULeuven in Belgium.

It is the ultimate evolutionary question and it is thrilling to work in this area of research,” added biomolecular engineer David Haussler, scientific director of the University of California, Santa Cruz Genomics Institute and a Howard Hughes Medical Institute investigator.



Nanorobots Clear Bacteria From Blood

Engineers at the University of California San Diego have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria along with the toxins they produce. These proof-of-concept nanorobots could one day offer a safe and efficient way to detoxify and decontaminate biological fluids.

Researchers built the nanorobots by coating gold nanowires with a hybrid of platelet and red blood cell membranes. This hybrid cell membrane coating allows the nanorobots to perform the tasks of two different cells at once—platelets, which bind pathogens like MRSA bacteria (an antibiotic-resistant strain of Staphylococcus aureus), and red blood cells, which absorb and neutralize the toxins produced by these bacteria. The gold body of the nanorobots responds to ultrasound, which gives them the ability to swim around rapidly without chemical fuel. This mobility helps the nanorobots efficiently mix with their targets (bacteria and toxins) in blood and speed up detoxification.

The work, published May 30 in Science Robotics, combines technologies pioneered by Joseph Wang and Liangfang Zhang, professors in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. Wang’s team developed the ultrasound-powered nanorobots, and Zhang’s team invented the technology to coat nanoparticles in natural cell membranes.

SEM image of a MRSA bacterium attached to a hybrid cell membrane coated nanorobot

By integrating natural cell coatings onto synthetic nanomachines, we can impart new capabilities on tiny robots such as removal of pathogens and toxins from the body and from other matrices,” said Wang. “This is a proof-of-concept platform for diverse therapeutic and biodetoxification applications.”

The idea is to create multifunctional nanorobots that can perform as many different tasks at once,” adds co-first author Berta Esteban-Fernández de Ávila, a postdoctoral scholar in Wang’s research group at UC San Diego. “Combining platelet and red blood cell membranes into each nanorobot coating is synergistic—platelets target bacteria, while red blood cells target and neutralize the toxins those bacteria produce.


Orthodontic Surgery Without Incision

Researchers at the Technion-Israel Institute of Technology have developed a nanotechnology that replaces the surgical scalpel with an “enzymatic blade.” In an article published recently in ACS Nano, the researchers describe the application of this technology in a surgical procedure in the oral cavity. The application spares the pain associated with orthodontic surgeries and significantly reduces tissue recovery time.

The study was led by Dr. Assaf Zinger, within the framework of his doctoral research, mentored by Assistant Professor Avi Schroeder, the director of the Laboratory of Targeted Drug Delivery and Personalized Medicine at the Wolfson Faculty of Chemical Engineering. The novel technology is based on rational use of enzymesbiological molecules the body uses to repair itself, as well as on use of nanoparticles for achieving a targeted therapeutic profile.

In the United States alone, approximately five million people undergo orthodontic treatment each year. To speed up treatment, which typically lasts about two years, many undergo invasive surgery, in which collagen fibers that connect the tooth to the underlying bone tissue are cut.

The technology developed at the Technion softens the collagen fibers via the targeted release of collagenase – an enzyme that specifically breaks down collagen. Using techniques developed in Schroeder’s lab, the collagenase is packaged into liposomesnanometric vesicles. As long as the collagenase particles are packaged in the liposome, they are inactive. But with this special nanotechnology, an ointment is applied on the target site, so that the enzyme begins to gradually leak from the liposome and soften the collagen fibers. The researchers performed a series of tests to determine the collagenase concentration optimal for the procedure and to accelerate tissue repair thereafter.


Electric Vehicle: BMW Launches A Wireless Charging Car

Wireless charging is finally making its way to market as an energy source for electric vehicles, with BMW readying to start production in July for release by the end of summer. BMW’s existing 530e plug-in hybrid sedan will be the first EV coming from a major automaker with an inductive pad capable of charging the electric car. The German automaker first announced the launch in September of last year, explaining how the 530e can be charged on the floor of the garage or parking space once the electric car is parked close enough to the inductive charging pad to work correctly.

The company will roll out wireless charging to other BMW models, but the 530e will introduce the technology to interested consumers. It uses a 3.2 kW current that allows the wireless unit to fully charge the EV within three-and-a-half hours. The charging pad uses an alternating magnetic field that carries power between a coil inside the pad itself and a coil built into the electric car to wirelessly charge the battery.

Wireless charging has been years in the making with major companies getting behind the technology but support from automakers taking a long time. Years from now, wireless charging is expected to play a vital role in mass adoption of EVs and alleviating resistance to charging the cars. Tests are being conducted by university researchers that could one day set up wireless charging points on highways. EV owners will be able to drive from cities such as San Francisco to Los Angeles without stopping for a charge.

Transferring power wirelessly goes back more than a century ago when electricity pioneer Nikola Tesla worked tirelessly but failed to bring wireless transmission beyond the Wardenclyffe Tower in Shoreham, New York. It was said to have eventually ruined his reputation and career as Tesla became obsessed over making the technology work the way radio waves had been sending communications over the airwaves.


Gravity, An Alternative Energy

A Dutch architect has developed a new technique to generate free energy in a sustainable way at home, whereby energy is released by perpetually unbalancing a weight — offering an alternative to solar and wind technology.


Gravity, an inexhaustible and always present source of power for harvesting energy from falling or tilting objects. 


Intuitively, I thought that gravity must have something to offer, given that everything is drawn to earth,” co-creator Janjaap Ruijssenaars of Universe Architecture said. “By unbalancing a weight at the top that is only just stable, using little force, a large force is created at the bottom at a single point. The idea was that this should yield something.”

Scientists are calling the patent-pending technique a breakthrough.

Thanks to clever use of gravity, the energy yield from the so-called Piezomethod, which converts mechanical pressure into electrical energy, is increased from 20 to 80 percent,” said Theo de Vries, system architect and senior lecturer of the group Robotics and Mechatronics, associated with the University of Twente. “Ruijssenaars literally turned the method on its head, as a result of which we, as scientists, have started to look at this method in a new light. Everything that is currently offered as mechanical energy will actually be useful, thanks to the invention.

In situations where we cannot work sustainably with solar modules, we may well be able to use this new technique,” said Professor Beatriz Noheda, faculty of Mathematics and Natural Science at the Rijksuniversiteit Groningen who believes piezoelectric energy harvesting is a real part of the future.

Practical applications are being sought for the technique, such as the manufacture of a sustainable and, therefore, “cleanphone charger, or a generator for lighting in homes, among endless other possibilities.


Nanoparticles Cross The Blood-Brain Barrier, Shrink Glioblastoma Tumors

Glioblastoma multiforme, a type of brain tumor, is one of the most difficult-to-treat cancers. Only a handful of drugs are approved to treat glioblastoma, and the median life expectancy for patients diagnosed with the disease is less than 15 months.

MIT researchers have now devised a new drug-delivering nanoparticle that could offer a better way to treat glioblastoma. The particles, which carry two different drugs, are designed so that they can easily cross the blood-brain barrier and bind directly to tumor cells. One drug damages tumor cells’ DNA, while the other interferes with the systems cells normally use to repair such damage.

In a study of mice, the researchers showed that the particles could shrink tumors and prevent them from growing back.

What is unique here is we are not only able to use this mechanism to get across the blood-brain barrier and target tumors very effectively, we are using it to deliver this unique drug combination,” says Paula Hammond, a David H. Koch Professor in Engineering, the head of MIT’s Department of Chemical Engineering, and a member of MIT’s Koch Institute for Integrative Cancer Research.


3D Printed House Built In 24 Hours For $4000

US construction technologies firm Icon has demonstrated a method for 3D printing a single storey house in less than 24 hours.

The small company – which is hoping to pioneer the use of 3D printing for homebuilding – has unveiled a 650 square foot (61 m2)  home in Austin, Texas that was built using its Vulcan 3D printer, which builds structures by depositing layers of specially formulated cement.

The firm claims that it can print an entire home for $10,000 but that costs could ultimately be brought as low $4000.

It has now joined forces with housing charity New Story to further develop the technology and use it to build affordable homes in parts of the developing world. The two companies reportedly plan to work together to build around 100 3D printed homes in El Salvador.


Learning How To Create And Keep Memories

Drug manufacturers are looking at ways to alleviate memory loss, one of the most distressing symptoms of diseases such as Alzheimer’s. Professor George Kemenes from the Sussex University (UK) intends to show how such drugs could work.


The goal is to identify brain molecules that are crucial for the building up and maintenance of long-term memory,’ he says. ‘We aim to find ways to manipulate these molecules to enable us to control functions and improve the speed at which animals learn, or help them remember for longer periods of time. This would then link into drug development for humans.’

Pond snails are ideal for this kind of study because they share important characteristics with humans. These include the basic molecular mechanisms that control long-term memory and learning. These mechanisms involve the activation or suppression of a protein, CREB, which is key to the formation of long-term memory. CREB is present in species ranging from molluscs and flies to rats and humans.

Memory responses can be tested with classic Pavlovian experiments. Snails exposed to the smell of pear drops followed by food still respond weeks later to the smell by moving their mouth parts in anticipation of food. This ‘flashbulbmemory is created by just one exposure to the two stimuli. The snails have a memory associating the smell of pear drops with the arrival of food – a learned and remembered response.

In a similar test, a snail is exposed to a mildly unpleasant stimulus by touching its head with a paintbrush (snails don’t like being tickled) before food is introduced. It takes much longer for the snail to associate an unpleasant stimulus with the arrival of food. Recently, George has succeeded in inhibiting the quickly learned memory and improving the weaker, more slowly-acquired memory at molecular level.

Working in collaboration with colleagues at the University, key findings include the discovery that amyloid peptides, substances that are thought to underlie Alzheimer’s disease in humans, also cause memory loss in snails. Another finding is that age-related memory loss in snails can be prevented by treatment with a small peptide known as PACAP.


Project To Map Ocean Floor By 2030

Set to map the entirety of the global ocean floor by 2030, the Nippon Foundation-GEBCO Seabed 2030 Project has started operations, based on a seed money pledge of US$2 million-per-year from the Japan-based Nippon Foundation.


Officially launched during the United Nations Ocean Conference (5-9 June 2017) in New York, the project draws on the experience of international organizations and mapping experts under the coordination of UNESCO’s Intergovernmental Oceanographic Commission (IOC) and the International Hydrographic Organization (IHO).

Having a comprehensive map of the ocean floor could assist global efforts to combat pollution, aid marine conservation, forecast tsunami wave propagation, and help inform the study of tides and wave action. It could also help in search and rescue operations, as in the disappearance of the MH370 Malaysian Airlines flight in March 2014.

Despite its obvious useful applications, detailed bathymetric data – the topography of the ocean floor – is still missing for much of the global ocean. More than 85% of the world ocean floor remains unmapped with modern mapping methods, and by any technological standards we know more about Mars than we do about the depths of the ocean.


Nanoparticles Fom Tea Leaves Destroy 80% Of Lung Cancer Cells

Nanoparticles derived from tea leaves inhibit the growth of lung cancer cells, destroying up to 80% of them, new research by a joint Swansea University (UK) and Indian team has shown. The team made the discovery while they were testing out a new method of producing a type of nanoparticle called quantum dots.  These are tiny particles which measure less than 10 nanometres.  A human hair is 40,000 nanometres thick.

Although nanoparticles are already used in healthcare, quantum dots have only recently attracted researchers’ attention.  Already they are showing promise for use in different applications, from computers and solar cells to tumour imaging and treating cancerQuantum dots can be made chemically, but this is complicated and expensive and has toxic side effects.  The Swansea-led research team were therefore exploring a non-toxic plant-based alternative method of producing the dots, using tea leaf extract.

Tea leaves contain a wide variety of compounds, including polyphenols, amino acids, vitamins and antioxidants.   The researchers mixed tea leaf extract with cadmium sulphate (CdSO4) and sodium sulphide (Na2S) and allowed the solution to incubate, a process which causes quantum dots to form.   They then applied the dots to lung cancer cells. Tea leaves are a simpler, cheaper and less toxic method of producing quantum dots, compared with using chemicals, confirming the results of other research in the field. Quantum dots produced from tea leaves inhibit the growth of lung cancer cells.  They penetrated into the nanopores of the cancer cells and destroyed up to 80% of them.  This was a brand new finding, and came as a surprise to the team.

The research, published in “Applied Nano Materials”, is a collaborative venture between Swansea University experts and colleagues from two Indian universities.


Sea Bubbles, The Flying Taxi Tested In Paris

Paris trips Sea Bubbles up. These flying taxis, that are said to be tested on the Seine river by late September, will finally be tested in Paris in May-June 2018 and aim at making the Seine river a common means of transport so that you can cross the city of lights in less than 15 minutes!

Bertrand Lambert, Sea Bubbles inventor, announces to be able to navigate the Seine in May-June this year. The famous flying taxis have already been successfully tested last June.


For the record, initially planned for late September, Sea Bubbles testing have been postponed because of technical and regulatory constraints. On the one hand to improve the system enabling to make the driving available to everyone and on the other hand for speed issues. Actually, these machines can “fly” at a maximum speed of 32mph and cannot reduce it. Yet, the Seine limited speed is set at 7.5mph in the city center and 11.2mph outside. According to Voies Navigables de France (Navigable Waterways of France), a steadfast speed promises a great deal of discussions.

Finally, after months of negotiations, Alain Thébault, helped by Paris Authorities and the Ministry of Transport, is finally being authorized to navigate or “fly” at a speed of 15.53 mph.This new testing will be open to the public this time and last 2 months. Let’s fly over the Seine!

Called “Sea Bubbles”, these flying boats seem to come straight from sci-fi movies. Able to accommodate up to 4 passengers and one pilot, this new means of circulating is electric and rather simple to use.

In concrete terms, how does it work? Under each machine, there are wings propelled by two electric motors. When started up, they take off and lift but they still touch the water. Notwithstanding, the rubbing is reduced by 40% in comparison with a boat hull.


With The Artificial Arm Luke, You Easily Peel A Banana

You have lost completely your arm. Now imagine…
Reaching up to pluck an apple from a tree. Confidently manipulating chopsticks to pick up small bites of food. Picking up and operating a heavy piece of equipment with ease, or Peeling a banana without bruising the fruit. All this is possible as the LUKE prosthetic arm can read nerve signals from muscle left after an amputation

You will be able to do some of these things the very first time you put the arm on, all with a level of comfort and integration never realized before due to the sophisticated compression and release design of the High-Fidelity interface.


Are you a good candidate for the LUKE Arm? Currently, the LUKE Arm is available for three levels of amputationlower arm or trans-radialmid-arm or trans-humeral, and shoulder disarticulation (this level does not use the High-Fidelity Interface). The company which sells the product, Next Step Bionics & Prosthetics is the country’s premier bionic and prosthetic provider for amputees, blending technology and expertise with a personal approach to healthcare.

If you are a veteran, the LUKE Arm is covered in many cases by the VA. Other candidates may have access to funding depending on their particular circumstances. As a preferred provider of the LUKE Arm, the Next Step company answer any questions you may have on the arm and whether it is a good fit for your particular needs.

As one of the original development partners, Next Step has unique expertise in the fitting and use of the LUKE Arm. The goal is in helping patients get their lives back. To support the overall patient experience, an experienced, patient-centered team will ensure the strongest, most supportive patient experience. Customized physical and occupational therapy offered to the patients is offered in partnership with Catholic Medical Center.


How To Charge In Seconds 3D Batteries

The world is a big place, but it’s gotten smaller with the advent of technologies that put people from across the globe in the palm of one’s hand. And as the world has shrunk, it has also demanded that things happen ever faster – including the time it takes to charge an electronic device.

A cross-campus collaboration led by Ulrich Wiesner, Professor of Engineering in the Department of Materials Science at Cornell University, addresses this demand with a novel energy storage device architecture that has the potential for lightning-quick charges.

The group’s idea: Instead of having the batteries’ anode and cathode on either side of a nonconducting separator, intertwine the components in a self-assembling, 3D gyroidal structure, with thousands of nanoscale pores filled with the components necessary for energy storage and delivery.

A rendering of the 3D battery architecture (top; not to scale) with interpenetrating anode (grey, with minus sign), separator (green), and cathode (blue, plus sign), each about 20 nanometers in size. Below are their respective molecular structures

This is truly a revolutionary battery architecture,” said Wiesner, whose group’s paper, “Block Copolymer Derived 3-D Interpenetrating Multifunctional Gyroidal Nanohybrid for Electrical Energy Storage,” was published in Energy and Environmental Science, a publication of the Royal Society of Chemistry.

This three-dimensional architecture basically eliminates all losses from dead volume in your device,” Wiesner said. “More importantly, shrinking the dimensions of these interpenetrated domains down to the nanoscale, as we did, gives you orders of magnitude higher power density. In other words, you can access the energy in much shorter times than what’s usually done with conventional battery architectures.”

How fast is that? Wiesner said that, due to the dimensions of the battery’s elements being shrunk down to the nanoscale, “by the time you put your cable into the socket, in seconds, perhaps even faster, the battery would be charged.”

The architecture for this concept is based on block copolymer self-assembly, which the Wiesner group has employed for years in other devices, including a gyroidal solar cell and a gyroidal superconductor. Joerg Werner, Ph.D. ’15, lead author on this work, had experimented with self-assembling filtration membranes, and wondered if the same principles could be applied to carbon materials for energy storage.


Bio-material Stronger Than Steel

At DESY‘s X-ray light source PETRA III, a team led by Swedish researchers has produced the strongest bio-material that has ever been made. The artifical, but bio-degradable cellulose fibres are stronger than steel and even than dragline spider silk, which is usually considered the strongest bio-based material. The team headed by Daniel Söderberg from the KTH Royal Institute of Technology in Stockholm reports the work in the journal ACS Nano of the American Chemical Society. The ultrastrong material is made of cellulose nanofibres (CNF), the essential building blocks of wood and other plant life. Using a novel production method, the researchers have successfully transferred the unique mechanical properties of these nanofibres to a macroscopic, lightweight material that could be used as an eco-friendly alternative for plastic in airplanes, cars, furniture and other products.


The resulting fibre seen with a scanning electron microscope (SEM)

Our new material even has potential for biomedicine since cellulose is not rejected by your body”, explains Söderberg.

The scientists started with commercially available cellulose nanofibres that are just 2 to 5 nanometres in diameter and up to 700 nanometres long. A nanometre (nm) is a millionth of a millimetre. The nanofibres were suspended in water and fed into a small channel, just one millimetre wide and milled in steel. Through two pairs of perpendicular inflows additional deionized water and water with a low pH-value entered the channel from the sides, squeezing the stream of nanofibres together and accelerating it.

This process, called hydrodynamic focussing, helped to align the nanofibres in the right direction as well as their self-organisation into a well-packed macroscopic thread. No glue or any other component is needed, the nanofibres assemble into a tight thread held together by supramolecular forces between the nanofibres, for example electrostatic and Van der Waals forces.


Electric Powered Flight Ten Times Less Expensive

Consumer passenger flight could be the next industry that’s transformed by electric powertrains, and Seattle’s Zunum Aero wants to be at the forefront of that change. The Seattle-based company, which is backed by Boeing’s HorizonX fund and Jet Blue’s Technology Ventures, has a plan to change the fundamental economics of regional flight, and shift the economics of air travel on a path towards eventual fully electric flight.

The first Zunum aircraft is designed for regional service, with seating for 12 passengers and a delivery window starting in 2022. The economics are potentially game-changing, with operating expenses of around $260 per hour for the aircraft. With a max cruise stepped of 340 miles per hour (547 km/h) in the air, a take-off distance of 2,200 feet (671 meters), a total hybrid-electric range of 700 miles (1127 km), which it hopes to scale to over 1,000 (1610 km) )in time and 80 percent lower noise and emissions vs. traditional regional planes, Zunum is position its airplane as the perfect way to light up under-utilized regional airports across the U.S., providing affordable and efficient commuter flights where economic realities have made running regular service impractical.

In the past, very intentionally, we were quiet about operating costs, because it’s just shockingly low what you can get with an electric. So that you can get an aircraft of a size that could never compete with an airliner that can get you below commercial fares,” Zunum Aero CEO Ashish Kumar told in an interview. He put the cost per seat operating expenses at around 8 cents per mile. “That’s about one-tenth the operating cost of a business jet per hour,” he said.


A Pinch Of Salt Improves Drastically Battery Performance

Researchers at Queen Mary University of London, University of Cambridge and Max Planck Institute for Solid State Research have discovered how a pinch of salt can be used to drastically improve the performance of batteries. Surprisingly, the salt reacted with the sponge in special ways and turned it from a homogeneous mass to an intricate structure with fibres, struts, pillars and webs. This kind of 3D hierarchically organised carbon structure has proven very difficult to grow in a laboratory but is crucial in providing unimpeded ion transport to active sites in a battery. In the study, published in JACS (Journal of the American Chemical Society), the researchers demonstrate that the use of these materials in Lithium-ion batteries not only enables the batteries to be charged-up rapidly, but also at one of the highest capacities.

Due to their intricate architecture the researchers have termed these structures ‘nano-diatoms’, and believe they could also be used in energy storage and conversion, for example as electrocatalysts for hydrogen production.

This metamorphosis only happens when we heat the compounds to 800 degrees centigrade and was as unexpected as hatching fire-born dragons instead of getting baked eggs in the Game of Thrones. It is very satisfying that after the initial surprise, we have also discovered how to control the transformations with chemical composition,” said lead author Dr Stoyan Smoukov, from Queen Mary’s School of Engineering and Materials Science.


Orgasmic Fruit Flies

Male fruit flies enjoy orgasms more than alcohol – and Israeli researchers who tested the insects’ addiction to pleasure hope to apply their discovery to controlling human substance abuse. Scientists from Bar-Ilan University near Tel Aviv exposed the flies to a red light that activated a protein, corazonim (CRZ), in the abdomen that triggers ejaculation 

Galit Shohat-Ophir, who headed the team, said they then tested how repeated ejaculation affected the flies’ desires for other pleasures, such as alcohol-spiked liquid. Flies that orgasmed, as opposed to a control group that had not been stimulated, shunned the alcohol, preferring to congregate in the “red light district” because “it feels good” there, said Shir Zer Krispil, who led the study.

The scientists, whose research was published in the journal Current Biology, surmised that substance abuse in humans could be moderated by other rewardsnot necessarily of a sexual nature – that are naturally available, such as social interaction or sports.

In experiences where there is high reward level by natural reward – alcohol as a drug reward is not valuable,” Shohat-Ophir said.

Strain Improves Performance of Atomically Thin Semiconductor

Researchers in UConn’s Institute of Materials Science significantly improved the performance of an atomically thin semiconductor material by stretching it, an accomplishment that could prove beneficial to engineers designing the next generation of flexible electronics, nano devices, and optical sensors.

In a study appearing in the research journal Nano Letters, Michael Pettes, assistant professor of mechanical engineering, reports that a six-atom thick bilayer of tungsten diselenide exhibited a 100-fold increase in photoluminescence when it was subjected to strain. The material had never exhibited such photoluminescence before.

The findings mark the first time scientists have been able to conclusively show that the properties of atomically thin materials can be mechanically manipulated to enhance their performance, Pettes says. Such capabilities could lead to faster computer processors and more efficient sensors.

The process the researchers used to achieve the outcome is also significant in that it offers a reliable new methodology for measuring the impact of strain on ultrathin materials, something that has been difficult to do and a hindrance to innovation.

Experiments involving strain are often criticized since the strain experienced by these atomically thin materials is difficult to determine and often speculated as being incorrect,” says Pettes. “Our study provides a new methodology for conducting strain-dependent measurements of ultrathin materials, and this is important because strain is predicted to offer orders of magnitude changes in the properties of these materials across many different scientific fields.”


Israeli Startup To Grow Meat In The Lab

 Tyson Foods (TSN.N), the largest U.S. meat processor, has invested in an Israeli biotech company developing a way to grow affordable meat in a laboratory that takes live animals out of the equation.

Future Meat Technologies focuses on producing fat and muscle cells that are the core building blocks of meat, and is one of several firms working on technology to match rising demand for meat without adding more pressure on land from livestock. The firm’s founder and chief scientist, Yaakov Nahmias, said cultured meat typically had a production price of about $10,000 per kg but so far his company had reduced that to $800/kg and had “a clear roadmap to $5$10/kg by 2020.” Tyson’s venture capital arm has supported the Jerusalem-based startup by co-leading $2.2 million in seed investment.

We continue to invest significantly in our traditional meat business but also believe in exploring additional opportunities for growth that give consumers more choices,” said Justin Whitmore, Tyson’s executive vice president for corporate strategy. In December, Tyson raised its stake in plant-based protein maker Beyond MeatDemand for meat is expected to double between 2000 and 2050, when the earth’s population is set to surpass 9 billion, and proponents of growing meat in the lab say it is the only way to meet such demand without destroying the environment.


Laser Shoes to Fight Parkinson’s

Freezing of gait, an absence of forward progression of the feet despite the intention to walk, is a debilitating symptom of Parkinson’s disease. Laser shoes that project a line on the floor to the rhythm of the footsteps help trigger the person to walk. The shoes benefit the wearer significantly, according to research by the University of Twente and Radboud university medical center (Netherlands), which has been published in Neurology, the scientific journal of the American Academy of Neurology.


Walking problems are common and very disabling in Parkinson’s disease. In particular, freezing of gait is a severe symptom which generally develops in more advanced stages. It can last seconds to minutes and is generally triggered by the stress of an unfamiliar environment or when medication wears off. Because the foot remains glued to the floor but the upper body continues moving forward, it can cause the person to lose her balance and fall.
Parkinson patient experience a unique phenomenon. By consciously looking at objects on the floor, such as the lines from a zebra crossing (‘visual cues’), and stepping over them, they are able to overcome their blockages during walking. This activates other circuits in the brain, hereby releasing the blockages and allowing the person to continue walking. This is why patients often make use of floor tiles at home. With the laser shoes, these useful cues can be continuously applied in everyday life, to walk better and safer. The principle behind the laser shoes is simple: upon foot contact, the left shoe projects a line on the floor in front of the right foot. The patient steps over or towards the line, which activates the laser on the right shoe, and so on.

The present research study shows a beneficial effect in a large group of patients. The number of ‘freezingepisodes was reduced by 46% with the use of the shoes. The duration of these episodes was also divided by two. Both effects were strongest in patients while they had not taken their medication yet. This is typically when patients experience the most problems with walking. But an improvement was also seen after the patients had been taking their medication.


Harvesting Clean Hydrogen Fuel Through Artificial Photosynthesis

A new, stable artificial photosynthesis device doubles the efficiency of harnessing sunlight to break apart both fresh and salt water, generating hydrogen that can then be used in fuel cells.

The device could also be reconfigured to turn carbon dioxide back into fuel.

Hydrogen is the cleanest-burning fuel, with water as its only emission. But hydrogen production is not always environmentally friendly. Conventional methods require natural gas or electrical power. The method advanced by the new device, called direct solar water splitting, only uses water and light from the sun.

If we can directly store solar energy as a chemical fuel, like what nature does with photosynthesis, we could solve a fundamental challenge of renewable energy,” said Zetian Mi, a professor of electrical and computer engineering at the University of Michigan who led the research while at McGill University in Montreal.

Faqrul Alam Chowdhury, a doctoral student in electrical and computer engineering at McGill, said the problem with solar cells is that they cannot store electricity without batteries, which have a high overall cost and limited life.

The device is made from the same widely used materials as solar cells and other electronics, including silicon and gallium nitride (often found in LEDs). With an industry-ready design that operates with just sunlight and seawater, the device paves the way for large-scale production of clean hydrogen fuel.

Previous direct solar water splitters have achieved a little more than 1 percent stable solar-to-hydrogen efficiency in fresh or saltwater. Other approaches suffer from the use of costly, inefficient or unstable materials, such as titanium dioxide, that also might involve adding highly acidic solutions to reach higher efficiencies. Mi and his team, however, achieved more than 3 percent solar-to-hydrogen efficiency.


A stamp-sized nanofilm stores more data than 200 DVDs

Ninety percent of the world’s data has been created in the last two years, with a massive 2.5 quintillion bytes generated every single day. As you might suspect, this causes some challenges when it comes to storage. While one option is to gradually turn every square inch of free land into giant data centers, researchers from the  Center for Advanced Optoelectronic Functional Material Research, Northeast Normal University (China) may have come up with a more elegant solution. In a potential breakthrough, they have developed a new nanofilm80 times thinner than a human hair — that is able to store large amounts of data holographically. A single 10-by-10 cm piece of this film could archive more than 1,000 times the amount of data found on a DVD. By our count, that means around 8.5 TB of data. This data can also be retrieved incredibly quickly, at speeds of up to 1GB per second: The equivalent of 20 times the reading speed of modern flash memory.

In the journal Optical Materials Express, the researchers detail the fabrication process of the new film. This involves using a laser to write information onto silver nanoparticles on a titanium dioxide (titania) semiconductor film. This stores the data in the form of 3D holograms, thereby allowing it to be compressed into smaller spaces than regular optical systems.

That’s exciting enough, but what really makes the work promising is the fact that the data is stored in a way that is stable. Previous attempts at creating films for holographic data storage have proven less resilient than alternate storage methods since they can be wiped by exposure to ultraviolet light. That makes them less-than-viable options for long-term information storage. The creators of this new film, however, have shown that it has a high stability even in the presence of such light. This environmental stability means that the device could be used outside — or even conceivably in harsher radiation conditions like outer space.

Going forward, the researchers aim to test their new film by putting it through its paces outdoors. Should all go according to plan, it won’t be too long before this is available on the market. We might be willing to throw down a few bucks on Kickstarter for a piece!


Non-toxic Virus Quickly Dissipate Heat From Electronic Devices

The researcher team of Tokyo Tech discovered that the film constructed by assembling a nontoxic filamentous virus functions as a heat dissipation material, and that can be simply prepared by drying the virus aqueous solution at room temperature. This discovery is expected to elucidate the mechanism of new heat transport in electronics.

Organic polymeric materials generally have low thermal conductivity and are not suitable for rapid heat dissipation of electric and electronic equipment in the past. In order to improve its thermal conductivity, it has been considered effective to heat transfer through a covalent bond by “orientation processing” in which molecules are aligned in the same direction, or to composite with an inorganic material.

A research team led by Assistant Professor Toshiki Sawada and Professor Takeshi Serizawa is focusing on the capability to form regularly assembled structures in a wide scale from nano to macro (so called hierarchical assembly) observed in the natural systems and the hierarchically assembled structures prepared in this way, the phenomenon where molecules accumulate around the perimeter as an aqueous solution in which molecules are dissolved evaporates (coffee ring effect) was utilized to assemble a filamentous virus for the film preparation. As a result, it was found that the thermal diffusivity at the edge of the film drastically enhanced to a value comparable to that of inorganic glass, and that facilitates the utilization of the hierarchically assembled biomacromolecule. This helps future development of electric and electronic devices composed of not only viruses but also various naturally derived molecules.

(a) Phage and (b) hexagonally assembled structures of the phages in the film.

Until now, orientation processing and compositing with inorganic materials have been considered effective for the high thermal conductivity of organic polymeric materials. However, since this virus film can be prepared by evaporating an aqueous solution of a filamentous virus at room temperature, it is expected to lead to the establishment of a method for easily constructing heat dissipation materials under mild conditions that do not require special operations.


How To Hear Art

Are you aware of the fact that some of us can hear colors? Synesthesia, which is a neurological condition causing the stimulation of one sense to produce experiences in a different one, affects around 4% of the population. Thanks to the work of scientists from the Lodz University of Technology (Poland), soon there will be a way for the rest of us to experience a similar sensation too.


The “Hearing Art” project is an innovative system which enables its users to read digital images through the use of sound. Using motion sensor technology to map out the placement of each color in the chosen image, the app generates a sound suitable for each color. In order to do so, the system analyses the hue, saturation, and value of a color and uses its placement on the color wheel to emit an appropriate sound.

While the system could serve as an additional auditory sensation for just about any art lover, the researchers point towards the revolutionary potential of the technology for visually impaired people. Once implemented, the innovation could make art galleries much more accessible by enabling blind people to experience visual art in a completely different way. The project’s developers admit that the technology would not work for people who were completely blind from birth – it is however suitable for people whose visual impairment is partial, or acquired later in life.

So how does it work in practice? “The user aims at a specific point of a painting. As they start moving their arm in its vicinity, they begin hearing a melody, as each color, and each pixel of the image is assigned a different tone” – explains one of the system’s creators, Damian Jóźwiak.

While the project takes advantage of the fact that visually impaired people often experience a heightened sense of hearing, and are thus more sensitive to sound stimuli, the technology has been adapted for sighted participants as well. The motion sensor is marked with a red dot on the system’s display, which shows its placement on the original painting. By tracking the placement of the sensor on the image, users are able to associate each color with a sound.

As for its accuracy, preliminary tests conducted in the Lodz chapter of the Polish Association of the Blind have revealed an 80% success rate in “reading” colors with the use of the technology.The biggest shock came when one of the participants has attempted calling one of their visually impaired friends – the recipient was able to recognize 100% of the sounds and identify each color assigned to it – adds Jóźwiak.

So what’s in store for the project in the near future? The creators of the “Hearing Art” see its future in museums, where it could be experience by visually impaired and sighted patrons alike. If you feel like hearing colors could be an interesting experience, feel free to plan a trip to the Museum of Lodz in the near future, as the application will find its first home there.


Perovskite Solar Cells One Giant Step Closer To The Market

Harnessing energy from the sun, which emits immensely powerful energy from the center of the solar system, is one of the key targets for achieving a sustainable energy supplyLight energy can be converted directly into electricity using electrical devices called solar cells. To date, most solar cells are made of silicon, a material that is very good at absorbing light. But silicon panels are expensive to produce.

Scientists have been working on an alternative, made from perovskite structures. True perovskite, a mineral found in the earth, is composed of calcium, titanium and oxygen in a specific molecular arrangement. Materials with that same crystal structure are called perovskite structuresPerovskite structures work well as the light-harvesting active layer of a solar cell because they absorb light efficiently but are much cheaper than silicon. They can also be integrated into devices using relatively simple equipment. For instance, they can be dissolved in solvent and spray coated directly onto the substrate.

Materials made from perovskite structures could potentially revolutionize solar cell devices, but they have a severe drawback: they are often very unstable, deteriorating on exposure to heat. This has hindered their commercial potential. The Energy Materials and Surface Sciences Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), led by Prof. Yabing Qi, has developed devices using a new perovskite material that is stable, efficient and relatively cheap to produce, paving the way for their use in the solar cells of tomorrow. This material has several key features:

  • First, it is completely inorganic – an important shift, because organic components are usually not thermostable and degrade under heat. Since solar cells can get very hot in the sun, heat stability is crucial. By replacing the organic parts with inorganic materials, the researchers made the perovskite solar cells much more stable..  “The solar cells are almost unchanged after exposure to light for 300 hours,” says Dr. Zonghao Liu, an author on the paper.
  • Second feature: Inorganic perovskite solar cells tend to have lower light absorption than organic-inorganic hybrids, however, but the OIST researchers doped their new cells with manganese in order to improve their performance. Manganese changes the crystal structure of the material, boosting its light harvesting capacity.  “Just like when you add salt to a dish to change its flavor, when we add manganese, it changes the properties of the solar cell,” says Liu.
  • Thirdly, in these solar cells, the electrodes that transport current between the solar cells and external wires are made of carbon, rather than of the usual gold. Such electrodes are significantly cheaper and easier to produce, in part because they can be printed directly onto the solar cells. Fabricating gold electrodes, on the other hand, requires high temperatures and specialist equipment such as a vacuum chamber.

The findings are published in Advanced Energy Materials. Postdoctoral scholars Dr. Jia Liang and Dr. Zonghao Liu made major contributions to this work.


How To Deliver Drug Deep In The Brain

By learning how rabies virus travels in the brain, Anti-Parkinson’s drug can be delivered deep in the brain where currently the drugs are not able to reachRabies virus has the capability to trick the nervous system and cross the blood brain barrier. This trick could be used for drug design. Glycoprotein 29 present on the rabies virus is attached to a nanoparticle stuffed full of deferoxamine ( Anti-Parkinson’s medication) and injected into the brain to trick the brain.

Rabies virus may have some tricks to bypass the blood brain barrier, this trick can be used to treat disease that require drugs to effectively cross the blood brain barrier, finds a new study.

The researchers can now exploit rabies viruses machinery to deliver a Parkinson’s disease medication directly to the brain. Upon injection the nanoparticles grab excess iron and relieve symptoms. While the common cause of Parkinson’s disease is unknown, it has been proved that accumulation of iron in neurons is one of the commonest features of Parkinson’s disease.

Deferoxamine is a metal-grabbing compound and sop up the excess iron in patients. But a large quantity of this drug needs to reach the brain in order for them work.
To usher deferoxamine into the brain, the researchers Yan-Zhong Chang, Xin Lou, Guangjun Nie took advantage of a key part of the rabies virusGlycoprotein 29.
When they injected this iron-grabbing nanoparticles into mouse models of Parkinson’s disease, the iron levels dropped and this reduced brain damage caused by Parkinson’s disease.

The findings of this study is published in the ACS Nano journal.


Squeeze And Get More Power Out Of Solar Cells

Physicists at the University of Warwick have published new research in the Journal Science  that could literally squeeze more power out of solar cells by physically deforming each of the crystals in the semiconductors used by photovoltaic cells. The paper entitled the “Flexo-Photovoltaic Effect” was written by Professor Marin Alexe, Ming-Min Yang, and Dong Jik Kim who are all based in the University of Warwick’s Department of Physics.

The Warwick researchers looked at the physical constraints on the current design of most commercial solar cells which place an absolute limit on their efficiency. Most commercial solar cells are formed of two layers creating at their boundary a junction between two kinds of semiconductors, p-type with positive charge carriers (holes which can be filled by electrons) and n-type with negative charge carriers (electrons). When light is absorbed, the junction of the two semiconductors sustains an internal field splitting the photo-excited carriers in opposite directions, generating a current and voltage across the junction. Without such junctions the energy cannot be harvested and the photo-exited carriers will simply quickly recombine eliminating any electrical charge. That junction between the two semiconductors is fundamental to getting power out of such a solar cell but it comes with an efficiency limit. This Shockley-Queisser Limit means that of all the power contained in sunlight falling on an ideal solar cell in ideal conditions only a maximum of 33.7% can ever be turned into electricity.

There is however another way that some materials can collect charges produced by the photons of the sun or from elsewhere. The bulk photovoltaic effect occurs in certain semiconductors and insulators where their lack of perfect symmetry around their central point (their non-centrosymmetric structure) allows generation of voltage that can be actually larger than the band gap of that material. Unfortunately the materials that are known to exhibit the anomalous photovoltaic effect have very low power generation efficiencies, and are never used in practical power-generation systems. The Warwick team wondered if it was possible to take the semiconductors that are effective in commercial solar cells and manipulate or push them in some way so that they too could be forced into a non-centrosymmetric structure and possibly therefore also benefit from the bulk photovoltaic effect.

Extending the range of materials that can benefit from the bulk photovoltaic effect has several advantages: it is not necessary to form any kind of junction; any semiconductor with better light absorption can be selected for solar cells, and finally, the ultimate thermodynamic limit of the power conversion efficiency, so-called Shockley-Queisser Limit, can be overcome“,  explains Professor Marin Alexe  (University of Warwick).


Nanoscale Transistor

Flexible televisions
, tablets and phones as well as ‘truly wearable’ smart tech are a step closer thanks to a nanoscale transistor created by researchers at The University of Manchester and Shandong University in China. The international team has developed an ultrafast, nanoscale transistor – known as a thin film transistor, or TFT, – made out of an oxide semiconductor. The TFT is the first oxide-semiconductor based transistor that is capable of operating at a benchmark speed of 1 GHz. This could make the next generation electronic gadgets even faster, brighter and more flexible than ever before. A TFT is a type of transistor usually used in a liquid crystal display (LCD). These can be found in most modern gadgets with LCD screens such as smart phones, tablets and high-definition televisions.

How do they work? LCD features a TFT behind each individual pixel and they act as individual switches that allow the pixels to change state rapidly, making them turn on and off much more quickly. But most current TFTs are silicon-based which are opaque, rigid and expensive in comparison to the oxide semiconductor family of transistors which the team from the UK and China are developing. Whilst oxide TFTs will improve picture on LCD displays, it is their flexibility that is even more impressive.

Aimin Song, Professor of Nanoelectronics in the School of Electrical & Electronic Engineering, The University of Manchester, explains:

TVs can already be made extremely thin and bright. Our work may help make TV more mechanically flexible and even cheaper to produce. “But, perhaps even more importantly, our GHz transistors may enable medium or even high performance flexible electronic circuits, such as truly wearable electronics. “Wearable electronics requires flexibility and in many cases transparency, too. This would be the perfect application for our research. “Plus, there is a trend in developing smart homes, smart hospitals and smart cities – in all of which oxide semiconductor TFTs will play a key role.

Oxide-based technology has seen rapid development when compared to its silicon counterpart which is increasingly close to some fundamental limitations. Prof Song says there has been fast progress in oxide-semiconductors in recent years and extensive efforts have been made in order to improve the speed of oxide-semiconductor-based TFTs. So much so some oxide-based technology has already started replacing amorphous silicon in some gadgets. Prof Song thinks these latest developments have brought commercialisation much closer.


How Solar Cells Absorb 20 % More Sunlight

Trapping light with an optical version of a whispering gallery, researchers at the National Institute of Standards and Technology (NIST) have developed a nanoscale coating for solar cells that enables them to absorb about 20 percent more sunlight than uncoated devices. The coating, applied with a technique that could be incorporated into manufacturing, opens a new path for developing low-cost, high-efficiency solar cells with abundant, renewable and environmentally friendly materials.

Illustration shows the nanoresonator coating, consisting of thousands of tiny glass beads, deposited on solar cells. The coating enhances both the absorption of sunlight and the amount of current produced by the solar cells

The coating consists of thousands of tiny glass beads, only about one-hundredth the width of a human hair. When sunlight hits the coating, the light waves are steered around the nanoscale bead, similar to the way sound waves travel around a curved wall such as the dome in St. Paul’s Cathedral in London. At such curved structures, known as acoustic whispering galleries, a person standing near one part of the wall easily hears a faint sound originating at any other part of the wall.

Using a laser as a light source to excite individual nanoresonators in the coating, the team found that the coated solar cells absorbed, on average, 20 percent more visible light than bare cells. The measurements also revealed that the coated cells produced about 20 percent more current.


How To Turn On Cancer-Killing Immune Cells

A remote command could one day send immune cells on a rampage against a malignant tumor. The ability to mobilize, from outside the body, targeted cancer immunotherapy inside the body has taken a step closer to becoming reality. Bioengineers at the Georgia Institute of Technology have installed a heat-sensitive switch into T-cells that can activate the T-cells when heat turns the switch on. The method, tested in mice and published in a new study, is locally targeted and could someday help turn immunotherapy into a precision instrument in the fight against cancer.

Immunotherapy has made headlines with startling high-profile successes like saving former U.S. President Jimmy Carter from brain cancer. But the treatment, which activates the body’s own immune system against cancer and other diseases, has also, unfortunately, proved to be hit-or-miss.

In patients where radiation and traditional chemotherapies have failed, this is where T-cell therapies have shined, but the therapy is still new,” said principal investigator Gabe Kwong. “This study is a step toward making it even more effective.”

Cancer is notoriously wily, and when T-cells crawl into a tumor, the tumor tends to switch off the T-cellscancer-killing abilities. Researchers have been working to switch them back on.

Kwong’s remote control has done this in the lab, while also boosting T-cell activity. In the study, Kwong’s team successfully put their remote-control method through initial tests in mice with implanted tumors (so-called tumor phantoms, specially designed for certain experiments).


Adaptive Materials

Engineers at the U.S. Army Research Laboratory (ARL) and the University of Maryland have developed a technique that causes a composite material to become stiffer and stronger on-demand when exposed to ultraviolet light. This on-demand control of composite behavior could enable a variety of new capabilities for future Army rotorcraft design, performance and maintenance.

ARL‘s Dr. Frank Gardea, a research engineer, said the focus of the research was on controlling how molecules interact with each other. He said the aim was to “have them interact in such a way that changes at a small size, or nanoscale, could lead to observed changes at a larger size, or macroscale.”

Dr. Bryan Glaz, chief scientist of ARL‘s Vehicle Technology Directorate said “an important motivation for this work is the desire to engineer new structures, starting from the nanoscale, to enable advanced rotorcraft concepts that have been proposed in the past, but were infeasible due to limitations in current composites. One of the most important capabilities envisioned by these concepts is a significantly reduced maintenance burden due to compromises we make to fly at high speeds”, he said. The reduced scheduled maintenance of future Army aviation platforms is an important technological driver for future operating concepts.

Army researchers imagine a rotorcraft concept, which represents reactive reinforcements that when exposed to ultraviolet light will increase the mechanical behavior on-demand. The engineers said control of mechanical behavior could potentially lead to increased aerodynamic stability in rotorcraft structures.

The enhanced mechanical properties with potentially low weight penalties, enabled by the new technique, could lead to nanocomposite based structures that would enable rotorcraft concepts that we cannot build today,” Glaz said.

The joint work, recently published in Advanced Materials Interfaces (DOI: 10.1002/admi.201800038), shows that these composite materials could become 93-percent stiffer and 35-percent stronger after a five minute exposure to ultraviolet light. The technique consists of attaching ultraviolet light reactive molecules to reinforcing agents like carbon nanotubes. These reactive reinforcing agents are then embedded in a polymer. Upon ultraviolet light exposure, a chemical reaction occurs such that the interaction between the reinforcing agents and the polymer increases, thus making the material stiffer and stronger.


How To End Malaria

Gene-editing technologies that alter mosquitoesDNA could prove critical in the fight against malaria, Bill Gates said on Wednesday, and ethical concerns should not block progress in such gene-modifying research.

Speaking at the Malaria Forum conference in London, the billionaire Microsoft co-founder and philanthropist said that while gene editing raises “legitimate questions”, that should not jeopardize exploration of tools such as CRISPR gene editing and so-called “gene drive” technologies.

I’m very energized about the potential of gene drive. (It’s) the kind of breakthrough we need to support,” Gates said. “It may prove critical here.” 

Gene drive technologies alter DNA and drive self-sustaining genetic changes through multiple generations by overriding normal biological processes. CRISPR technology enables scientists to find and modify or replace virtually any gene. The techniques are being explored across science – from human medicine to livestock– and crop-breeding. In mosquitoes that transmit malaria, genetic alterations can be used to induce infertility to reduce populations, or alter the insects’ ability to carry and pass on the malaria parasite. 

The technologies can be extremely powerful, but they are also controversial, since such genetically engineered organisms released into the environment could have an unknown and irreversible impact on the ecosystem. Asked in a interview with Reuters about that controversy, Gates said there were understandable concerns about safety and efficacy that would need to be addressed in research and trials. But he countered: “Malaria itself is quite controversial – it kills about 400,000 kids a year. So we’re definitely not on the side of malaria.”

He also noted that at their summit in January, leaders of the African Union endorsed gene drive research as part of the fight against a disease that continues to kill their people.


Tool Speeds Up Manufacturing Of Powered Wearable

People could soon power items such as their mobile phones or personal health equipment by simply using their daily movements, thanks to a new research tool that could be used by manufacturers.

In a new paper published by Nano Energy, experts from the Advanced Technology Institute (ATI) at the University of Surrey (UK) detail a new  methodology that allows designers of smart-wearables to better understand and predict how their products would perform once manufactured and in use.

The technology is centred on materials that become electrically charged after they come into contact with each other, known as triboelectric materials – for example, a comb through hair can create an electrical charge. Triboelectric Nanogenerators (TENGs), use this static charge to harvest energy from movement through a process called electrostatic induction. Over the years, a variety of TENGs have been designed which can convert almost any type of movement into electricity. The University of Surrey’s tool gives manufacturers an accurate understanding of the output power their design would create once produced.

This follows the news earlier this year of the ATI announcing the creation of its £4million state-of-the-art Nano-Manufacturing Hub. The new facility will produce plastic nanoscale electronics for wearable sensors, electronic tags and other electronic devices.

Ishara Dharmasena, lead scientist on this project from the University of Surrey, said: “The future global energy mix will depend on renewable energy sources such as solar power, wind, motion, vibrations and tidal. TENGs are a leading technology to capture and convert motion energy into electricity, extremely useful in small scale energy harvesting applications. Our work will, for the first time, provide universal guidance to develop, compare and improve various TENG designs. We expect this technology in household and industrial electronic products, catering to a new generation of mobile and autonomous energy requirements.”


Plastic-Eating Enzyme

Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world’s biggest environmental problems. The discovery could result in a recycling solution for millions of tonnes of plastic bottles, made of polyethylene terephthalate, or PET, which currently persists for hundreds of years in the environment. The research was led by teams at the University of Portsmouth and the US Department of Energy’s National Renewable Energy Laboratory (NREL) and is published in Proceedings of the National Academy of Sciences (PNAS).

 Professor John McGeehan at the University of Portsmouth and Dr Gregg Beckham at NREL solved the crystal structure of PETase—a recently discovered enzyme that digests PET— and used this 3D information to understand how it works. During this study, they inadvertently engineered an enzyme that is even better at degrading the plastic than the one that evolved in nature. The researchers are now working on improving the enzyme further to allow it to be used industrially to break down plastics in a fraction of the time.


Few could have predicted that since plastics became popular in the 1960s huge plastic waste patches would be found floating in oceans, or washed up on once pristine beaches all over the world. “We can all play a significant part in dealing with the plastic problem, but the scientific community who ultimately created these ‘wonder-materials’, must now use all the technology at their disposal to develop real solutions,” said Professor McGeehan, Director of the Institute of Biological and Biomedical Sciences in the School of Biological Sciences at Portsmouth,


The Zero Bills Home

The Zero Bills Home build at the BRE Innovation Park in UK represents the first show home for a new 96 home zero bills development in Newport Essex for the Sir Arthur Ellis family Trust. Newport is 8 miles from Stansted and 15 miles from Cambridge. The new zero bills village is 150 yards from a station on the Bishopsgate / Cambridge railway line.


Superinsulated concrete foundation slab with optional additional piles to match most ground conditions.Laser cut galv steelpowder coated structural ring beam with C16 UK timber studs. UK fabricated OSB structural boards enables one floor to be built every two days. Superinsulated cladding with heat recovery ventilation and triple glazing reduces heat demand to the point where a tiny heat pump can provide comfort and hot water. ZED Factory designed BIPV solar roofing system provides durable roof with electric generation and optional solar loft conservatory. Good daylight, water saving appliances and LED lighting reduces electric demand allowing surplus solar electricity to power an electric car. A smart LIPO4 Fitcraft battery system, positioned under the stair stores solar electricity, minimising grid imports and limiting grid export to 3kW maximum avoids the need to upgrade the existing mains grid infrastructure. The system enables simple, adaptable plans which create convenient internal layouts for any plot orientation.

The system build costs at scale are circa £1450- £1650/ m2 (around 1500 euros/m2) for a completed building which compares favourably with current costs of meeting building regulations. Combined with no net annual energy bills and the potential to achieve higher resale values based on the additional features of the building, the ZBH system offers a cost effective and sustainable alternative to traditional builder offerings. 


Human Internal Verbalizations Understood Instantly By Computers

MIT researchers have developed a computer interface that can transcribe words that the user verbalizes internally but does not actually speak aloud. The system consists of a wearable device and an associated computing system. Electrodes in the device pick up neuromuscular signals in the jaw and face that are triggered by internal verbalizations — saying wordsin your head” — but are undetectable to the human eye. The signals are fed to a machine-learning system that has been trained to correlate particular signals with particular words. The device also includes a pair of bone-conduction headphones, which transmit vibrations through the bones of the face to the inner ear. Because they don’t obstruct the ear canal, the headphones enable the system to convey information to the user without interrupting conversation or otherwise interfering with the user’s auditory experience.

The device is thus part of a complete silent-computing system that lets the user undetectably pose and receive answers to difficult computational problems. In one of the researchers’ experiments, for instance, subjects used the system to silently report opponents’ moves in a chess game and just as silently receive computer-recommended responses.

The motivation for this was to build an IA device — an intelligence-augmentation device,” says Arnav Kapur, a graduate student at the MIT Media Lab, who led the development of the new system. “Our idea was: Could we have a computing platform that’s more internal, that melds human and machine in some ways and that feels like an internal extension of our own cognition?” “We basically can’t live without our cellphones, our digital devices,” adds Pattie Maes, a professor of media arts and sciences and Kapur’s thesis advisor. “But at the moment, the use of those devices is very disruptive. If I want to look something up that’s relevant to a conversation I’m having, I have to find my phone and type in the passcode and open an app and type in some search keyword, and the whole thing requires that I completely shift attention from my environment and the people that I’m with to the phone itself. So, my students and I have for a very long time been experimenting with new form factors and new types of experience that enable people to still benefit from all the wonderful knowledge and services that these devices give us, but do it in a way that lets them remain in the present.”


Revolutionary NanoDrops Replace Glasses

Israeli scientists and clinicians appear to have come up with “revolutionary” eye-drops that can correct short– or long-sightedness and eliminate the need for glasses. The so-called ‘nano-drops’ have been developed by a team at Sha’are Zedek Medical Center and Bar-Ilan University’s Institute of Nanotechnology and Advanced Materials.

They have been shown to improve both short-sightedness (myopia) and long-sightedness (hyperopia) in tests on pigs, with plans to begin clinical testing on humans later this year.

If the drops are found to improve human vision then the nano-drops solution could eliminate the need for glasses and “revolutionise ophthalmological and optometry treatment”.

Prospective patients would use a smartphone app to scan their eyes, measure their refraction, create a laser pattern then apply a “laser corneal stamping” of an optical pattern onto the corneal surface of their eyes.


Taiwanese Electric SuperCar Aims To Take On Tesla

Hailed as the world’s first electric supercar with onroad and offroad capabilities, the “Miss R” is the company’s electric vehicle (EV) designed for serious performance driving. Harnessing a four-wheel torque vectoring system capable of launching it at roughly 168 MPH (270 km/h), 4 independent electric motors rated at 350V each will give the Miss R the edge over Tesla’s future Roadster 2.0 (base version). The 0–60 MPH will be covered in 1.8 seconds and the 0–124 MPH (200 km/h) in a blistering 5.1 seconds.


What makes the Electric Supercar XING Mobility Miss R different from other high-end performance EVs is that it is designed to reach that performance on almost any road surface. On-road, on-track, and off-road is the leitmotiv of the company that wants to offer a versatile driving experience no matter what the pavement.

According to XING Mobility’s Co-founder and CEO, Royce YC Hong: “Miss R is the embodiment of the paradigm shift of EVs surpassing traditional combustion-engine cars in both performance and capability. The core idea behind the prototype is to achieve game-changing performance levels and driving experiences that are otherwise impossible to achieve in a gasoline-powered vehicle.” Indeed, XING Mobility is out to prove once and for all that the electric drivetrain is far superior to its contemporary internal combustion engine (ICE) cousin.


Ultra-Powerful Batteries

From smartphones to electric vehicles, many of today’s technologies run on lithium ion batteries. That means that consumers have to keep their chargers handy. An iPhone X battery only lasts for 21 hours of talk time, and Tesla’s model S has a 335-mile range—which means you could expect to make it from Newark, Delaware to Providence, Rhode Island, but not all the way to Boston, on one charge. Scientists all over the world—including  even the inventor of lithium ion batteries himself, John Goodenough—are looking for ways to make rechargeable batteries safer, lighter, and more powerful.

Now, an international team of researchers led by Bingqing Wei, a professor of mechanical engineering at the University of Delaware and the director of the Center for Fuel Cells and Batteries, is doing work that could lay the foundation for more widespread use of lithium metal batteries, which have more capacity than the lithium ion batteries commonly used in consumer electronics today. The team developed a method to mitigate dendrite formation in lithium metal batteries, which they  have described in a paper published in Nano Letters.

In a lithium ion battery, the anode, or current-generating side, is made of a material, such as graphite, with lithium ions bound to it. The lithium ions flow to the cathode, or current-collecting side.

In a lithium metal battery, the anode is made of lithium metal. Electrons flow from the anode to the cathode to generate electricity. Rechargeable batteries made of lithium metal hold a lot of promise because lithium is the most electrically positive metal and has a very high capacity.

“Theoretically, lithium metal is one of the best choices for batteries, but it is hard to handle in practice,” Wei said.

Lithium metal batteries have been inefficient, unstable, and even a fire hazard thus far. Their performance is hampered by lithium dendrites, formations that look like tiny stalagmites made of lithium deposits. As a battery is being used, lithium ions collect on the anode. Over time, the lithium deposits become non-uniform, leading to the formations of these dendrites, which can cause the battery to short circuit.