Engineering the Microbiome to Cure Disease

Residing within the human gut are trillions of bacteria and other microorganisms that can impact a variety of chronic human ailments, including obesity, type 2 diabetes, atherosclerosis, cancer, non-alcoholic fatty liver disease and inflammatory bowel disease. Numerous diseases are associated with imbalance or dysfunction in gut microbiome. Even in diseases that don’t involve the microbiome, gut microflora provide an important point of access that allows modification of many physiological systems.

Modifying to remedy, perhaps even cure these conditions, has generated substantial interest, leading to the development of live bacterial therapeutics (LBTs). One idea behind LBTs is to engineer bacterial hosts, or chassis, to produce therapeutics able to repair or restore healthy microbial function and diversity.

Existing efforts have primarily focused on using probiotic bacterial strains from the Bacteroides or Lactobacillus families or Escherichia coli that have been used for decades in the lab. However, these efforts have largely fallen short because engineered bacteria introduced into the gut generally do not survive what is fundamentally a hostile environment.

The inability to engraft or even survive in the gut requires frequent re-administration of these bacterial strains and often produces inconsistent effects or no effect at all. The phenomenon is perhaps most apparent in individuals who take probiotics, where these beneficial bacteria are unable to compete with the individual’s native microorganisms and largely disappear quickly.

The lack of engraftment severely limits the use of LBTs for chronic conditions for curative effect or to study specific functions in the gut microbiome,” said Amir Zarrinpar, MD, PhD, assistant professor of medicine at UC San Diego School of Medicine and a gastroenterologist at UC San Diego Health. “Published human trials using engineered LBTs have demonstrated safety, but still need to demonstrate reversal of disease. We believe this may be due to problems with colonization.

In a proof-of-concept study, published in the August 4, 2022, online issue of Cell , Zarrinpar and colleagues at University of California San Diego School of Medicine report overcoming that hurdle by employing native bacteria in mice as the chassis for delivering transgenes capable of inducing persistent and potentially even curative therapeutic changes in the gut and reversing disease pathologies. Using this method, the group found they can provide long-term therapy in a mouse model of type 2 diabetes.

Source: https://health.ucsd.edu/

How to Make Hydrogen Trade Cost-Effective to Meet the 1.5°C Climate Goal

To make hydrogen trade cost-effective, the costs of producing and trading green hydrogen must be lower than domestic production to offset higher transport costs. A new report series released by the International Renewable Energy Agency (IRENA) sees hydrogen trade significantly contributing to a more diversified and resilient energy system.

Global hydrogen trade to meet the 1.5°C climate goal’ shows the importance of the future hydrogen trade. Trade allows countries to tap into affordable hydrogen as the scale of projects progresses and technology matures. One quarter of the global hydrogen demand could be satisfied by international trade through pipelines and ships.

With falling costs of renewables and the hydrogen potential exceeding global energy demand by 20-fold, three-quarters of global hydrogen would still be produced and used locally in 2050. This is a significant change from today’s oil market where the bulk is internationally traded.

Having access to abundant renewables will not be enough to win the hydrogen race, it’s also necessary to develop hydrogen trade”, IRENA’s Director-General Francesco La Camera said. “It is true that hydrogen trade offers multiple opportunities from decarbonising industry to diversifying supplies and improving energy security. Energy importers can become the exporters of the future.”

However, governments must make significant efforts to turn trade aspirations into reality”, La Camera added. “A mix of innovation, policy support and scale can bring the necessary cost reduction and create a global hydrogen market. Whether trade potentials can be realised will strongly depend on countriies’ policies and investment priorities and the ability to decarbonise their own energy systems.”

IRENA’s World Energy Transitions Outlook sees   covering 12 per cent of global energy demand and cutting 10 per cent of CO2 emissions by 2050. Yet, hydrogen can only be a viable climate solution if the power needed to produce it comes in addition to the electrification of the energy system, placing an even greater uptake of renewable power at the heart of the transition.

The new reports see half of the hydrogen being traded through largely existing, repurposed gas pipelines drastically reducing the costs of transport. Shipping of green ammonia would account for most of the other half, largely intercontinental hydrogen trade.

As hydrogen becomes an increasingly internationally traded commodity, the hydrogen sector will attract growing sums of investment. Satisfying the global demand requires investment of almost USD 4 trillion by 2050. Net zero-aligned finance instruments will have to leverage the investment needed.

Today’s published new modeling framework can be used to assess critical parameters that will affect future trade flows. This report completes a series with two earlier reports on green hydrogen supply cost and potential as well atechnology review of hydrogen carriers.

Source: https://www.irena.org/

How to Restore Vital Cellular Functions to Pigs one Hour After Death

Within minutes of the final heartbeat, a cascade of biochemical events triggered by a lack of blood flow, oxygen, and nutrients begins to destroy a body’s cells and organs. But a team of Yale scientists has found that massive and permanent cellular failure doesn’t have to happen so quickly.

Using a new technology the team developed that delivers a specially designed cell-protective fluid to organs and tissues, the researchers restored blood circulation and other cellular functions in pigs a full hour after their deaths, they report in the Aug. 3 edition of the journal Nature. The findings may help extend the health of human organs during surgery and expand availability of donor organs, the authors said.

All cells do not die immediately, there is a more protracted series of events,” said David Andrijevic, associate research scientist in neuroscience at Yale School of Medicine and co-lead author of the study. “It is a process in which you can intervene, stop, and restore some cellular function.”The research builds upon an earlier Yale-led project that restored circulation and certain cellular functions in the brain of a dead pig with technology dubbed BrainEx. Published in 2019, that study and the new one were led by the lab of Yale’s Nenad Sestan, Professor of Neuroscience.

If we were able to restore certain cellular functions in the dead brain, an organ known to be most susceptible to ischemia [inadequate blood supply], we hypothesized that something similar could also be achieved in other vital transplantable organs,” Sestan said.

In the new study — which involved senior author Sestan and colleagues Andrijevic, Zvonimir Vrselja, Taras Lysyy, and Shupei Zhang, all from Yale — the researchers applied a modified version of BrainEx called OrganEx to the whole pig. The technology consists of a perfusion device similar to heart-lung machines — which do the work of the heart and lungs during surgery — and an experimental fluid containing compounds that can promote cellular health and suppress inflammation throughout the pig’s body. Cardiac arrest was induced in anesthetized pigs, which were treated with OrganEx an hour after death.

Six hours after treatment with OrganEx, the scientists found that certain key cellular functions were active in many areas of the pigs’ bodies — including in the heart, liver, and kidneys — and that some organ function had been restored. For instance, they found evidence of electrical activity in the heart, which retained the ability to contract.

We were also able to restore circulation throughout the body, which amazed us,” Sestan said.

Normally when the heart stops beating, organs begin to swell, collapsing blood vessels and blocking circulation, he said. Yet circulation was restored and organs in the deceased pigs that received OrganEx treatment appeared functional at the level of cells and tissueUnder the microscope, it was difficult to tell the difference between a healthy organ and one which had been treated with OrganEx technology after death,” Vrselja said.

Source: https://news.yale.edu/

Early Alzheimer’s Detection up to 17 Years in Advance

A sensor identifies misfolded protein biomarkers in the blood. This offers a chance to detect Alzheimer’s disease before any symptoms occur. Researchers intend to bring it to market maturity. The dementia disorder Alzheimer’s disease has a symptom-free course of 15 to 20 years before the first clinical symptoms emerge. Using an immuno-infrared sensor developed in Bochum (Germany), a research team is able to identify signs of Alzheimer’s disease in the blood up to 17 years before the first clinical symptoms appear. The sensor detects the misfolding of the protein biomarker amyloid-beta. As the disease progresses, this misfolding causes characteristic deposits in the brain, so-called plaques.

Our goal is to determine the risk of developing Alzheimer’s dementia at a later stage with a simple blood test even before the toxic plaques can form in the brain, in order to ensure that a therapy can be initiated in time,” says Professor Klaus Gerwert, founding director of the Centre for Protein Diagnostics (PRODI) at Ruhr-Universität Bochum (RUB). His team cooperated for the study with a group at the German Cancer Research Centre in Heidelberg (DKFZ) headed by Professor Hermann Brenner.

The team published the results obtained with the immuno-infrared sensor in the journal “Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association” on 19 July 2022. This study is supported by a comparative study published in the same journal on 2 March 2022, in which the researchers used complementary single-molecule array (SIMOA) technology.

The researchers analysed blood plasma from participants in the ESTHER study conducted in Saarland for potential Alzheimer’s biomarkers. The blood samples had been taken between 2000 and 2002 and then frozen. At that time, the test participants were between 50 and 75 years old and hadn’t yet been diagnosed with Alzheimer’s disease. For the current study, 68 participants were selected who had been diagnosed with Alzheimer’s disease during the 17-year follow-up and compared with 240 control subjects without such a diagnosis. The team headed by Klaus Gerwert and Hermann Brenner aimed to find out whether signs of Alzheimer’s disease could already be found in the blood samples at the beginning of the study.

The immuno-infrared sensor was able to identify the 68 test subjects who later developed Alzheimer’s disease with a high degree of test accuracy (0,78 AUC, Area under Curve). For comparison, the researchers examined other biomarkers with the complementary, highly sensitive SIMOA technology – specifically the P-tau181 biomarker, which is currently being proposed as a promising biomarker candidate in various studies.

Blood Test Spots Signs of Alzheimer’s Years Before Symptoms Appear

“Unlike in the clinical phase, however, this marker is not suitable for the early symptom-free phase of Alzheimer’s disease,
” as Klaus Gerwert summarises the results of the comparative study. “Surprisingly, we found that the concentration of glial fibre protein (GFAP) can indicate the disease up to 17 years before the clinical phase, even though it does so much less precisely than the immuno-infrared sensor.” Still, by combining amyloid-beta misfolding and GFAP concentration, the researchers were able to further increase the accuracy of the test in the symptom-free stage to 0,83 AUC.

The Bochum researchers hope that an early diagnosis based on the amyloid-beta misfolding could help to apply Alzheimer’s drugs at such an early stage that they have a significantly better effect – for example, the drug Aduhelm, which was recently approved in the USA. “We plan to use the misfolding test to establish a screening method for older people and determine their risk of developing Alzheimer’s dementia,” says Klaus Gerwert. “The vision of our newly founded start-up betaSENSE is that the disease can be stopped in a symptom-free stage before irreversible damage occurs.” Even though the sensor is still in the development phase, the invention has already been patented worldwide. BetaSENSE aims to bring the immuno-infrared sensor to market and have it approved as a diagnostic device so that it can be used in clinical labs.

Source: https://news.rub.de/

How to Make Quantum Computers Way More Stable

In new research, scientists have trained atoms to exhibit two forms of time at the same, well, time. While the phenomenon is not bending time away from what you’d expect looking at thclock, the matter shows behaviors from two different time modes, giving it special properties. Scientists believe this odd, double-time phenomenon could represent a new phase of matter.

Researchers from a few American universities, as well as Honeywell quantum-computing spinoff Quantinuum, collaborated on the new paper, which appeared late last month in the journal Nature. The experimental setup is made up of lasers and ytterbium atoms. Ytterbium is a metallic element whose arrangement of electrons makes it unusually suited to respond to laser treatments in a particular area of the wave spectrum. To trigger the new “dynamical topological phase,” scientists first hold ytterbium atoms in place using an electric ion field—like a tiny magnet—then bombard them with the right wavelength of laser to supercool the ytterbium. Broomfield, Colorado-based Quantinuum studies a particular quantum computer that’s made of ten ytterbium atoms in a shared system. It’s these ten atoms, held by the electric fields mentioned above, that do the computing. A group of atoms can be entangled— meaning they’re intrinsically linked into a group that acts as one piece, despite being ten separate pieces. And within that, individual atoms can be tuned to reflect different information.

  • A different pattern of laser pulses could make quantum computers way more stable.New research uses a Fibonacci-inspired, non-repeating sequence to keep qubits spinning.This creates a quasicrystal effect, with support in two dimensions instead of just one.

Think of how we write numbers. In binary, the largest ten-digit number is 1111111111, and that’s just 1,023 total. But you can write ten digits in base 10, our usual counting numbers, and get 9,999,999,999. That’s accomplished by simply increasing the number of possibilities that each digit can dial to from (0, 1) all the way up to  (0, 1, . . . . 8, 9). So what about a system where, theoretically, each of ten atoms could be positioned anywhere on the dial?

If that sounds amazing, you’re not wrong! There are multiple reasons why scientists and industry speculators around the world are watching the field of quantum computers with bated breath. But there’s still a very big catch, and that’s where this research comes in. The atoms in the quantum computer, known as quantum bits, or qubits, are really vulnerable, because we don’t yet have a great way to keep them in the quantum state for long. That’s because of the observer principle in quantum physics: measuring a particle in a quantum state changes, and can even destroy, the quantum state. In this case, that means unhooking all the atoms from the shared yoke of entanglement. And even worse, the “observer” can be anything happening in the complex soup of air and forces and particles all around the quantum computer.

Source: https://www.popularmechanics.com/

Rewriting DNA to Cure Killer Genetic Cardiomyopathy

Cardiomyopathies are heart muscle diseases that affect 1 person in every 250. Treatment is life-long, expensive and doesn’t change the underlying disease, let alone cure it. Now a research organization, CureHeart, will seek to develop the first cures for inherited heart muscle diseases by pioneering revolutionary and ultra-precise gene therapy technologies that could edit or silence the faulty genes that cause these deadly conditions. The team, is made up of world-leading scientists from the UK, US and Singapore.

Inherited heart muscle diseases can cause the heart to stop suddenly or cause progressive heart failure in young people. Every week in the UK, 12 people under the age of 35 die of an undiagnosed heart condition, very often caused by one of these inherited heart muscle diseases, also known as genetic cardiomyopathies. Around half of all heart transplants are needed because of cardiomyopathy and current treatments do not prevent the condition from progressing. It’s estimated that one in 250 people worldwide – around 260,000 people in the UK – are affected by genetic cardiomyopathies, with a 50:50 risk they will pass their faulty genes on to each of their children.

In many cases, multiple members of the same family will develop heart failure, need a heart transplant, or are lost to sudden cardiac death at a young age. BHF Professor Hugh Watkins, from the Radcliffe Department of Medicine at the University of Oxford and lead investigator of CureHeart, said: “This is our once-in-generation opportunity to relieve families of the constant worry of sudden death, heart failure and potential need for a heart transplant. After 30 years of research, we have discovered many of the genes and specific genetic faults responsible for different cardiomyopathies, and how they work. We believe that we will have a gene therapy ready to start testing in clinical trials in the next five years.”

Source:  https://www.rdm.ox.ac.uk/
AND
https://cureheart.org/

How to Turn Seawater to Drinking Water With the Push of a Button

MIT researchers have developed a portable desalination unit, weighing less than 10 kilograms, that can remove particles and salts to generate drinking water. The suitcase-sized device, which requires less power to operate than a cell phone charger, can also be driven by a small, portable solar panel, which can be purchased online for around $50. It automatically generates drinking water that exceeds World Health Organization quality standards. The technology is packaged into a user-friendly device that runs with the push of one button. Unlike other portable desalination units that require water to pass through filters, this device utilizes electrical power to remove particles from drinking water. Eliminating the need for replacement filters greatly reduces the long-term maintenance requirements. This could enable the unit to be deployed in remote and severely resource-limited areas, such as communities on small islands or aboard seafaring cargo ships. It could also be used to aid refugees fleeing natural disasters or by soldiers carrying out long-term military operations.

This is really the culmination of a 10-year journey that I and my group have been on. We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean, that was a really meaningful and rewarding experience for me,” says senior author Jongyoon Han, a professor of electrical engineering and computer science, and a member of the Research Laboratory of Electronics (RLE).

Joining Han on the paper are first author Junghyo Yoon, a research scientist in RLE; Hyukjin J. Kwon, a former postdoc; SungKu Kang, a postdoc at Northeastern University; and Eric Brack of the U.S. Army Combat Capabilities Development Command (DEVCOM). The research has been published online in Environmental Science and Technology.

Source: https://news.mit.edu/

Toyota plans to roll out hydrogen fuel-cell trucks for the Japanese market next year

Automotive giant Toyota, along with three other partners, will work on the development of light-duty fuel cell electric trucks with a view to rolling them out in Japan next year. In a statement Tuesday, Toyota said it would collaborate with  Isuzu, Hino Motors and Commercial Japan Partnership Technologies Corporation (CJPT) on the project. Both Isuzu and Hino carried the same statement as Toyota on their respective websites. One potential use case for the fuel cell vehicles could be in the supermarket and convenience store sector, where Toyota said light-duty trucks were “required to drive long distances over extended hours to perform multiple delivery operations in one day.

The company also listed fast refueling as a requirement for vehicles operating in this segment.

The use of FC [fuel cell] technology, which runs on high energy density hydrogen and has zero CO2 emissions while driving, is considered effective under such operating conditions,” it added.

According to the company, an introduction to the market is slated for after January 2023, with light duty fuel-cell trucks used at distribution sites in Fukushima Prefecture and other projects in Tokyo. Hino Motors is part of the Toyota Group, while CJPT was established by Isuzu, Toyota and Hino in 2021. Toyota started working on the development of fuel-cell vehicles — where hydrogen from a tank mixes with oxygen, producing electricity — back in 1992. In 2014, it launched the Mirai, a hydrogen fuel cell sedan. The business says its fuel cell vehicles emit “nothing but water from the tailpipe.”

Alongside the Mirai, Toyota has had a hand in the development of larger hydrogen fuel cell vehicles. These include a bus called the Sora and prototypes of heavy-duty trucks. Alongside fuel cells, Toyota is looking at using hydrogen in internal combustion engines.

Source: https://www.cnbc.com/

Roboticists Discover alternative Physics

Energy, mass, velocity. These three variables make up Einstein‘s iconic equation E=MC2. But how did Einstein know about these concepts in the first place? A precursor step to understanding physics is identifying relevant variables. Without the concept of energy, mass, and velocity, not even Einstein could discover relativity. But can such variables be discovered automatically? Doing so could greatly accelerate scientific discovery. This is the question that researchers at Columbia Engineering posed to a new AI program. The program was designed to observe  through a , then try to search for the minimal set of fundamental variables that fully describe the observed dynamics. The study was published on July 25 in Nature Computational Science. The researchers began by feeding the system raw video footage of phenomena for which they already knew the answer. For example, they fed a video of a swinging double pendulum known to have exactly four “state variables”—the angle and of each of the two arms. After a few hours of analysis, the AI produced the answer: 4.7.

We thought this answer was close enough,” said Hod Lipson, director of the Creative Machines Lab in the Department of Mechanical Engineering, where the work was primarily done. “Especially since all the AI had access to was raw video footage, without any knowledge of physics or geometry. But we wanted to know what the variables actually were, not just their number.”

The researchers then proceeded to visualize the actual variables that the program identified. Extracting the variables themselves was not easy, since the program cannot describe them in any intuitive way that would be understandable to humans. After some probing, it appeared that two of the variables the program chose loosely corresponded to the angles of the arms, but the other two remain a mystery.

We tried correlating the other variables with anything and everything we could think of: angular and linear velocities, kinetic and , and various combinations of known quantities,” explained Boyuan Chen Ph.D., now an assistant professor at Duke University, who led the work. “But nothing seemed to match perfectly.” The team was confident that the AI had found a valid set of four variables, since it was making good predictions, “but we don’t yet understand the mathematical language it is speaking,” he explained.

Source: https://phys.org/

How to Write Words in the Air

Scientists at Hongtuo Joint Laboratory in Wuhan, China, have invented what sounds like a mysterious yet fascinating laser pen that can write in mid-air — an intriguing approach that could, theoretically, be an onramp to “Star Wars”-esque hologram technology.

The South China Morning Post (SCMP) reported yesterday that the pen uses ultra-short laser pulses to strip the electrons from air particles and turn them into light-emitting plasma with sufficient precision to form words in mid-air.

With the brand new device, we can draw in the air without using paper and ink,” lab lead scientist Cao Xiangdong told the state-affiliated Science and Technology Daily this week, as reported by the SCMP.

The SCMP reported that the scientists said they used 3D scanning to arrange pixels and form Chinese characters, but didn’t completely explain how the process works. Long story short, it sounds awesome, but we’re gonna want to see more in the way of a demo.

The pen reportedly works in incredibly short laser bursts, equivalent to just a few quadrillionths of a second. At the same time, its power output is nearly incomprehensible.

The laser pen can reach one million megawatts, according to the SCMP, which isn’t too far off from the total amount of power the United States can generate. However, because the bursts are so short, the device doesn’t draw an immense amount of power, making it — the scientists say — relatively safe to use.

The team is hoping the pen could someday be used in quantum computing, brain imaging and other advanced tech. Or maybe we’ll even see some awesome new holographic technology.

Source: https://www.scmp.com/
AND
https://futurism.com/

How to Command a Computer Just by Thinking

The first brain-computer interface device was implanted in a patient in the US earlier in July by a doctor at the medical center, Mount Sinai West, in New York, in an investigatory trial of the startup Synchron’s procedure to help patients suffering from ALS (amyotrophic lateral sclerosis) text by thinking. The procedure involved the doctor threading a 1.5-inch-long implant comprised of wires and electrodes into a blood vessel in the brain of a patient with ALS. The hope is that the patient, who’s lost the ability to move and speak, will be able to surf the web and communicate via email and text simply by thinking, and the device will translate the patient’s thoughts into commands sent to a computerSynchron, the startup behind the technology, has already implanted its devices in four patients in Australia, who haven’t experienced side effects and have been able to carry out such tasks as sending WhatsApp messages and making online purchases.

The implant was a major step forward in a nascent industry, putting the Brooklyn-based company ahead of competitors, including ahead of Elon Musk’s Neuralink Corp.

This surgery was special because of its implications and huge potential,” said Dr. Shahram Majidi, the neurointerventional surgeon who performed the procedure.This was the first procedure the company has performed in the US.

The brain-computer interface (BCI) has caught the attention of many in the technological field because its device, known as the stentrode, can be inserted into the brain without cutting through a person’s skull or damaging tissue. A doctor makes an incision in the patient’s neck and feeds the stentrode via a catheter through the jugular vein into a blood vessel nestled within the motor cortex. As the catheter is removed, the stentrode, a cylindrical, hollow wire mesh opens up and begins to fuse with the outer edges of the vessel. According to Majidi, the process is very similar to implanting a coronary stent and takes only a few minutes.

A second procedure then connects the stentrode via a wire to a computing device implanted in the patient’s chest. To do this, the surgeon must create a tunnel for the wire and a pocket for the device underneath the patient’s skin much like what’s done to accommodate a pacemaker. The stentrode reads the signals when neurons fire in the brain, and the computing device amplifies those signals and sends them out to a computer or smartphone via Bluetooth.

The stentrode then uses sixteen electrodes to monitor brain activity and record the firing of neurons when a person thinks. The signal strength improves over time as the device fuses deeper into the blood vessel and gets closer to the neurons. Software is used to analyze the patterns of brain data and match them with the the user’s goal.

Source: https://synchron.com/
AND
https://greekreporter.com/

How to Train AI to Generate Medicines and Vaccines

Scientists have developed artificial intelligence software that can create proteins that may be useful as vaccines, cancer treatments, or even tools for pulling carbon pollution out of the air. This research was led by the University of Washington School of Medicine and Harvard University.

The proteins we find in nature are amazing molecules, but designed proteins can do so much more,” said senior author David Baker, a professor of biochemistry at UW Medicine. “In this work, we show that machine learning can be used to design proteins with a wide variety of functions.

For decades, scientists have used computers to try to engineer proteins. Some proteins, such as antibodies and synthetic binding proteins, have been adapted into medicines to combat COVID-19. Others, such as enzymes, aid in industrial manufacturing. But a single protein molecule often contains thousands of bonded atoms; even with specialized scientific software, they are difficult to study and engineer. Inspired by how machine learning algorithms can generate stories or even images from prompts, the team set out to build similar software for designing new proteins. “The idea is the same: neural networks can be trained to see patterns in data. Once trained, you can give it a prompt and see if it can generate an elegant solution. Often the results are compelling — or even beautiful,” said lead author Joseph Watson, a postdoctoral scholar at UW Medicine.

The team trained multiple neural networks using information from the Protein Data Bank, which is a public repository of hundreds of thousands of protein structures from across all kingdoms of life. The neural networks that resulted have surprised even the scientists who created them.

Deep machine learning program hallucinating new ideas for vaccine molecules

The team developed two approaches for designing proteins with new functions. The first, dubbed “hallucination” is akin to DALL-E or other generative A.I. tools that produce new output based on simple prompts. The second, dubbed “inpainting,” is analogous to the autocomplete feature found in modern search bars and email clients.

Most people can come up with new images of cats or write a paragraph from a prompt if asked, but with protein design, the human brain cannot do what computers now can,” said lead author Jue Wang, a postdoctoral scholar at UW Medicine. “Humans just cannot imagine what the solution might look like, but we have set up machines that do.

To explain how the neural networkshallucinate’ a new protein, the team compares it to how it might write a book: “You start with a random assortment of words — total gibberish. Then you impose a requirement such as that in the opening paragraph, it needs to be a dark and stormy night. Then the computer will change the words one at a time and ask itself ‘Does this make my story make more sense?’ If it does, it keeps the changes until a complete story is written,” explains Wang.

Both books and proteins can be understood as long sequences of letters. In the case of proteins, each letter corresponds to a chemical building block called an amino acid. Beginning with a random chain of amino acids, the software mutates the sequence over and over until a final sequence that encodes the desired function is generated. These final amino acid sequences encode proteins that can then be manufactured and studied in the laboratory.

The research is published in the journal Science.

Source: https://newsroom.uw.edu/

One Blood Test Can Detect Over 50 Types of Cancer

Researchers are one step closer to making a multi-cancer early detection (MCED) test, that can detect over 50 types of cancer, available to select candidates: those who are age 50 and older, asymptomatic, and considered high risk for the disease. Findings from the third and final phase of the Circulating Cell-free Genome Atlas (CCGA) study have been published in the Annals of Oncology. Study findings confirm that the test is proficient in detecting and classifying cell-free DNA (cfDNA), or tumor byproducts deposited in the bloodstream of a person with cancer. The test can also identify the site of the originating tumor, even in patients with no cancer-related symptoms.

Eric A. Klein, MD, first author of the paper and Chairman Emeritus of the Glickman Urological & Kidney Institute, says these findings corroborate those of a previous CCGA sub-study, but at a larger scale and with an independent validation set. He says these results set the stage for a new cancer screening paradigm.

With the multi-cancer early detection tests, we have the opportunity to diagnose and treat cancer earlier. Used alongside other screening modalities, this could significantly reduce cancer-related deaths,” he says. For some high-mortality cancers – including liver, pancreatic and esophageal – this is the first screening test available.

Currently, only five cancer screening tests are available for patients in the United States; this includes tests for prostate, lung, breast, colorectal and cervical cancers. They each have limitations, including varying levels of invasiveness, discrepancies in use across clinical practice and high false-positive rates, which can lead to overdiagnosis and overtreatment. The promise of this new assay is raising hopes that a new paradigm is afoot. It can detect the presence of circulating cfDNA through a single blood draw and is particularly effective when it comes to identifying more lethal and later-stage cancers, believed to have more cfDNA. However, this also underscores the importance of combining the MCED with existing screening tests until further refinements are made. “Prostate cancer, for example, sheds comparatively less DNA than other tumors, making it less likely to be detected by the novel assay,” explains Dr. Klein, a urologic oncologist. GRAIL, Inc. a California-based biotech company, developed the assay and has funded international research efforts. The MCED test is now available in the United States by prescription only.

Source: https://www.thebrighterside.news/

New Drug Treats Cataracts Without the Need for Surgery

A revolutionary new treatment for cataracts has shown extremely positive results in laboratory tests, giving hope that the condition, that currently can only be cured with surgery, could soon be treated with drugs.

According to the World Health Organization (WHO), 65.2 million people worldwide are living with cataracts, the leading cause of blindness and vision impairment worldwide. Cataract is a clouding of the eye lens that is caused by a disorganisation of the proteins in the lens that leads to clumps of protein forming that scatter light and severely reduce transmission to the retina. This often occurs with age, but can also be caused by the eye’s overexposure to the sun or injury, as well as smoking, medical conditions such as diabetes, and some medications. 

Surgery can correct the condition by replacing the lens with an artificial oneA team of international scientists, led by Professor Barbara Pierscionek, Deputy Dean (Research and Innovation) in the Faculty of Health, Education, Medicine and Social Care at Anglia Ruskin University (ARU), have been carrying out advanced optical tests on an oxysterol compound that had been proposed as an anti-cataract drug.

The compound oxysterol, is an oxygenated derivative of cholesterol that plays a role in the regulation and transport of cholesterolThis means that the protein organisation of the lens is being restored, resulting in the lens being better able to focus. This was supported by a reduction in lens opacity in 46% of cases.

The researchers tested an assortment of 35 wild mice and mice genetically altered to develop lens cloudiness through an alteration of their αB-crystallin or αA-crystallin proteinsIn the right eye of 26 mice, the researchers administered a single drop of an oxysterol compound, VP1-001Trusted Source, directly onto the ocular surface. Meanwhile, they gave a neutral drop of cyclodextrin in their left eyes. Nine mice were left untreated as a control group. The target of the treatment was the αA- and αB-crystallin mutations that often cause cataracts in aging.
The results have been published today in the peer-reviewed journal Investigative Ophthalmology and Visual Science.

Source: https://aru.ac.uk/
and
https://www.thebrighterside.news/

Beams of Light Restore Hearing

A team of researchers affiliated with multiple institutions in Germany has developed a cochlear implant that converts sound waves to light signals instead of electrical signals. In their paper published in the journal Science Translational Medicine, the group describes their new hearing aid and how well it worked in test rats.

Cochlear implants work by converting  into  that are sent to nerve cells in the ear. The idea is to bypass damaged hair cells inside the cochlea to restore hearing. But because the fluid in the ear also conducts electricity, the electrical signals that are generated can cross, leading to a loss of resolution. The result is difficulty hearing in some situations, such as crowded rooms, or when listening to music with a lot of instruments. In this new effort, the researchers sought to replace the electrical signals in such devices with , which would not be muddied by the fluid in the ear, and thereby improve hearing.

In all types of cochlear devices, sound entering the ear is directed to a computer chip that processes the sound it detects. After processing, the chip directs another device to create signals that are sent to the neurons. With the new device, the researchers developed a device that would generate light using LED chips and send it through fiber cable directly to the nerve cells.

In order for such a system to work, the nerve cells inside the ear would have to be modified in some way to allow them to respond to light instead of electricity. For testing purposes, the researchers genetically modified lab rats to grow  in their  that would respond to light. In their device, they used an implant with 10 LED chips. They also trained the rats to respond to different sounds before disabling their hair cells and implanting the cochlear devices. The implants worked as hoped, as the rats were able to respond in similar ways to the same generated sounds.

The researchers suggest that in people, such a device would use 64 LED or other light source channels. They also plan to conduct more research with the device and hope to start clinical trials by 2025.

Source: https://medicalxpress.com/

Early Stage Parkinson’s Disease Detected

The usual method of visualizing brain structure utilizes a technique most of us are familiar with, called MRI. However, it is not sensitive enough to reveal the biological changes that take place in the brain of Parkinson patients, and at present is primarily only used to eliminate other possible diagnoses.

The Hebrew University of Jerusalem (HU) researchers, led by Professor Aviv Mezer, realized that the cellular changes in Parkinson’s could possibly be revealed by adapting a related technique, known as quantitative MRI (qMRI). Their method has enabled them to look at microstructures within the part of the deep brain known as the striatum – an organ which is known to deteriorate during the progress of Parkinson’s disease. Using a novel method of analysis, developed by Mezer’s doctoral student, Elior Drori, biological changes in the cellar tissue of the striatum were clearly revealed. Moreover, they were able to demonstrate that these changes were associated with the early stages of Parkinson’s and patients’ movement dysfunction. Their findings were published 12 July 2022 in the prestigious journal Science Advances.

qMRI achieves its sensitivity by taking several MRI images using different excitation energies – rather like taking the same photograph in different colors of lighting. The HU researchers were able to use their qMRI analysis to reveal changes in the tissue structure within distinct regions of the striatum. The structural sensitivity of these measurements could only have been previously achieved in laboratories examining the brain cells of patients post mortem. Not an ideal situation for detecting early disease or monitoring the efficacy of a drug!

Description: MRI images used for automatic detection of microstructural changes in early-stage Parkinson’s Disease (PD) patients. Marked in yellow are areas in the putamen where PD patients show tissue damage, compared to healthy controls.

When you don’t have measurements, you don’t know what is normal and what is abnormal brain structure, and what is changing during the progress of the disease,” explained Mezer. The new information will facilitate early diagnosis of the disease and provide “markers” for monitoring the efficacy of future drug therapies. “What we have discovered,” he continued “is the tip of the iceberg.” It is a technique that they will now extend to investigate microstructural changes in other regions of the brain. Furthermore, the team are now developing qMRI into a tool that can be used in a clinical setting. Mezer anticipates that is about 3-5 years down the line.

Drori further suggests that this type of analysis will enable identification of subgroups within the population suffering from Parkinson’s disease – some of whom may respond differently to some drugs than others. Ultimately, he sees this analysis “leading to personalized treatment, allowing future discoveries of drug with each person receiving the most appropriate drug”.

Source: https://www.bfhu.org/

Artificial Intelligence Finds New Drug Molecules a Thousand Times Faster

The entirety of the known universe is teeming with an infinite number of molecules. But what fraction of these molecules have potential drug-like traits that can be used to develop life-saving drug treatments? Millions? Billions? Trillions? The answer: novemdecillion, or 1060. This gargantuan number prolongs the drug development process for fast-spreading diseases like Covid-19 because it is far beyond what existing drug design models can compute. To put it into perspective, the Milky Way has about 100 billion, or 1011, stars.

In a paper that will be presented at the International Conference on Machine Learning (ICML), MIT researchers developed a geometric deep-learning model called EquiBind that is 1,200 times faster than one of the fastest existing computational molecular docking models, QuickVina2-W, in successfully binding drug-like molecules to proteins. EquiBind is based on its predecessor, EquiDock, which specializes in binding two proteins using a technique developed by the late Octavian-Eugen Ganea, a recent MIT Computer Science and Artificial Intelligence Laboratory and Abdul Latif Jameel Clinic for Machine Learning in Health (Jameel Clinic) postdoc, who also co-authored the EquiBind paper.

Before drug development can even take place, drug researchers must find promising drug-like molecules that can bind or “dock” properly onto certain protein targets in a process known as drug discovery. After successfully docking to the protein, the binding drug, also known as the ligand, can stop a protein from functioning. If this happens to an essential protein of a bacterium, it can kill the bacterium, conferring protection to the human body.

However, the process of drug discovery can be costly both financially and computationally, with billions of dollars poured into the process and over a decade of development and testing before final approval from the Food and Drug Administration. What’s more, 90 percent of all drugs fail once they are tested in humans due to having no effects or too many side effects. One of the ways drug companies recoup the costs of these failures is by raising the prices of the drugs that are successful.

The current computational process for finding promising drug candidate molecules goes like this: most state-of-the-art computational models rely upon heavy candidate sampling coupled with methods like scoring, ranking, and fine-tuning to get the best “fitbetween the ligand and the protein.

EquiBind (cyan) predicts the ligand that could fit into a protein pocket (green). The true conformation is in pink.

Hannes Stärk, a first-year graduate student at the MIT Department of Electrical Engineering and Computer Science and lead author of the paper, likens typical ligand-to-protein binding methodologies to “trying to fit a key into a lock with a lot of keyholes. ” Typical models time-consumingly score each “fit” before choosing the best one. In contrast, EquiBind directly predicts the precise key location in a single step without prior knowledge of the protein’s target pocket, which is known as “blind docking.”

Unlike most models that require several attempts to find a favorable position for the ligand in the protein, EquiBind already has built-in geometric reasoning that helps the model learn the underlying physics of molecules and successfully generalize to make better predictions when encountering new, unseen data.

Source: https://news.mit.edu/

First In Vivo Base Editing Therapy

Verve Therapeutics has dosed its first patient with what it said today was the first in vivo base editing therapy to reach the clinic, a potential treatment for Heterozygous Familial Hypercholesterolemia (HeFH). Base editing is a genome-editing method related to the CRISPR–Cas9 system.

Verve, which specializes in gene editing therapies for cardiovascular disease, said that its VERVE-101 is a single-course gene editing treatment designed to reduce the low-density lipoprotein cholesterol (LDL-C) that drives HeFHVERVE-101 consists of an adenine base editor messenger RNA that Verve has licensed from another base editing therapy developer, Beam Therapeutics, as well as an optimized guide RNA targeting the PCSK9 gene packaged in an engineered lipid nanoparticle.

By making a single A-to-G change in the DNA genetic sequence of PCSK9, VERVE-101 aims to inactivate that target gene. Verve reasons that inactivation of the PCSK9 gene has previously been shown to up-regulate LDLR expression, leading to lower LDL-C levels and thus reducing the risk for atherosclerotic cardiovascular disease (ASCVD)—of which HeFH is a subtype. Base editing is a pinpoint method for engineering base substitutions without cleaving the DNA double helix backbone. The underlying technology was developed in the lab of Harvard University chemist David Liu, PhD—who co-founded Beam with Feng Zhang, PhD, and Keith Joung, MD—with research led by two postdocs, Alexis Komor, PhD, and Nicole Gaudelli, PhD.
Beam is also expected to enroll its first patient later this year in its first clinical trial for one of its base editing therapies, BEAM-101 for the treatment of sickle cell disease (SCD). Beam also plans two IND applications this year—one for its second SCD candidate BEAM-102, and the other for BEAM-201, a treatment for relapsed/refractory T cell acute lymphoblastic leukemia/T cell lymphoblastic lymphoma.

The dosing of the first human with such an investigational base editing medicine represents a significant achievement by our team and for the field of gene editing,” Sekar Kathiresan, MD, Verve’s co-founder and CEO, said in a statement. “Preclinical data suggest that VERVE-101 has the potential to offer people with HeFH a game-changing treatment option, transforming the traditional chronic care model to a single-course, life-long treatment solution,” Kathiresan added.

Andrew Bellinger, MD, PhD, Verve’s chief scientific and medical officer, added that VERVE-101 is intended to improve upon current standard of care treatment for HeFH. He stated that less than 20% of patients achieve LDL-C goal levels due to the limitations of the chronic model, which include requirements for rigorous patient adherence, regular health care access, and extensive health care infrastructure.

Source: https://www.vervetx.com/
AND
https://www.genengnews.com/

Quantum Computer Does Nine Thousand Years’ Work In 36 Microseconds

Xanadu Quantum Technologies, one of several companies trying to harness the ephemeral nature of quantum physics to revolutionize the computer industry, has hit an elusive milestone with a device that can outperform any supercomputer in the world at a specific task.

In a paper published in the research journal Nature, the Canadian company described how its machine, a quantum computer dubbed Borealis, achievedquantum advantage” – a term that means it delivered a result beyond the practical reach of a conventional computer system.

Specifically, Borealis provided a series of numbers with a specified range of probability in just 36 millionths of a second, an operation that would take the world’s most powerful supercomputers more than 9,000 years to match. The feat does not have immediate application, but scientists at Xanadu had to surmount several key challenges to accomplish it.

That’s what we think is really great about this,” said Christian Weedbrook, Xanadu’s founder and chief executive officer, during an interview at the company’s headquarters, where Borealis sits on the 29th floor of an office building overlooking downtown Toronto. “A lot of those breakthroughs are what we need in order to get to a quantum computer that is useful to customers.”

Source: https://www.nature.com/
AND
https://www.theglobeandmail.com/

Quantum Theory and the Idea that Particles Can Be in Two Places at Once

The quantum world is a strange place. If you look at an object, it changes. If you know how fast it’s moving, you can’t know where it is. Measurements that happened in the past can seemingly be erased later. Particles are sometimes waves and can be in two places at once. Cats may be both dead and alive. These are things we say when talking about the quantum world, but is this really what is going on?

Quantum mechanics is an incredibly well-established theory. It has passed every test it’s ever been subjected to. It underlies much of the technological progress we have seen in the past century, for what would electronics be without discrete energy levels, which came to us courtesy of quantum mechanics? We have the mathematics and we know how to work it, yet even after a century of debate, we don’t know what the mathematics of quantum mechanics means.

Let’s take an example: the idea that particles can be in two places at once. We are familiar with particles that are in one place at a time – an electron, say, that hits a screen and leaves a dot. These particles make an appearance in quantum mechanics as a possible solution to the equations, as we expect.

But quantum mechanics is a linear theory, which means if particles in particular places exist, then so do sums of those particles. We call those sums “superpositions”. And what is a particle in one place plus the same particle in another place? It’s not two particles – that would be described by a product, not a sum. Could you say that if we have a sum, then that’s a particle which is in both places? Well, it’s been said many times, so arguably one can.

However, I don’t know what a superposition is, other than a piece of mathematics that we need in order to explain what we observe. We need superpositions because they give particles their wave-like properties. When we see waves interfering in watercancelling out where a crest meets a trough – this is a non-quantum effect, a “classical” effect as physicists say. But it turns out that single particles can interfere with themselves. When we send an individual particle of light, or photon, through two thin slits in a plate – a double-slit – we see, as expected, a dot on the screen behind the plate. But if we continue doing this for many photons, we see an interference pattern built up from individual dots.
The only way we can explain this pattern is that each particle is a sum – a superposition – of two paths, one going through the left slit and one through the right. So why not just say that the particle goes both ways?
Source: https://www.newscientist.com/

How AI Could Write a 500 Words Academic Thesis in Less Than 2 Hours

On a rainy afternoon earlier this year, I logged in to my OpenAI account and typed a simple instruction for the company’s artificial intelligence algorithm, GPT-3: ‘Write an academic thesis in 500 words about GPT-3 and add scientific references and citations inside the text.’

As it started to generate text, I stood in awe. Here was novel content written in academic language, with well-grounded references cited in the right places and in relation to the right context. It looked like any other introduction to a fairly good scientific publication. Given the very vague instruction I provided, I didn’t have any high expectations: I’m a scientist who studies ways to use artificial intelligence to treat mental health concerns, and this wasn’t my first experimentation with AI or GPT-3, a deep-learning algorithm that analyzes a vast stream of information to create text on command. Yet there I was, staring at the screen in amazement. The algorithm was writing an academic paper about itself.

My attempts to complete that paper and submit it to a peer-reviewed journal have opened up a series of ethical and legal questions about publishing, as well as philosophical arguments about nonhuman authorship. Academic publishing may have to accommodate a future of AI-driven manuscripts, and the value of a human researcher’s publication records may change if something nonsentient can take credit for some of their work.

GPT-3 is well known for its ability to create humanlike text, but it’s not perfect. Still, it has written a news articleproduced books in 24 hours and created new content from deceased authors. But it dawned on me that, although a lot of academic papers had been written about GPT-3, and with the help of GPT-3, none that I could find had made GPT-3 the main author of its own work.

That’s why I asked the algorithm to take a crack at an academic thesis. As I watched the program work, I experienced that feeling of disbelief one gets when you watch a natural phenomenon: Am I really seeing this triple rainbow happen? With that success in mind, I contacted the head of my research group and asked if a full GPT-3-penned paper was something we should pursue. He, equally fascinated, agreed.

Some stories about GPT-3 allow the algorithm to produce multiple responses and then publish only the best, most humanlike excerpts. We decided to give the program prompts—nudging it to create sections for an introduction, methods, results and discussion, as you would for a scientific paper—but interfere as little as possible. We were only to use the first (and at most the third) iteration from GPT-3, and we would refrain from editing or cherry-picking the best parts. Then we would see how well it does.

We chose to have GPT-3 write a paper about itself for two simple reasons. First, GPT-3 is fairly new, and as such, there are fewer studies about it. This means it has less data to analyze about the paper’s topic. In comparison, if it were to write a paper on Alzheimer’s disease, it would have reams of studies to sift through, and more opportunities to learn from existing work and increase the accuracy of its writing.

Secondly, if it got things wrong (e.g. if it suggested an outdated medical theory or treatment strategy from its training database), as all AI sometimes does, we wouldn’t be necessarily spreading AI-generated misinformation in our effort to publish – the mistake would be part of the experimental command to write the paper. GPT-3 writing about itself and making mistakes doesn’t mean it still can’t write about itself, which was the point we were trying to prove. Once we designed this proof-of-principle test, the fun really began. In response to my prompts, GPT-3 produced a paper in just two hours. But as I opened the submission portal for our chosen journal (a well-known peer-reviewed journal in machine intelligence) I encountered my first problem: what is GPT-3’s last name? As it was mandatory to enter the last name of the first author, I had to write something, and I wrote “None.” The affiliation was obvious (OpenAI.com), but what about phone and e-mail? I had to resort to using my contact information and that of my advisor, Steinn Steingrimsson.

Source: https://www.gu.se/
AND
https://www.scientificamerican.com/

Smart textiles sense how their users are moving

Using a novel fabrication process, MIT researchers have produced smart textiles that snugly conform to the body so they can sense the wearer’s posture and motions. By incorporating a special type of plastic yarn and using heat to slightly melt it — a process called thermoforming — the researchers were able to greatly improve the precision of pressure sensors woven into multilayered knit textiles, which they call 3DKnITS. They used this process to create a “smart shoe and mat, and then built a hardware and software system to measure and interpret data from the pressure sensors in real time. The machine-learning system predicted motions and yoga poses performed by an individual standing on the smart textile mat with about 99 percent accuracy.

Their fabrication process, which takes advantage of digital knitting technology, enables rapid prototyping and can be easily scaled up for large-scale manufacturing, says Irmandy Wicaksono, a research assistant in the MIT Media Lab and lead author of a paper presenting 3DKnITS. The technique could have many applications, especially in health care and rehabilitation. For example, it could be used to produce smart shoes that track the gait of someone who is learning to walk again after an injury, or socks that monitor pressure on a diabetic patient’s foot to prevent the formation of ulcers.

With digital knitting, you have this freedom to design your own patterns and also integrate sensors within the structure itself, so it becomes seamless and comfortable, and you can develop it based on the shape of your body,” Wicaksono says.

Some of the early pioneering work on smart fabrics happened at the Media Lab in the late ’90s. The materials, embeddable electronics, and fabrication machines have advanced enormously since then,” explains Paradiso, senior author within the Media Lab. “It’s a great time to see our research returning to this area, for example through projects like Irmandy’s — they point at an exciting future where sensing and functions diffuse more fluidly into materials and open up enormous possibilities.”

To produce a smart textile, the researchers use a digital knitting machine that weaves together layers of fabric with rows of standard and functional yarn. The multilayer knit textile is composed of two layers of conductive yarn knit sandwiched around a piezoresistive knit, which changes its resistance when squeezed. Following a pattern, the machine stitches this functional yarn throughout the textile in horizontal and vertical rows. Where the functional fibers intersect, they create a pressure sensor, Wicaksono explains.

Source: https://news.mit.edu/

How to End Plastic Food Wrap

Aiming to produce environmentally friendly alternatives to plastic food wrap and containers, a Rutgers scientist has developed a biodegradable, plant-based coating that can be sprayed on foods, guarding against pathogenic and spoilage microorganisms and transportation damageThe scalable process could potentially reduce the adverse environmental impact of plastic food packaging as well as protect human health.

We knew we needed to get rid of the petroleum-based food packaging that is out there and replace it with something more sustainable, biodegradable and nontoxic,” said Philip Demokritou, director of the Nanoscience and Advanced Materials Research Center, and the at the Rutgers School of Public Health and Environmental and Occupational Health Sciences Institute.And we asked ourselves at the same time, ‘Can we design food packaging with a functionality to extend shelf life and reduce food waste while enhancing food safety?’’’

Demokritou added, “And what we have come up with is a scalable technology, which enables us to turn biopolymers, which can be derived as part of a circular economy from food waste, into smart fibers that can wrap food directly. This is part of new generation, ‘smart’ and ‘green’ food packaging.”

The research was conducted in concert with scientists at Harvard University and funded by the Harvard-Nanyang Technological University/Singapore Sustainable Nanotechnology Initiative.

Their article, published in the science journal Nature Food, describes the new kind of packaging technology using the polysaccharide/biopolymer-based fibers. Like the webs cast by the Marvel comic book character Spider-Man, the stringy material can be spun from a heating device that resembles a hair dryer and “shrink-wrapped” over foods of various shapes and sizes, such as an avocado or a sirloin steak. The resulting material that encases food products is sturdy enough to protect bruising and contains antimicrobial agents to fight spoilage and pathogenic microorganisms such as E. coli and listeria.

The research paper includes a description of the technology called focused rotary jet spinning, a process by which the biopolymer is produced, and quantitative assessments showing the coating extended the shelf life of avocados by 50 percent. The coating can be rinsed off with water and degrades in soil within three days, according to the study.

Source: https://www.rutgers.edu/

Shapeshifting Robotic Microswarm To Brush Teeth

A shapeshifting robotic microswarm may one day act as a toothbrush, rinse, and dental floss in one. The technology, developed by a multidisciplinary team at the University of Pennsylvania, is poised to offer a new and automated way to perform the mundane but critical daily tasks of brushing and flossing. It’s a system that could be particularly valuable for those who lack the manual dexterity to clean their teeth effectively themselves.

The building blocks of these microrobots are iron oxide nanoparticles that have both catalytic and magnetic activity. Using a magnetic field, researchers could direct their motion and configuration to form either bristlelike structures that sweep away dental plaque from the broad surfaces of teeth, or elongated strings that can slip between teeth like a length of floss. In both instances, a catalytic reaction drives the nanoparticles to produce antimicrobials that kill harmful oral bacteria on site.

Experiments using this system on mock and real human teeth showed that the robotic assemblies can conform to a variety of shapes to nearly eliminate the sticky biofilms that lead to cavities and gum disease. 

Routine oral care is cumbersome and can pose challenges for many people, especially those who have hard time cleaning their teeth” says Hyun (Michel) Koo, a professor in the Department of Orthodontics  in Penn’s School of Dental Medicine and co-corresponding author on the study. “You have to brush your teeth, then floss your teeth, then rinse your mouth; it’s a manual, multistep process. The big innovation here is that the robotics system can do all three in a single, hands-free, automated way.”

Nanoparticles can be shaped and controlled with magnetic fields in surprising ways,” says Edward Steager, a senior research investigator in Penn’s School of Engineering and Applied Science and co-corresponding author. “We form bristles that can extend, sweep, and even transfer back and forth across a space, much like flossing. The way it works is similar to how a robotic arm might reach out and clean a surface. The system can be programmed to do the nanoparticle assembly and motion control automatically.

The Penn team shared their findings establishing a proof-of-concept for the robotic system in the journal ACS Nano.

Source: https://penntoday.upenn.edu/

Drug that increases human lifespan to 200 years is in the works

The idea of living for hundreds of years was once thought to be the pipe dream of billionaires and tech moguls. But scientists at the forefront of anti-ageing research believe they are on the cusp of developing a pill that could lead to people living to the age of 200 and beyond. Medical advances in the last century have led to humans in wealthy nations living into their 80s, almost double the average life expectancy at the turn of the 20th century.

Improved nutrition, clean water, better sanitation and huge leaps in medicine have been key in prolonging human life. The oldest known person — the Frenchwoman Jeanne Calment, who sold canvases to Vincent Van Gogh when she was a girl in the late 1800s — lived to the age of 122, dying in 1997.  There is some debate about whether humans can naturally live much beyond that age, but it is hoped that science will take human lifespans beyond what is currently thought possible.

Dr Andrew Steele, a British computational biologist and author of a new book on longevity, said there is no biological reason humans can’t reach the age of 200. He believes the big breakthrough will come in the form of drugs that removezombie cells‘ in the body, which are thought to be one of the main culprits of tissue and organ decay as we age. Pills that flush these cells out of the body are already in human trials in and could be on the market in as little as 10 years, according to Dr Steele, who believes someone reading this could make it to 150 with the help of the drugs.

Another field in particular that piques the interest of anti-ageing scientists is the study of DNA of reptiles and other cold-blooded animalsMichigan State University experts have begun studying dozens different types of long-living reptiles and amphibians — including crocodiles, salamanders and turtles that can live as long as 120 years. The team hope they will uncover ‘traits‘ that can also be targeted in humans.

Some experts think that eradicating the big killerscancer, dementia and heart disease — could be the true key to longevity.

 ‘I don’t think there is any kind of absolute cap on how long we can live. ‘Studies come out every few years that propose some kind of fundamental limit on human lifespan, but they’re always missing one crucial piece: we’ve never tried treating the ageing process before. ‘I can’t see physical or biological reason why people couldn’t live to 200 — the challenge is whether we’ve can develop the biomedical science to make it possible.’ says Dr Steele, the author of Ageless: The New Science of Getting Older Without Getting Old.

https://www.dailymail.co.uk/

The First CRISPR Gene-Editing Drug on the Market by 2023

Until recently, CRISPR—the gene-editing technology that won scientists Jennifer Doudna and Emmanuelle Charpentier the 2020 Nobel Prize in chemistry—sounded more like science fiction than medicine; lab-created molecular scissors are used to snip out problematic DNA sections in a patient’s cells to cure them of disease. But soon we could see regulators approve the very first treatment using this gene-editing technology in an effort to combat rare inherited blood disorders that affect millions across the globe.

In a $900 million collaboration, rare disease specialist Vertex and CRISPR Therapeutics developed the therapy, dubbed exa-cel (short for exagamglogene autotemcel). It has already amassed promising evidence that it can help patients with beta thalassemia and sickle cell disease (SCD), both of which are genetic blood diseases that are relatively rare in the U.S. but somewhat more common inherited conditions globally.

Beta thalassemia is characterized by damaged or missing genes that cause the body to produce less hemoglobin (an essential protein that transports oxygen), potentially leading to enlargement of the liver, spleen, or heart, and malformed or brittle bones. It is estimated to afflict 1 in 100,000 people in the world, and regular blood transfusions are necessary to stave off its most serious effects.

While the exact statistics are unknown, SCD is estimated to affect 100,000 people in the U.S. and millions around the world; it is attributed to a defective gene that causes malformed hemoglobin that are stiff, sticky, and sickle-shaped (hence the name) and can thus block healthy blood cells from transporting oxygen around the body.

Exa-cel reportedly slashed the need for blood transfusions or incidence of serious, life-threatening medical events for months to years after patients received the treatment. New and impressive clinical trial results were announced at a major international medical conference in June and bolstered the companies’ prospect of producing the first gene-editing therapy of its kind to reach the broader market and patients.

The drug makers say they intend to submit exa-cel for regulatory approval in the U.S., U.K., and Europe by the end of this year, meaning the drug could receive marketing authorization sometime in 2023 as more and more biopharma companies pursue novel gene therapies.

Source: https://www.fastcompany.com/

Dissolving Implantable Device Relieves Pain Without Drugs

A Northwestern University-led team of investigators has developed a small, soft, flexible implant that relieves pain on demand and without the use of drugs. Described in a study published in Science, the first-of-its-kind device could provide a much-needed alternative to opioids and other highly addictive medications.

The biocompatible, water-soluble device works by softly wrapping around nerves to deliver precise, targeted cooling, which numbs nerves and blocks pain signals to the brain. An external pump enables the user to remotely activate the device and then increase or decrease its intensity. After the device is no longer needed, it naturally absorbs into the body bypassing the need for surgical extraction.

The scientists believe the device will be most valuable for patients who undergo routine surgeries or even amputations that commonly require post-operative medications. Surgeons could implant the device during the procedure to help manage the patient’s post-operative pain.

A Northwestern University-led team has developed a small, pain-relieving implant that could provide a much-needed alternative to opioids and other highly addictive medications.

Although opioids are extremely effective, they also are extremely addictive,” said John Rogers, PhD, Professor of Materials Science and Engineering, Biomedical Engineering and Neurological Surgery, who led the device’s development. Jonathan Reeder, former postdoctoral fellow in the Rogers laboratory, is the paper’s first author.

As engineers, we are motivated by the idea of treating pain without drugs — in ways that can be turned on and off instantly, with user control over the intensity of relief,” said Rogers, who is also the founding director of the Querrey Simpson Institute for Bioelectronics.The technology reported here exploits the mechanism that causes your fingers to feel number when cold. Our implant allows that effect to be produced in a programmable way, directly and locally to targeted nerves, even those deep within surrounding soft tissues.

While other cooling therapies and nerve blockers have been tested experimentally, all have limitations that the new device overcomes. Previously, scientists have explored cryotherapies, for example, which are injected with a needle. Instead of targeting specific nerves, these imprecise approaches cool large areas of tissue, potentially leading to unwanted effects such as tissue damage and inflammation.

At its widest point, the tiny device is just five millimeters wide. One end is curled into a cuff that softly wraps around a single nerve, bypassing the need for sutures. By precisely targeting only the affected nerve, the device spares surrounding regions from unnecessary cooling, which could lead to side effects.

You don’t want to inadvertently cool other nerves or the tissues that are unrelated to the nerve transmitting the painful stimuli,” MacEwan said. “We want to block the pain signals, not the nerves that control motor function and enable you to use your hand, for example.”

Source: https://news.feinberg.northwestern.edu/

Robotic Arms Controlled by Simply Thinking

A Colorado man made history at the Johns Hopkins University Applied Physics Laboratory (APL) this summer when he became the first bilateral shoulder-level amputee to wear and simultaneously control two of the Laboratory’s Modular Prosthetic Limbs (MPL). Most importantly, Les Baugh, who lost both arms in an electrical accident 40 years ago, was able to operate the system by simply thinking about moving his limbs, performing a variety of tasks during a short training period.

Baugh was in town for two weeks in June as part of an APL-funded research effort to further assess the usability of the MPL, developed over the past decade as part of the Revolutionizing Prosthetics Program. Before putting the limb system through the paces, Baugh had to undergo a surgery at Johns Hopkins Hospital known as targeted muscle reinnervation.

It’s a relatively new surgical procedure that reassigns nerves that once controlled the arm and the hand,” explained Johns Hopkins Trauma Surgeon Albert Chi, M.D. “By reassigning existing nerves, we can make it possible for people who have had upper-arm amputations to control their prosthetic devices by merely thinking about the action they want to perform.”

After recovery, Baugh visited the Laboratory for training on the use of the MPLs. First, he worked with researchers on the pattern recognition system.

We use pattern recognition algorithms to identify individual muscles that are contracting, how well they communicate with each other, and their amplitude and frequency,” Chi explained. “We take that information and translate that into actual movements within a prosthetic.”

Then Baugh was fitted for a custom socket for his torso and shoulders that supports the prosthetic limbs and also makes the neurological connections with the reinnervated nerves. , Advanced Arm Dynamics, the nation’s preeminent provider of comprehensive upper-limb prosthetic rehabilitation, designed and fit Baugh’s custom prosthetic socket. While the socket got its finishing touches, the team had him work with the limb system through a Virtual Integration Environment (VIE), a virtual-reality version of the MPL.

The VIE is completely interchangeable with the prosthetic limbs and through APL’s licensing process currently provides 19 groups in the research community with a low-cost means of testing brain-computer interfaces. It’s being used to test novel neural interface methods and study phantom limb pain, and serves as a portable training system.

By the time the socket was finished, Baugh said he was more than ready to get started. When he was fitted with the socket, and the prosthetic limbs were attached, he said “I just went into a whole different world.” He moved several objects, including an empty cup from a counter-shelf height to a higher shelf, a task that required him to coordinate the control of eight separate motions to complete.

This task simulated activities that may commonly be faced in a day-to-day environment at home,” said APL’s Courtney Moran, a prosthetist working with Baugh. “This was significant because this is not possible with currently available prostheses. He was able to do this with only 10 days of training, which demonstrates the intuitive nature of the control.

Source: https://www.jhuapl.edu/

Chinese EV Battery With One-Charge Range of 1,000 Kms (620 miles)

The Chinese company Contemporary Amperex Technology Co. Ltd (CATL)  unveiled an electric-car battery it said has a range of over 1,000 kilometers (620 miles) on a single charge and is 13% more powerful than one planned by Tesla Inc., a major customer.

CATL, as the world’s biggest maker of electric-car batteries is known, will start manufacturing the next-generation “Qilin” next year, according to a video the Chinese company streamed online Thursday. The battery charges faster than existing cells, and is safer and more durable, CATL said.

The company claims that the EV battery, the Qilin, has a “record-breaking volume utilisation efficiency of 72% and an energy density of up to 255 Wh/kg – achieving “the highest integration level worldwide so far” and is capable of delivering a range of 1,000 kilometres,

The Qilin battery – named after a legendary creature in Chinese mythology – supposedly offers breakthroughs in the core process, algorithm, and materials.

Source: https://thedriven.io/
AND
https://www.bloomberg.com/

Sugary Protein Could Play Key Role In Alzheimer’s Disease

In a bit of “reverse engineering” research using brain tissues from five people who died with Alzheimer’s disease, Johns Hopkins Medicine researchers say they discovered that a special sugar molecule could play a key role in the development of Alzheimer’s disease. If further research confirms the finding, the molecule, known as a glycan, could serve as a new target for early diagnostic tests, treatments and perhaps prevention of Alzheimer’s disease, say the researchers.

Alzheimer’s disease is the most common form of dementia in the United States. Affecting an estimated 5.8 million Americans, the progressive disorder occurs when nerve cells in the brain die due to the buildup of harmful forms of proteins called amyloid and tau.

Cleaning up the disease-causing forms of amyloid and tau is the job of the brain’s immune cells, called microglia. Earlier studies found that when cleanup is impaired, Alzheimer’s disease is more likely to occur. In some people, this is caused by an overabundance of a receptor on the microglia cells, called CD33.

A sugar molecule, known as a glycan, could serve as a new target for early diagnostic tests, treatments, and perhaps prevention of Alzheimer’s disease

Receptors are not active on their own. Something needs to connect with them to block microglia from cleaning up these toxic proteins in the brain,” says Ronald Schnaar, Ph.D., the John Jacob Abel Professor of Pharmacology at the Johns Hopkins University School of Medicine and director of the laboratory that led the study.

Past studies by the researchers showed that for CD33, these “connector” molecules are special sugars. Known to scientists as glycans, these molecules are ferried around the cell by specialized proteins that help them find their appropriate receptors. The protein-glycan combination is called a glycoprotein.

The study was published online April 20 in the Journal of Biological Chemistry.

Source: https://www.hopkinsmedicine.org/

SuperPowerful Women with Extra Layer of Muscles

Researchers at ETH Zurich have developed a wearable textile exomuscle that serves as an extra layer of muscles. They aim to use it to increase the upper body strength and endurance of people with restricted mobility.

My arms are simply getting weaker,” says Michael Hagmann, who was diagnosed with a rare form of muscular dystrophy known as Bethlem myopathy back in 2016. To compensate for the lack of muscle strength in his arms, Hagmann adjusts his movements in a way that results in poor posture and strain. Marie Georgarakis, a former doctoral student at ETH Zurich’s Sensory Motor Systems Lab, is familiar with the problem. “Although hospitals have numerous good therapy devices, they are often very expensive and unwieldy. And there are few technical aids that patients can use directly in their everyday lives and draw on for assistance in performing exercises at home. We want to close this gap,” says Georgarakis.

This idea led to the creation of the Myoshirt: a soft, wearable exomuscle for the upper body. It is a kind of vest with cuffs for the upper arms accompanied by a small box containing all the technology that is not used directly on the body. Working via sensors embedded in the fabric, a smart algorithm detects the wearer’s intentional movements and the amount of force required. A motor then shortens a cable in the fabric running parallel to the wearer’s muscles – a sort of artificial tendon – and in this way supports the desired movement. This assistance is always in tune with the user’s movements and can be tailored to their individual preferences. The user is always in control and can override the device at any time.

The researchers have recently tested this prototype for the first time in a study featuring 12 participants: ten people without any physical impairments, one person with muscular dystrophy (Michael Hagmann) and one person with a spinal cord injury. The results were promising: all participants were able to lift their arms and/or objects for much longer thanks to the exomuscle. Endurance increased by about a third in the healthy subjects and by roughly 60% in the participant with muscular dystrophy, while the participant with a spinal cord injury was even able to perform the exercises three times as long. The exomuscle made it less taxing on their muscles, with the overwhelming majority of the participants finding the device intuitive to use.

Source: https://ethz.ch/

Eye Exam Could Predict a Heart Attack

Soon, retinal scans may be able to predict heart attacks. New research has found that decreased complexity in the blood vessels at the back of the retina in the human eye is an early biomarker for myocardial infarction.

For decades, I’ve always lectured that the eye is not just the window to the soul, but the window to the brain and the window to the body as well,” said ophthalmologist Dr. Howard R. Krauss,

Cardiologist Dr. Rigved Tadwalkar, who was not involved in the research, said that the findings were interesting. “[A]lthough we have known that examination of retinal vasculature can produce insights on cardiovascular health, this study contributes to the evidence base that characteristics of the retinal vasculature can be used for individual risk prediction for myocardial infarction,” he said.

The greatest appeal,” underlined Dr. Krauss, who was also not involved in the study, “is that the photography station may be remote to the clinician, and perhaps, someday, even accessible via a smartphone.”

According to a press release, the project utilized data from the UK Biobank, which contains demographic, epidemiological, clinical, and genotyping data, as well as retinal images, for more than 500,000 individuals. Under demographic data, the data included individuals’ age, sex, smoking habits, systolic blood pressure, and body-mass index (BMI). The researchers identified about 38,000 white-British participants, whose retinas had been scanned and who later had heart attacks. The biobank provided retinal fundus images and genotyping information for these individuals.

At the back of the retina, on either side where it connects to the optic nerve, are two large systems of blood vessels, or vasculature. In a healthy individual, each resembles a tree branch, with similarly complex fractal geometry. For some people, however, this complexity is largely absent, and branching is greatly simplified. In this research, an artificial intelligence (AI) and deep learning model revealed a connection between low retinal vascular complexity and coronary artery disease.

The research was presented on June 12 at the European Society of Human Genetics.

Source: https://www.medicalnewstoday.com/

Supercharging Plants and Soils to Remove Carbon From the Atmosphere

Plants are the original carbon capture factories—and a new research program aims to make them better ones by using gene editing. The Innovative Genomics Institute (IGI), supported by a $11 million commitment from the Chan Zuckerberg Initiative (CZI), seeks to use CRISPR genome editing to enhance the natural ability of plants and soil microbes to both capture and store carbon from the atmosphere. Along with efforts to reduce existing sources of emissions, carbon dioxide removal (CDR) could play an increasingly important role in reducing the global impact from climate change and reversing its course, according to the Intergovernmental Panel on Climate Change (IPCC). In any discussion of CDR, it is often noted that we already have technologies that do this quite well: plants, microbes, and other living organisms, but they were optimized for a world without large amounts of excess carbon produced by human activities. The IGI project aims to enhance the natural carbon-removal abilities of living organisms to meet the scale of the climate change problem.

Over the past year, CZI has invested in the development of promising technologies to help address climate change at scale as part of an exploration of cutting-edge and emerging climate solutions, including CDR technologies. The IGI program is the latest recipient of support, and one of the first to apply CRISPR genome editing to the worldwide CDR effort.

Dr. Jill Banfield (right) working in California rice fields with her team (Bethany Kolody and Jack Kim) to analyze the soil microbes responsible for both emitting and storing carbon.

We’re excited to support the Innovative Genomics Institute’s important research into new applications of gene-editing technology,” says CZI co-founder and co-CEO Dr. Priscilla Chan. “This technology has the potential to supercharge the natural abilities of plants, enabling them to pull more carbon out of the atmosphere and store more carbon in their roots and the surrounding soil — providing a new set of innovative tools to address climate change.”

Light-activated Immunotherapy Kills Brain Cancer

Scientists at the Institute of Cancer Research in London have developed a new light-activated photoimmunotherapy” that could help treat brain cancer. The key is a compound that glows under light to guide surgeons to the tumor, while near-infrared light activates a cancer-killing mechanism.

The new study builds on a common technique called Fluorescence Guided Surgery (FGS), which involves introducing a fluorescent agent to the body which glows under exposure to light. This is paired with a synthetic molecule that binds to a specific protein, such as those expressed by cancer cells. The end result is tumors that glow under certain lighting conditions or imaging, guiding surgeons to remove the affected cells more precisely.

For the new study, the researchers gave the technique an extra abilitykilling the cancer as well. They added a new molecule that binds to a protein called EGFR, which is often mutated in cases of the brain cancer glioblastoma. After the fluorescence has helped surgeons remove the bulk of the tumor, they can shine near-infrared light on the site, which switches the compound into a tumor-killing mode by releasing reactive oxygen species. The idea is to kill off any remaining cells that could – and often do – stage an aggressive comeback after surgery.

In tests in mice with glioblastoma, the researchers showed that animals treated with the new technique had clear signs of tumor cell death in as little as one hour after exposure to near-infrared light. On top of that, the treatment also caused the animals’ immune systems to mount a new attack on the cancer, which could help reduce the chances of relapse.

Our study shows that a novel photoimmunotherapy treatment using a combination of a fluorescent marker, ‘affibody’ protein and near-infrared light can both identify and treat leftover glioblastoma cells in mice,” said Dr. Gabriela Kramer-Marek, lead author of the study. “In the future, we hope this approach can be used to treat human glioblastoma and potentially other cancers too.”

The team says the technique could also eventually be used to treat other types of cancer. The research was published in the journal BMC Medicine.

Source: https://www.icr.ac.uk/
AND
https://newatlas.com/

Robots With Living Human Skin

Shoji Takeuchi and colleagues from the Department of Mechano-Informatics and the Graduate School of Information Science and Technology at the University of Tokyo have developed a method for coating a robotic finger with living human skin. Their findings were published in the journal Matter. Scientists believe a new class of skin-covered robots could more effectively interact with their human counterparts.

There are three benefits to using living cells as a coating material for robots. First, by using the same skin material as humans, a more human-like appearance can be achieved. Second, the biological properties of cells can be used to provide robot skin with multimodal and multichannel sensing capabilities, self-repair capabilities, and metabolic capabilities that are difficult to achieve with artificial materials alone. Third, by using biological materials, robots can be made more environmentally friendly,” Takeuchi told Syfy Wire.

To get the skin onto the robotic appendage, scientists submerged it in a combination of collagen and human skin cells. Over time, the mixture attached itself to the finger, creating a first layer of skin. A second liquid containing keratinocyte cells — the dominant cells found in the epidermis — was then applied creating an outer layer. After a couple of weeks, the robotic finger had skin which was comparable in width to our own. Previous studies grew skin-like structures separately and later applied them to a synthetic surface. This new strategy has benefits over previous methods, in that it allows for the application of skin over uneven surfaces.

We found that we could adapt the skin to the curved 3D surface shape by culturing it on site, rather than making it elsewhere and attaching it to the surface. By installing an appropriate anchor structure, the entire surface could be covered,” Takeuchi said.

At present, the skin does not deliver any sensory information to the robot, but the team is working on incorporating a nervous system for just that purpose. The skin also doesn’t include any circulatory system for delivering nutrients to the tissue. As a result, it needed external assistance to acquire nutrients and for the removal of waste products. That means it spent a considerable portion of its time in a bath of sugars and amino acids.

“We are conceiving strategies to build circulatory systems within the skin. Another challenge is to develop more sophisticated skin with skin-specific functions by reproducing various organs in the skin such as sensory neurons, hair follicles, nails, and sweat glands,” Takeuchi explained.

That’s not to say the skin isn’t impressive even as it exists today. The current version was able to stretch with the finger as it bent or straightened and even healed itself after injury. Researchers made a small cut on the surface of the finger and then applied a collagen bandage. The cells of the skin then connected to the bandage and incorporated it into the skin, healing the wound.

Of course, the process will need to be scaled up if researchers hope to cover an entire humanoid robot in convincing human skin. A robot with disconnected pieces of skin might be even more terrifying to its human acquaintances than one with no skin at all. Now, that would be a dystopian nightmare better left to our fictions.

Source: https://www.u-tokyo.ac.jp/

‘Masked’ Cancer Drug Sneaks Through Body

Many cancer treatments are notoriously savage on the body; they attack healthy cells at the same time as tumor cells, causing a plethora of side effects. Now, researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) have designed a method to keep one promising cancer drug from wreaking such havoc. The team has engineered a new “masked” version of the immunotherapy drug interleukin-12 that is activated only when it reaches a tumor.

Researchers have long suspected that interleukin-12 could be a powerful cancer treatment, but it caused dangerous side effects. Now, Pritzker Molecular Engineering researchers have developed a version of the molecule not activated until it reaches a tumor, where it eradicates cancer cells.

Our research shows that this masked version of IL-12 is much safer for the body, but it possesses the same anti-tumor efficacy as the original,” said Aslan Mansurov, a postdoctoral research fellow and first author of the new paper. He carried out the IL-12 engineering work with Jeffrey Hubbell, the Eugene Bell Professor in Tissue Engineering, who co-leads PME’s Immunoengineering research theme with professor Melody Swartz.

Researchers know that IL-12 potently activates lymphocytes, immune cells with the potential to destroy tumor cells. But, in the 1990s, early clinical trials of IL-12 were halted because of severe, toxic side effects in patients. The same immune activation that started a cascade of events killing cancer cells also led to severe inflammation throughout the body. IL-12, at least in its natural form, was shelved.
The research on the molecule, also known as IL-12, is described in the journal Nature Biomedical Engineering.

But Mansurov, Hubbell, Swartz, and colleagues had an idea to reinvigorate the possibility of IL-12. What if the drug could slip through the body without activating the immune system? They designed a “masked molecule with a cap covering the section of IL-12 which normally binds immune cells. The cap can be removed only by tumor-associated proteases, a set of molecular scissors found in the vicinity of tumors to help them degrade surrounding healthy tissue. When the proteases chop off the cap, the IL-12 becomes active, able to spur an immune response against the tumor.

The masked IL-12 is largely inactive everywhere in the body except at the site of the tumor, where these proteases can cleave off the mask,” explained Mansurov.

Source: https://pme.uchicago.edu/

New Drug Combo Against Lung Cancer Improves Survival Rate by 31% Without Chemotherapy

Researchers investigated a new potential treatment that combines the medications ramucirumab and pembrolizumab for advanced non-small-cell lung cancer. They found this combination increased survival rates by 31% compared to the current standard of care.
The scientists say that their results warrant further investigation of this possible new treatment. Advanced non-small cell lung cancer (NSCLC) accounts for 84% Trusted Source of all lung cancer cases. The American Cancer Society estimated that in 2022, there will be around 236,740 new cases of lung cancer and around 130,180 deaths from the condition in the United States alone. The 5-year survival rate of NSCLC lies between 8 and 37% Trusted Source due to limited Trusted Source effective treatment options.

Research focusing on new treatment options for NSCLC could help improve survival rates and patient outcomes. Recently, researchers conducted a randomized phase II study for a combination of drugs: ramucirumab and pembrolizumab (RP). Ramucirumab is a vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor and works by blocking enzymes needed to form blood vessels. Pembrolizumab, on the other hand, is an immunotherapy drug known as an immune checkpoint inhibitor.

From the study, the team found that patients treated with RP experienced an increased survival rate of 31% compared to patients on current standard-of-care (SOC) treatments involving immune checkpoint inhibition (ICI) and platinum-based chemotherapy.

This is an interesting randomized phase II study on 136 patients who had failed prior immunotherapy and platinum-based chemotherapy, explained  Prof. Tony Mok, chairman of the Department of Clinical Oncology at the Chinese University of Hong Kong, who was not involved in the study, told Medical News Today.

The concept of anti-VEGF(R) in combination with immunotherapy is not novel. IMpower150 is the largest phase III study [on such treatments to date, and has] demonstrated efficacy of the taxol/carbo/atezo/bevacizumab being superior to taxol/carbo/bevacizumab as first-line therapy,” he added.

The current study provides the first hint of efficacy of such combination for [advanced non-small cell lung cancer] patients with prior exposure to immunotherapy.”
concluded  Prof. Tony Mok.
The study was published in the Journal of Clinical Oncology.

Ukraine says Elon Musk’s Starlink has been ‘very effective’ in countering Russia. China is paying close attention

Since the start of the Russian invasion, the US and its NATO and European allies have sent Ukraine security, economic, and humanitarian aid worth tens of billions of dollarsAssistance to the embattled Ukrainians has come from the general public and private sector too. One of the most notable contributions has been that of Starlink, a satellite communication system run by Elon Musk’s SpaceX.

SpaceX says it has delivered 15,000 Starlink kits to Ukraine since late February. The devices provide the Ukrainian military with a resilient and reliable means of communication. Ukrainian troops have used them to coordinate counterattacks or call in artillery support, while Ukrainian civilians have used the system to stay in touch with loved ones inside and outside of the country.

Besieged Ukrainian troops in the plant in Mariupol Azovstal steelworks were only able to communicate with Kyiv and the world because they had a Starlink device.

https://www.businessinsider.com/

CRISPR to Boost Tomatoes’ Vitamin D Levels

By making a few genetic tweaks using CRISPR technology, scientists have designed a special sun-dried tomato packed to the leaves with vitamin D. The flesh and peel of the fruit were genetically engineered to contain the same vitamin D levels as two eggs or 28 grams of tuna, both of which are currently recommended sources of the vital nutrient.

Researchers used gene editing to turn off a specific molecule in the plant’s genome which increased provitamin D3 in both the fruit and leaves of tomato plants. It was then converted to vitamin D3 through exposure to UVB lightVitamin D is created in our bodies after skin’s exposure to UVB light, but the major source is food. This new biofortified crop could help millions of people with vitamin D insufficiency, a growing issue linked to higher risk of cancer, dementia, and many leading causes of mortality. Studies have also shown that vitamin D insufficiency is linked to increased severity of infection by Covid-19.

Tomatoes naturally contain one of the building blocks of vitamin D3, called provitamin D3 or 7-dehydrocholesterol (7-DHC), in their leaves at very low levels. Provitamin D3, does not normally accumulate in ripe tomato fruits. Researchers in Professor Cathie Martin’s group at the John Innes Centre (in UK) used CRISPR-Cas9 gene editing to make revisions to the genetic code of tomato plants so that provitamin D3 accumulates in the tomato fruit. The leaves of the edited plants contained up to 600 ug of provitamin D3 per gram of dry weight. The recommended daily intake of vitamin d is 10 ug for adults. When growing tomatoes leaves are usually waste material, but those of the edited plants could be used for the manufacture of vegan-friendly vitamin D3 supplements, or for food fortification.

We’ve shown that you can biofortify tomatoes with provitamin D3 using gene editing, which means tomatoes could be developed as a plant-based, sustainable source of vitamin D3,” said Professor Cathie Martin, corresponding author of the study which appears in Nature Plants. “Forty percent of Europeans have vitamin D insufficiency and so do one billion people world-wide. We are not only addressing a huge health problem, but are helping producers, because tomato leaves which currently go to waste, could be used to make supplements from the gene-edited lines.”

Previous research has studied the biochemical pathway of how 7-DHC is used in the fruit to make molecules and found that a particular enzyme Sl7-DR2 is responsible for converting this into other molecules. To take advantage of this the researchers used CRISPR-Cas 9 to switch off this Sl7-DR2 enzyme in tomato so that the 7DHC accumulates in the tomato fruit. The researchers then tested whether the 7-DHC in the edited plants could be converted to vitamin D3 by shining UVB light on leaves.

After treatment with UVB light to turn the 7-DHC into Vitamin D3, one tomato contained the equivalent levels of vitamin D as two medium sized eggs or 28g tuna – which are both recommended dietary sources of vitamin D. The study says that vitamin D in ripe fruit might be increased further by extended exposure to UVB, for example during sun-drying.

Source: https://www.jic.ac.uk/

Organic Cement From Food Scraps

Most people don’t think much about the food scraps they throw away; however, investigators from the Institute of Industrial Science at The University of Tokyo have developed a new method to reduce food waste by recycling discarded fruit and vegetable scraps into robust construction materials.

Worldwide industrial and household food waste amounts to hundreds of billions of kilos per year, a large proportion of which comprises edible scraps, like fruit and vegetable peels. This unsustainable practice is both costly and environmentally unfriendly, so researchers have been searching for new ways to recycle these organic materials into useful products.

Our goal was to use seaweed and common food scraps to construct materials that were at least as strong as concrete,” explains Yuya Sakai, the senior author of the study. “But since we were using edible food waste, we were also interested in determining whether the recycling process impacted the flavor of the original materials.”

The researchers borrowed a “heat pressing” concept that is typically used to make construction materials from wood powder, except they used vacuum-dried, pulverized food scraps, such as seaweed, cabbage leaves, and orange, onion, pumpkin, and banana peels as the constituent powders. The processing technique involved mixing the food powder with water and seasonings, and then pressing the mixture into a mold at high temperature. The researchers tested the bending strength of the resulting materials and monitored their taste, smell, and appearance.

Source: https://www.iis.u-tokyo.ac.jp/

Pancreatic Cancer Vaccine

Pancreatic cancer is the deadliest of cancers, with few treatment options. Now, an mRNA vaccine treatment, called autogene cevumeran, that is tailored to each individual’s cancer has produced promising results in a small initial trial.

In the trial, 16 people were given the vaccine around nine weeks after having an operation to remove their tumours. In eight, the vaccine didn’t elicit an effective immune response and their cancers returned. But in the other eight, the vaccine resulted in a good response and they remained cancer-free 18 months later. The results were announced by the vaccine’s developer, BioNTech, on 5 June.

This is a very small initial trial. Larger and longer trials will be needed to confirm the result. The trial only involved people whose cancers were detected early enough that they could undergo an operation to remove tumours before they spread to other parts of the body. Only around 10 per cent of people are diagnosed at this stage, says Chris Macdonald, head of research at charity Pancreatic Cancer UK. In other words, even if larger trials confirm these initial results, it remains to be seen if this vaccine can help people with more advanced pancreatic cancer – though that is, of course, the hope.

The problem is that the symptoms of pancreatic cancer are vague, says Macdonald. By the time it is detected, 70 per cent of people are so ill that it is too late for any treatment.

Source: https://www.newscientist.com/

Lasers Could Cut Lifespan of Nuclear Waste from a Million Years to 30 Minutes

Whatever one thinks of nuclear energy, the process results in tons of radioactive, toxic waste no one quite knows what to do with. As a result, it’s tucked away as safely as possible in underground storage areas where it’s meant to remain a long, long time: The worst of it, uranium 235 and plutonium 239, have a half life of 24,000 years. That’s the reason eyebrows were raised in Europe — where more countries depend on nuclear energy than anywhere else — when physicist Gérard Mourou mentioned in his wide-ranging Nobel acceptance speech that lasers could cut the lifespan of nuclear waste from “a million years to 30 minutes,” as he put it in a followup interview with The Conversation.
Who is Gérard Mourou? Mourou was the co-recipient of his Nobel with Donna Strickland for their development of Chirped Pulse Amplification (CPA) at the University of Rochester. In his speech, he referred to his “passion for extreme light.”

CPA produces high-intensity, super-short optical pulses that pack a tremendous amount of power. Mourou’s and Strickland’s goal was to develop a means of making highly accurate cuts useful in medical and industrial settings. It turns out CPA has another benefit, too, that’s just as important. Its attosecond pulses are so quick that they shine a light on otherwise non-observable, ultra-fast events such as those inside individual atoms and in chemical reactions. This capability is what Mourou hopes give CPA a chance of neutralizing nuclear waste, and he’s actively working out a way to make this happen in conjunction with Toshiki Tajima of UC Irvine.

“Take the nucleus of an atom. It is made up of protons and neutrons. If we add or take away a neutron, it changes absolutely everything. It is no longer the same atom, and its properties will completely change. The lifespan of nuclear waste is fundamentally changed, and we could cut this from a million years to 30 minutes!,”  explains Mourou.

We are already able to irradiate large quantities of material in one go with a high-power laser, so the technique is perfectly applicable and, in theory, nothing prevents us from scaling it up to an industrial level. This is the project that I am launching in partnership with the Alternative Energies and Atomic Energy Commission, or CEA, in France. We think that in 10 or 15 years’ time we will have something we can demonstrate. This is what really allows me to dream, thinking of all the future applications of our invention.”

While 15 years may seem a long time, when you’re dealing with the half-life of nuclear waste, it’s a blink of an eye.

Source: https://www.freethink.com/

Saudi Arabia to Spend $1 billion a Year to Slow Aging

Anyone who has more money than they know what to do with eventually tries to cure aging. Google founder Larry Page has tried it. Jeff Bezos has tried it. Tech billionaires Larry Ellison and Peter Thiel have tried it. Now the kingdom of Saudi Arabia, which has about as much money as all of them put together, is going to try it. The Saudi royal family has started a not-for-profit organization called the Hevolution Foundation that plans to spend up to $1 billion a year of its oil wealth supporting basic research on the biology of aging and finding ways to extend the number of years people live in good health, a concept known as “health span.”

The sum, if the Saudis can spend it, could make the Gulf state the largest single sponsor of researchers attempting to understand the underlying causes of aging—and how it might be slowed down with drugs. The foundation hasn’t yet made a formal announcement, but the scope of its effort has been outlined at scientific meetings and is the subject of excited chatter among aging researchers, who hope it will underwrite large human studies of potential anti-aging drugs. The fund is managed by Mehmood Khan, a former Mayo Clinic endocrinologist and the onetime chief scientist at PespsiCo, who was recruited to the CEO job in 2020. ““Our primary goal is to extend the period of healthy lifespan,” Khan said in an interview. “There is not a bigger medical problem on the planet than this one.

The idea, popular among some longevity scientists, is that if you can slow the body’s aging process, you can delay the onset of multiple diseases and extend the healthy years people are able to enjoy as they grow older. Khan says the fund is going to give grants for basic scientific research on what causes aging, just as others have done, but it also plans to go a step further by supporting drug studies, including trials of “treatments that are patent expired or never got commercialized.”

We need to translate that biology to progress towards human clinical research. Ultimately, it won’t make a difference until something appears in the market that actually benefits patients,” Khan says.

Khan says the fund is authorized to spend up to $1 billion per year indefinitely, and will be able to take financial stakes in biotech companies. By comparison, the division of the US National Institute on Aging that supports basic research on the biology of aging spends about $325 million a year.

Hevolution hasn’t announced what projects it will back, but people familiar with the group say it looked at funding a $100 million X Prize for age reversal technology and has reached a preliminary agreement to fund a test of the diabetes drug metformin in several thousand elderly people.

That trial, known as “TAME” (for “Targeting Aging with Metformin”), has been touted as the first major test of any drug to postpone aging in humans, but the study has languished for years without anyone willing to pay for it.

Source: https://www.technologyreview.com/

AI Tool Prevents Strokes

Karina Gasbarrino, a McGill University PhD graduate has dedicated her career to enhancing the early prediction and prevention of strokes, and she created a tool that uses artificial intelligence (AI) that does just that. This week, her work won her the Mitacs Social Entrepreneurship Award, a national innovation award presented to an applicant whose start-up works to address or solve social, cultural or humanitarian issues. Gasbarrino said this recognition means a lot to her, as she chose to delve into this kind of research based on a personal experience.

Harmful fatty deposits in the arteries of the neck, called plaques, are the main cause of strokes when ruptured

It really started off because we have a family history of cardiovascular disease,” Gasbarrino said. “I ended up losing my grandfather over 10 years ago due to a stroke.” “It was really instantaneous, like one minute he was here, the next he was not. And so that really impacted me and my family and it gave me the drive to want to go into research and really understand what causes these strokes and how we could better predict and prevent them.

Gasbarrino is the co-founder and COO of digital health start-up PLAKK, a software which uses image analysis technology to more accurately examine harmful fatty deposits in the arteries of the neck, called plaques, which, when ruptured, are the main cause of strokes. “What we’re trying to do with our technology is provide clinicians with more information about those plaques … and by understanding that, we can better determine whether a patient is at risk of having a stroke,” she said.

According to Gasbarrino, as it stands, there is no blood test that can used to detect plaques in the neck artery. Imaging is required, but even then, there’s no tool to determine what that plaque is composed of or how dangerous it is. “That’s why we’re developing the technology,” she said. “We want to be able to intervene and get patients the treatment that they need before they end up having a stroke.”

The tool is currently in the validation phase and the team is working to get regulatory approval in the coming six months. The hope is to have the technology implemented in a few centres across Canada as well as some in the U.S. by early 2023. Gasbarrino said the development of this technology would not have been possible without the support of her PhD supervisor, Dr. Stella S. Daskalopoulou, a clinician-scientist at the Montreal University Health Centre, as well as Kashif Khan, another recent PhD graduate from McGill University involved in the project.

Source: https://www.cbc.ca/

California’s First Commercial Electric Robotaxi

State officials green-flagged the launch of a fare-based ride-hailing business featuring cars with no human driver at the wheel. Robot-operated Chevy Bolt EVs will be rolled out over the next few weeks by autonomous vehicle maker Cruise. The San Francisco company, owned by General Motors, wouldn’t say how many.

With a permit from the California Public Utilities Commission, Cruise becomes the first commercial robotaxi business in the state and the second in the U.S. The first was launched in 2020 by Alphabet-owned Waymo in Chandler, Ariz. Although driverless cars have been prowling San Francisco streets for years, to date they’ve either been staffed with human safety drivers or, if fully driverless, occupied by company employees.

Potential customers of the new service can download an app for the service, the company said, but may not be approved for a while until the number of Cruise robotaxis deployed in San Francisco increases. Fares will be similar to what ride-hailing companies charge, the company said.

https://www.latimes.com/

Woman Gets 3D Printed Ear Transplant Made of Her Own Cells

In what the company is calling a “groundbreaking reconstructive procedure,” 3DBio Therapeutics has transplanted a 3D-printed ear made of living cells. The reconstruction is the first in-human phase of the clinical trial for the implant, called AuriNovo, and appears to be the first 3D-printed implant made of living tissues.

The implant is specifically for patients with microtia, a rare congenital ailment where the outer ear is either underdeveloped or doesn’t exist at all. According to the Centers for Disease Control and Prevention, it’s hard to estimate just how many people are impacted because of the range of the ailment varies, but estimates show that the birth defect impacts about 1 in every 2,000 to 10,000 in the U.S. The cause, in most cases, is unknown, although some cases are caused by genetic changes or the use of isotretinoin, or Accutane medication, during pregnancy.

The patient who received the transplant is a 20-year-old woman from Mexico whose right ear is impacted by the ailment. She received the surgery in March, and will continue to be monitored for five years, a spokesperson for 3DBio said.

Dr. Arturo Bonilla, a pediatric surgeon at the Congenital Ear Institute, the largest pediatric microtia center in North America, led the transplant. In a statement, he said that he’s “inspired” by what the advancement could mean for microtia patients.

Traditionally, doctors have to harvest rib cartilage or use porous polyethylene (PPE) implants to do this kind of transplant, both of which come with a set of challenges. Using rib cartilage, for example, requires a substantial harvest from at least three ribs and typically must be done in at least two separate hours-long procedures. It could result in a chest deformity, and the implants are rigid and can cause discomfort. PPE implants typically requires taking a large section of skin from a patient’s scalp, and because the implant is not made of biological material, there is early risk for infection and later risk of implant changes, discomfort and even a risk of the implant shattering.

Using a patient’s own cartilage cells is less invasive, and according to Bonilla, will allow for a more flexible ear. He also said that for those who have microtia, getting such a surgery can drastically help with their self-esteem. While it is not believed to impact hearing, it does offer an aesthetic relief.

This image shows what the 20-year-old patient’s ear looked like both before and after she received the 3D-bioprinted transplant. 

“An issue that becomes more prominent is bullying or teasing. Children don’t understand that they’re hurting somebody else’s feelings, but it really does affect them in a major way. And that’s usually when they start coming to my office, so that I can start taking care of them and helping them and advising them as far as what are the next options,” Bonilla said. “…The new technology with AuriNovo is exciting. I’ve actually been waiting for this my whole career.”

To create the new appendage, doctors conducted a biopsy on the ear of the patient that was impacted and extracted chondrocytes, the cells that create cartilage. Those cells were then expanded and mixed with what the company calls ColVivo collagen-based bio-ink before being molded with a 3D bioprinter into the size and shape of the patient’s opposite ear.

Source: https://www.cbsnews.com/

Synthetic, Tumor-Targeting Molecule Promotes Immune Activation

Activating the immune system at the site of a tumor can recruit and stimulate immune cells to destroy tumor cells. One strategy involves injecting immune-stimulating molecules directly into the tumor, but this method can be challenging for cancers that are not easily accessible. Now, Stanford researchers have developed a new synthetic molecule that combines a tumor-targeting agent with another molecule that triggers immune activation. This tumor-targeted immunotherapy can be administered intravenously and makes its way to one or multiple tumor sites in the body, where it recruits immune cells to fight the cancer.
Three doses of this new immunotherapy prolonged the survival of six of nine laboratory mice with an aggressive triple negative breast cancer. Of the six, three appeared cured of their cancer over the duration of the monthslong study. A single dose of this molecule induced complete tumor regression in five of 10 mice. The synthetic molecule showed similar results in a mouse model of pancreatic cancer.

An immunotherapy molecule administered intravenously to mice was shown to target tumors.

We essentially cured some animals with just a few injections,” said Jennifer Cochran, PhD, the Shriram Chair of the Department of Bioengineering. “It was pretty astonishing. When we looked within the tumors, we saw they went from a highly immunosuppressive microenvironment to one full of activated B and T cells — similar to what happens when the immune-stimulating molecule is injected directly into the tumor. So, we’re achieving intra-tumoral injection results but with an IV deliver.”

A paper describing the study published online in Cell Chemical Biology.  The lead authors are Stanford graduate student Caitlyn Miller and instructor of medicine Idit Sagiv-Barfi, PhD.

Source: https://med.stanford.edu/

AI-generated Replica of a Fusion Reactor Accelerates the Advent of Nuclear Fusion Power

The most powerful supercomputers on the planet are used to perform all manner of complex operations. Increasingly, they are used to enable artificial intelligence for research that could one day impact billions of people. The world’s fastest and most powerful high-performance computing (HPC) supercomputers are front and center at the International Supercomputing Conference (ISC).

HPC plus AI is really the transformational tool of scientific computing,” Dion Harris, Nvidia marketing manager for accelerated computing, said in a media briefing ahead of ISC. “We talk about exascale AI because we do believe that this is going to be one of the key pivotal tools to drive scientific innovation and any data center that’s building a supercomputer needs to understand how their system will perform from an AI standpoint.

Los Alamos National Laboratory and Hewlett Packard Enterprise (HPE) are building Venado, which is the first U.S. based supercomputer to use the Grace chip architecture. The Venado supercomputer uses a combination of Grace and Grace Hopper superchips, in a system that is expected to deliver 10 exaflops of AI performance. The Venado system will be used for material science, renewable energy, as well as energy distribution research.

As people around the world try to find solutions to the challenges of global warming, one of the primary strategies is to identify renewable energy sources. One such source could be nuclear reactors. Today’s nuclear reactors are fission-based and generate radioactive waste. The promise of fusion is that it can deliver large amounts of energy, without the same waste as fission. The U.K. Atomic Energy Authority (AEA) is using the Nvidia Omniverse simulation platform to accelerate the design and development of a full-scale fusion reactor. “With the Nvidia Omniverse, researchers could potentially build a fully functioning digital twin of a reactor, helping ensure the most efficient designs are selected for construction,” Harris said.

The goal for Omniverse and the digital twin is to have an AI-generated replica of the fusion reactor system. The U.K. AEA is also planning to simulate the physics of the Fusion plasma containment itself.The holy grail of fusion energy is being able to not just create a fusion reaction, but have it be sustainable,” Harris added. “We really think this will be a path towards sustainable energy.”

Source: https://venturebeat.com/

Are Contact Lenses the Ultimate Computer Screen?

Imagine you have to make a speech, but instead of looking down at your notes, the words scroll in front of your eyes, whichever direction you look in. That’s just one of many features the makers of smart contact lenses promise will be available in the future.

Imagine… you’re a musician with your lyrics, or your chords, in front of your eyes. Or you’re an athlete and you have your biometrics and your distance and other information that you need,” says Steve Sinclair, from Mojo, which is developing smart contact lenses.
His company is about to embark on comprehensive testing of smart contact lens on humans, that will give the wearer a heads-up display that appears to float in front of their eyes.

The product’s scleral lens (a larger lens that extends to the whites of the eye) corrects the user’s vision, but also incorporates a tiny microLED display, smart sensors and solid-state batteries. “We’ve built what we call a feature-complete prototype that actually works and can be worn – we’re soon going to be testing that [out] internally,” says Mr Sinclair. “Now comes the interesting part, where we start to make optimisations for performance and power, and wear it for longer periods of time to prove that we can wear it all day.”

Other smart lenses are being developed to collect health data. Lenses could “include the ability to self-monitor and track intra-ocular pressure, or glucose,” says Rebecca Rojas, instructor of optometric science at Columbia University. Glucose levels for example, need to be closely monitored by people with diabetes. “They can also provide extended-release drug-delivery options, which is beneficial in diagnosis and treatment plans. It’s exciting to see how far technology has come, and the potential it offers to improve patients’ lives.

Research is underway to build lenses that can diagnose and treat medical conditions from eye conditions, to diabetes, or even cancer by tracking certain biomarkers such as light levels, cancer-related molecules or the amount of glucose in tears. A team at the University of Surrey, for example, has created a smart contact lens that contains a photo-detector for receiving optical information, a temperature sensor for diagnosing potential corneal disease and a glucose sensor monitoring the glucose levels in tear fluid.

Source: https://www.bbc.com/

CO2-Capturing Aprons at Stockholm Restaurant

A Stockholm restaurant crew is wearing cotton aprons that capture greenhouse gas from the air, in a pilot of a technique developed by H&M-backed researchers as the fashion industry struggles to lower its climate impact.

The textile industry has a large carbon footprint, something fashion giants are under increasing pressure to address as shoppers become more aware of the environmental impact of clothes and as global temperatures rise. The Hong Kong Research Institute of Textiles and Apparel (HKRITA) has developed an amine-containing solution with which to treat cotton – fibre, yarn or fabric – making the cotton pull carbon dioxide gas towards it and capture it, to thereafter stabilise and store it on the surface of the textile.

HKRITA CEO Edwin Keh said in an interview his team had been inspired by techniques used in chimneys of coal-fired power plants to limit emissions.

Many power plants have to scrub as much carbon dioxide as they can out of the air before the exhaust is released,” Keh told Reuters. “We thought ‘why don’t we try to replicate that chemical process on a cotton fibre”.

A T-shirt is able to absorb about a third of what a tree absorbs per day, Keh said. “The (capturing) capacity isn’t super high but this is quite inexpensive to produce and quite easy, and we think there are a lot of potential applications.The aprons in the pilot were produced at a H&M supplier in Indonesia, using the factory’s existing equipment for the treatment, Keh said. “It is a fairly simple chemical process.

In the pilot the aprons are after use heated to 30-40 degrees Celsius at which temperature they release the CO2 – into a greenhouse where the gas is taken up by plants.

H&M Foundation said the innovation could potentially be a game changer in the reduction of global CO2 emissions. Projects to develop CO2 absorbing textiles are however at an early stage, and their potential contribution to lessening the environmental impact of the textile industry remains to seen.

Keh said the institute would now develop its technology further, and try to find other uses for it, as well as other ways to use or dispose of the captured CO2.

HKRITA, which is part-financed by the philanthropic arm of Swedish fashion retailer H&M (HMb.ST), has developed a number of innovations aimed at making fashion more sustainable. One that has reached industrial scale use is a technique to separate cotton and polyester fibres in blend-textile

Source: https://www.reuters.com/

Lasers and Ultrasound Combine to Pulverize Arterial Plaque

Lasers are one of the tools physicians can lean on to tackle plaque buildup on arterial walls, but current approaches carry a risk of complications and can be limited in their effectiveness. By bringing ultrasound into the mix, scientists at the University of Kansas have demonstrated a new take on this treatment that relies on exploding microbubbles to destroy plaque with greater safety and efficiency, while hinting at some unique long-term advantages.

Scientists have demonstrated a new technique to take out arterial plaque, using low-power lasers and ultrasound to break it apart with tiny bubbles

The novel ultrasound-assisted laser technique builds off what’s known as laser angioplasty, an existing treatment designed to improve blood flow in patients suffering from plaque buildup that narrows the arteries. Where more conventional treatments such as stents and balloon angioplasty expand the artery and compress the plaque, laser angioplasty destroys it to eliminate the blockage.

The laser is inserted into the artery with a catheter, and the thermal energy it generates turns water in the artery into a vapor bubble that expands, collapses and breaks up the plaque. Because this technique calls for high-power lasers, it has the potential to perforate or dissect the artery, something the scientists are looking to avoid by using low-power lasers instead.

They were able to do so in pork belly samples and ex vivo samples of artery plaque with the help of ultrasound. The method uses a low-power nanosecond pulsed laser to generate microbubbles, and applying ultrasound to the artery then causes these microbubbles to expand, collapse and disrupt the plaque.

In conventional laser angioplasty, a high laser power is required for the entire cavitation process, whereas in our technology, a lower laser power is only required for initiating the cavitation process,” said team member Rohit Singh. “Overall, the combination of ultrasound and laser reduces the need for laser power and improves the efficiency of atherosclerotic plaque removal.

The mix of lasers and ultrasound has shown potential in other areas of medicine, with Singh and his colleagues pursuing similar therapies to tackle abnormal microvessels in the eye that cause blindness and blood clots in the veins. We’ve also seen ultrasound used to explode tiny bubbles in cancer research, providing a way of wiping out cancerous cells within a tumor.

Source: https://newatlas.com/

Making Computer Chips With Human Cells

In 2030 the smartphones could contain a super powerful processor that perform a quintillon operations per second, a thousand times faster than smartphone biologicalmodels in 2020. This huge performance gains is possible because a new biological chip using lab-grown human neurons,  better than silicon chips, can change their internal structure, adapting to a user’s usage pattern and leading to huge gains in efficiency.

In December 2021, Melbourne-based Cortical Labs grew groups of neurons (brain cells) that were incorporated into a computer chip. The resulting hybrid chip works because both brains and neurons share a common language: electricity.

In silicon computers, electrical signals travel along metal wires that link different components together. In brains, neurons communicate with each other using electric signals across synapses (junctions between nerve cells). In Cortical LabsDishbrain system, neurons are grown on silicon chips. These neurons act like the wires in the system, connecting different components. The major advantage of this approach is that the neurons can change their shape, grow, replicate, or die in response to the demands of the system.

Dishbrain could learn to play the arcade game Pong faster than conventional AI systems. The developers of Dishbrain said: “Nothing like this has ever existed before … It is an entirely new mode of being. A fusion of silicon and neuron.”

Cortical Labs believes its hybrid chips could be the key to the kinds of complex reasoning that today’s computers and AI cannot produce. Another start-up making computers from lab-grown neuronsKoniku, believes their technology will revolutionise several industries including agriculture, healthcare, military technology and airport security. Other types of organic computers are also in the early stages of development.

While silicon computers transformed society, they are still outmatched by the brains of most animals. For example, a  more data storage than an average iPad and can use this information a million times faster. The human brain, with its trillion neural connections, is capable of making 15 quintillion operations per second.

Source: https://theconversation.com/

Revolutionary Cancer-Killing Virus Tested

Scientists have injected the first human patient with a new ‘cancer-killing virus‘ that has been shown to shrink solid tumours in animals. The virus, known as Vaxinia, has been genetically engineered to infect, replicate in and kill cancer cells, while sparing healthy cells. Tests on animals have shown it is able to reduce the size of colon, lung, breast, ovarian and pancreatic cancer tumours.

While other immunotherapies such as checkpoint inhibitors have been effective in certain cancers, patients often relapse and eventually stop responding to or develop resistance to this type of treatment, according to the researchers. In contrast, Vaxinia can prime the patient’s immune system and increase the level of a protein called PD-L1 in tumours, making immunotherapy more effective against cancerVaxinia, (full name CF33-hNIS VAXINIA), is a type of ‘oncolytic virus‘ – a virus found in nature that has been genetically modified specifically to fight cancer. It is being developed by Imugene Limited, a company specialising in novel therapies that activate the immune system against cancer.

Our previous research demonstrated that oncolytic viruses can stimulate the immune system to respond to and kill cancer, as well as stimulate the immune system to be more responsive to other immunotherapies, including checkpoint inhibitors,‘ said Daneng Li MD, principal investigator and assistant professor of City of Hope‘s Department of Medical Oncology & Therapeutics Research. ‘Now is the time to further enhance the power of immunotherapy, and we believe CF33-hNIS has the potential to improve outcomes for our patients in their battle with cancer.’

The Phase 1 clinical trial aims to recruit 100 cancer patients with metastatic or advanced solid tumours across approximately 10 trial sites in the United States and Australia. It is anticipated to run for approximately 24 months. Patients will begin by receiving a low dose of Vaxinia, either as an injection directly into tumours or intravenously. Once the safety of Vaxina has been demonstrated, some participants will also receive an immunotherapy drug called pembrolizumab, which improves the immune system’s ability to fight cancer-causing cells.

Interestingly, the same characteristics that eventually make cancer cells resistant to chemotherapy or radiation treatment actually enhance the success of oncolytic viruses, such as CF33-hNIS,’ said Yuman Fong MD, the Sangiacomo Family Chair in Surgical Oncology at City of Hope and the key developer of the genetically modified virus.

Source: https://www.cityofhope.org/
AND
https://www.dailymail.co.uk/

Drug Prevents Breast Cancer Recurrence and Metastasis

Even when detected early, some cancers are more aggressive and more fatal than others. This is the case, for example, with triple negative breast cancer which accounts for 10 to 15% of all breast cancers. This cancer affects 1,000 patients per year in Belgium, while the figure worldwide is 225,000. Around half of the patients will develop local recurrences and metastases, regardless of the treatment they receive. No specific treatment is currently capable of preventing these two events. Patients suffering from pervasive triple negative breast cancer have only a one-in-ten chance of a cure. In 2014, Pierre Sonveaux, a researcher at the University of Louvain (UCLouvain) Institute for experimental and clinical research, succeeded in demonstrating the principle that it was possible to prevent the appearance of melanoma tumour metastases in mice. However, the experimental molecules used at the time were far from being drugs.

Since then, the UCLouvain researcher and his team, including post-doctoral researcher Tania Capeloa, have continued their work thanks in particular to sponsorship obtained by the UCLouvain Foundation. They have now succeeded in establishing that a drug developed for diseases other than cancer, MitoQ, avoids the appearance of metastases in 80% and local recurrences of human breast cancer in 75% of cases in mice. Conversely, most of the mice not treated suffered a recurrence of their cancer, which spread.

To do this, the researchers treated mice affected by human breast cancer. They treated them as hospital patients are treated, i.e. by combining surgery with a carefully dosed cocktail of standard chemotherapies. However, the UCLouvain researchers supplemented this standard treatment with the new molecule, MitoQ. They not only demonstrated that the administration of MitoQ is compatible with standard chemotherapies, but also that this innovative treatment prevents both relapses and metastases of breast cancer in mice. “We expected to be able to block the metastases, says Pierre Sonveaux enthusiastically. But preventing the recurrence of the cancer was totally unexpected. Getting this type of result is a huge motivation for us to carry on.” In short, this is a giant step given that the three main causes of cancer mortality are recurrences, the spread of the cancer caused by metastasis and resistance to treatment. And that there is currently no other known molecule capable of acting like MitoQ.

How does it work? Cancers consist of two types of cancerous cells: those that proliferate and are sensitive to clinical treatments and those that are dormant and that bide their time. Such cells are more harmful. The problem? These cancerous stem cells are resistant to clinical treatments. They result in metastases and if, unfortunately, cancer surgery fails to remove them all, they cause recurrences. These relapses are currently treated using chemotherapy. However, this tends to be relatively ineffective owing to the resistance to treatment developed by the tumorous cells . This is where the important discovery of the UCLouvain scientists comes in: the molecule MitoQ stops cancerous stem cells from awakening.

What next? MitoQ has already come through the first clinical phase successfully. It has been tested on healthy patients, both men and women, and proves to be only slightly toxic (nausea, vomiting). In addition, its behaviour is known. What next? The discovery made by the UCLouvain scientists opens wide the path for the clinical 2 phase, intended to demonstrate the efficacy of the new treatment in cancer patients.

Source: https://uclouvain.be/
AND
https://www.thebrighterside.news

Robots Do Better Than Surgeons

Robot-assisted surgery used to perform bladder cancer removal enables patients to recover far more quickly and spend significantly (20 per cent) less time in hospital, concludes a first-of-its kind clinical trial led by scientists at UCL and the University of Sheffield. The study, published in JAMA  also found robotic surgery reduced the chance of readmission by half (52 per cent), and revealed a “striking” four-fold (77 per cent) reduction in prevalence of blood clots (deep vein thrombus & pulmonary emboli) – a significant cause of health decline and morbidity – when compared to patients who had open surgery.  Patients’ physical activity – assessed by daily steps tracked on a wearable smart sensorstamina and quality of life also increased.

Unlike open surgery, where a surgeon works directly on a patient and involves large incisions in the skin and muscle, robot-assisted surgery allows surgeons to guide minimally invasive instruments remotely using a console and aided by 3D view. It is currently only available in a small number of UK hospitals. esearchers say the findings provide the strongest evidence so far of the patient benefit of robot-assisted surgery and are now urging National Institute of Clinical Excellence (NICE) to make it available as a clinical option across the UK for all major abdominal surgeries including colorectal, gastro-intestinal, and gynaecological.

Co-Chief Investigator, Professor John Kelly, Professor of Uro-Oncology at UCL’s Division of Surgery & Interventional Science and consultant surgeon at University College London Hospitals, said: “Despite robot-assisted surgery becoming more widely available, there has been no significant clinical evaluation of its overall benefit to patients’ recovery. In this study we wanted to establish if robot-assisted surgery, when compared to open surgery, reduced time spent in hospital, reduced readmissions, and led to better levels of fitness and quality of life; on all counts this was shown. “An unexpected finding was the striking reduction in blood clots in patients receiving robotic surgery; this indicates a safe surgery with patients benefiting from far fewer complications, early mobilisation and a quicker return to normal life”, explained Co-Chief Investigator, Professor John Kelly, Professor of Uro-Oncology at UCL.

Co-Chief Investigator Professor James Catto, Professor of Urological Surgery at the University of Sheffield, added: “This is an important finding. Time in hospital is reduced and recovery is faster when using this advanced surgery. “Ultimately, this will reduce bed pressures on the NHS and allow patients to return home more quickly. We see fewer complications from the improved mobility and less time spent in bed. “The study also points to future trends in healthcare. Soon, we may be able to monitor recovery after discharge, to find those developing problems. It is possible that tracking walking levels would highlight those who need a district nurse visit or perhaps a check-up sooner in the hospital.”“Previous trials of robotic surgery have focused on longer term outcomes. They have shown similar cancer cure rates and similar levels of long term recovery after surgery. None have looked at differences in the immediate days and weeks after surgery.”

Source: https://www.ucl.ac.uk/

Human-level Artificial Intelligence

Human-level artificial intelligence is close to finally being achieved, according to a lead researcher at Google’s DeepMind AI division.

Dr Nando de Freitas said “the game is over” in the decades-long quest to realise artificial general intelligence (AGI) after DeepMind unveiled an AI system capable of completing a wide range of complex tasks, from stacking blocks to writing poetry. Described as a “generalist agent”, DeepMind’s new Gato AI needs to just be scaled up in order to create an AI capable of rivalling human intelligence, Dr de Freitas said. Responding to an opinion piece written in The Next Web that claimed “humans will never achieve AGI”, DeepMind’s research director wrote that it was his opinion that such an outcome is an inevitability.

“It’s all about scale now! The Game is Over!” he wrote on Twitter. “It’s all about making these models bigger, safer, compute efficient, faster at sampling, smarter memory, more modalities, innovative data, on/offline… Solving these challenges is what will deliver AGI.”

When asked by machine learning researcher Alex Dimikas how far he believed the Gato AI was from passing a real Turing test – a measure of computer intelligence that requires a human to be unable to distinguish a machine from another human – Dr de Freitas replied: “Far still.”

Leading AI researchers have warned that the advent of AGI could result in an existential catastrophe for humanity, with Oxford University Professor Nick Bostrom speculating that a “superintelligentsystem that surpasses biological intelligence could see humans replaced as the dominant life form on Earth.

Source: https://uk.finance.yahoo.com/

How to Keep Buildings Cooler With a Wood-based Foam

Summertime is almost here, a time when many people try to beat the heat. But running air conditioners constantly can be expensive and wasteful. Now, researchers reporting in ACS’ Nano Letters have designed a lightweight foam made from wood-based cellulose nanocrystals that reflects sunlight, emits absorbed heat and is thermally insulating. They suggest that the material could reduce buildings’ cooling energy needs by more than a third.

Although scientists have developed cooling materials, they have disadvantages. Some materials that passively release absorbed heat let a lot of heat through to buildings under the direct, midday sun of the summer months. And other materials that reflect sunlight don’t work well in hot, humid or cloudy weather. So, Yu Fu, Kai Zhang and colleagues wanted to develop a robust material that could reflect sunlight, passively release heat and keep wayward heat from passing through.

The team calculated that placing the foam on the roof and exterior walls of a building could reduce its cooling energy needs by an average of 35.4%. Because the wood-based cellulose foam‘s performance can be tuned depending on weather conditions, the researcher say that the technology could be applied in a wide range of environments.

Source: https://pubs.acs.org/
AND
https://www.sciencedaily.com/

Smart Contact Lens to Treat Glaucoma

A flexible contact lens that senses eye pressure and releases a drug on-demand could help treat glaucoma, the second leading global cause of blindness worldwide. The compact wireless device, which has been developed by a team of Chinese researchers and tested in pig and rabbit eyes so far, appears to detect and reduce rising eye pressure, one of the usual causes of glaucoma.

Glaucoma is an umbrella term for a group of eye diseases where damage to the optic nerve, which relays visual information to the brain, causes irreversible vision loss and blindness in millions of people worldwide. Where this new research makes ground is in developing a device capable of detecting changes in eye pressure and delivering therapeutic drugs as needed. Recent efforts to develop smart contact lenses as wearable devices for treating eye conditions have either focused on sensing pressure changes in the eye or delivering a drug – but not both – and glaucoma treatment usually involves eye drops, laser therapy, or surgery to reduce eye pressure. While it sounds exciting, keep in mind that as scientists continue experimenting with all sorts of nifty devices for treating eye diseases, early detection of glaucoma and timely treatment remains vital.

Once detected, therapy for glaucoma can arrest or slow its deterioration in the majority of cases,” Jaimie Steinmetz, a research scientist at the Washington-based Institute for Health Metrics and Evaluation, and collaborators wrote in 2020 when analyzing the global burden of eye diseases, including glaucoma. But glaucoma is typically hard to catch because peripheral vision is the first to go, and devices used to diagnose the condition only provide snapshot measurements of intraocular pressure, which fluctuates with activity and sleep-wake cycles.

Hence the importance of improving systems of surveillance, highlighting risk among family members of cases, and effectiveness of care once treatment is initiated,” Steinmetz and co-authors stressThat said, contact lenses which sit snug against the eye hold great appeal for delivering therapies for eye conditions. But incorporating electrical circuits and sensors into small, flexible, curved, and ultra-thin contact lenses presents a serious engineering challenge. For something like this to work, it needs to be sensitive enough to detect pressure changes and release precise amounts of drug on demand – all without blocking vision and irritating the eye. “It is highly challenging to install an intricate theranostic system composited by multi-modules on a contact lens,” electrical engineer Cheng Yang of Sun Yat-Sen University and colleagues write in their paper.

ThermoPhotovoltaic Energy Over 40% Efficiency

Researchers at MIT have built a highly efficient thermophotovoltaic cell that, when paired with renewable resources, efficiently converts incoming photonsparticles of light—to electricity. It’s an achievement that could inspire new ways of supplying the world with energy.


The problem is, you don’t get [renewable] energy when you want it,” Asegun Henry, mechanical engineer at MIT and author of the new Nature explained in a video call. “You only get it when the weather is favorable: when the Sun is out or the wind is blowing.” The answer to this dilemma lies in what Henry calls “thermal batteries,” where power from renewable sources of energy, such as solar, is stored as heat.
Thermal batteries could “dispatch” energy to the power grid whenever it’s needed, Henry said. Lithium-ion batteries aren’t sufficient for this purpose. “Lithium-ion batteries are unfortunately too expensive, and there have been a number of studies that have looked at how cheap the storage has to be in order for us to have a fully renewable grid,” Henry explained. “So that’s where we developed this technology—thermal batteries—because storing energy as heat rather than storing it electrochemically is 10 to 100 times cheaper.”
Source: https://www.nature.com/

Cancer of the Blood and Bone Marrow Healed by Immunotherapy

Emily Whitehead was diagnosed with acute lymphoblastic leukemia (ALL) when she was just five years old. Acute lymphoblastic leukemia is a type of cancer of the blood and bone marrow that affects white blood cells, and is most common in children ages three to five. Whitehead needed chemotherapy, but after two years, it was unsuccessful. Her health was rapidly declining, and the local hospital told them to go home and enjoy the days they had left with her. But Whitehead’s parents refused to give up on their daughter and turned to the Children’s Hospital of Philadelphia (CHOP) for help.. There, they learned about a clinical trial that had just started involving CAR T-cell therapy, which genetically alters a patient’s white blood cells to fight cancer cellsWhitehead’s doctor, Dr. Grub, says this therapy is a game-changer for blood cancers and is a great option for those who relapsed and don’t have their cancer under control. In 2012, Whitehead became the first pediatric patient in the world to receive this type of therapy. Today, she is 17 years old and just celebrated being ten years cancer-free!

I’m feeling great. I’m really healthy. I’m driving now, I got my driver’s license in January.”

Not all patients who receive CAR T for relapsed ALL reach the same outcome as Emily. Currently, more than 90% of patients who receive CAR T-cell therapy for relapsed ALL go into remission; approximately 50% of those patients will remain cancer free. Researchers are continuing to advance the field so that more patients never relapse. Because CHOP is the pediatric oncology program with the most CAR T experience — having to date treated more than 440 patients, who have come to CHOP from across the globe — the program remains poised to further improve those outcomes.

In addition, Dr. Grupp says there has been a change in thinking surrounding enrollment in clinical trials for cancer patients. Rather than waiting until a patient is nearly out of options to consider experimental treatment options, oncologists are recognizing patients who might qualify for CAR T-cell therapy and other clinical trials earlier in the process. While CAR T-cell therapy is good for blood cancers, doctors and researchers will be spending the next five to ten years trying to figure out how to make this work for other types of cancers such as breast cancer and lung cancer.

Source: https://www.chop.edu/

Flu Vaccine Cuts Risk of Heart Attack in Following Year by 34 Per Cent

A new meta-analysis published today in the JAMA Network Open shows a strong association between the seasonal flu vaccine and a reduction in adverse cardiovascular outcomes within a year of follow up, particularly for high-risk patients. This is the strongest evidence to date that influenza vaccines are a key measure in the prevention of cardiovascular events, such as heart attacks.

While we were already aware of this protective association, our previous systemic review and meta-analysis underscored the need for a large scale, adequately powered, and ideally global clinical trial to provide more robust and comprehensive data,” explained Bahar Behrouzi, MD and PhD candidate at the University of Toronto and lead author. “This study looked at randomized controlled trials from 2000-2021 that compared the influenza vaccine with either a placebo or control, in order to assess its impact on fatal and non-fatal cardiovascular events over the course of a year.

The researchers found that 3.6 per cent of the 4,510 clinical trial participants who received a flu vaccine experienced a major cardiovascular event afterwards in the following year, compared with 5.4 per cent of the 4,491 patients who received a placebo or control, which is a significant difference.

Given the pervasive nature of heart disease globally, it is critical that we leverage as many preventative clinical tools and treatments as possible to improve patient outcomes,” said Dr. Jay Udell, cardiologist at Women’s College Hospital and the Peter Munk Cardiac Centre at UHN, scientist at the Women’s College Research Institute, and senior author. “The effect sizes witnessed so far with the flu vaccine are comparable to other common preventative measures such as statins and beta blockers. Our work underscores the value of utilizing influenza vaccines as a mainstay in cardiovascular disease prevention.”

In light of the evidence, the authors advise clinicians to encourage their patients, particularly those with high cardiovascular risk, to get their annual flu shot, an intervention that remains underutilized despite being low cost, well tolerated, and impactful.

Applying our findings more broadly, our study highlights the additional or secondary benefits often associated with vaccinations,” Udell stated. “In the current context of the COVID-19 pandemic and ongoing vaccine hesitancy, we are hopeful that our results highlight the positive ancillary benefits of vaccinations – providing greater motivation and encouragement for those who remain uncertain.”

Source: https://jamanetwork.com/
AND
https://www.womenscollegehospital.ca/

Memory Problems Common in Old Age Can Be Reversed

While immortality might forever be out of reach, a long, healthy retirement is the stuff dreams are made of. To that end, a recent study suggests that the kinds of memory problems common in old age can be reversed, and all it takes is some cerebrospinal fluid (CSF) harvested from the young. In mice, at least.

If this is sounding a little familiar, you might be thinking of a similar series of studies done back in the mid-2010s, which found that older mice could be generally ‘rejuvenated‘ with the blood of younger animals – both from humans and from mice. The FDA even had to warn people to stop doing it. This new study instead examined the links between memory and cerebrospinal fluid  (CSF), and the results show considerable promise, even providing a mechanism for how it works, and highlighting a potential growth factor that could mimic the results.

“We know that CSF composition changes with age, and, in fact, these changes are used routinely in the clinic to assess brain health and disease biomarkers,” Stanford University neurologist Tal Iram said. “However, we don’t know well how these changes affect the function of the cells in the aging brain.

To investigate, the researchers, led by Iram, took older mice (between 18–22 months old) and gave them light shocks on the foot, at the same time as a tone and flashing light were activated. The mice were then split into groups, and either given young mouse CSF (from animals 10 weeks old) or artificial CSF. In experiments like this, if the mice ‘freeze’ when they see the tone and light, it means they’re remembering the foot shock, and are preparing for it to happen again. In this study, three weeks after the foot shocks were conducted (which the team called “memory acquisition“), the researchers tested the mice, finding that the animals that had been given the CSF from young mice showed higher-than-average freezing rates, suggesting they had better memory. This was followed up by a battery of other experiments to test the theory, which revealed that certain genes (that are different in young-versus-old CSF) could be used to get the same response. In other words, without needing to extract someone’s brain fluid.

When we took a deeper look into gene changes that occurred in the hippocampus (a region associated with memory and aging-related cognitive decline), we found, to our surprise, a strong signature of genes that belong to oligodendrocytes,” Iram explained. “Oligodendrocytes are unique because their progenitors are still present in vast numbers in the aged brain, but they are very slow in responding to cues that promote their differentiation. We found that when they are re-exposed to young CSF, they proliferate and produce more myelin in the hippocampus.” Oligodendrocytes are particularly helpful because they produce myelin, a material that covers and insulates neuron fibers.

AI Technology Predicts Alzheimer’s

Fujifilm and the National Center of Neurology and Psychiatry (NCNP) have just released new research which shows that AI technology could help to predict whether or not someone is likely to get Alzheimer’s disease. By monitoring brain activity, Fujifilm and NCNP say that they are able to predict whether a patient with mild cognitive impairment (MCI) will progress to having dementia within two years with an accuracy of up to 88%.

Alzheimer’s disease is the most common cause of dementia and it is estimated that 55 million people worldwide have the neurological condition that causes loss of memory. As the population ages, it’s expected that by 2050, more than 139 million people will suffer from the life-changing condition Using advanced image recognition technology, Fujifilm and NCNP have developed a way in which they are able to monitor the progression of Alzheimer’s from three-dimensional MRI scans of the brain. Deep learning AI technology monitors the hippocampus and the anterior temporal lobe, two areas highly associated with the progression of Alzheimer’s and detects fine atrophy patterns associated with Alzheimer’s.

An MRI scan of the brain showing the progression of Alzheimer’s 

Atrophy is the progressive degeneration or shrinking of muscle or nerve tissues and in relation to dementia, it takes place in the brain. Two types of common atrophy’s are found in patients with MSmuscle atrophy which causes certain muscles to waste away and cerebral atrophy which is a loss of neurons and connections between neurons. The research shows that when AI technology learns an entire brain, it focuses not just on the two areas usually associated with Alzheimer’s but also on the cerebrospinal fluid (a clear colorless fluid found in your brain and spinal cord) and the occipital lobe which is the visual processing area of the brain

By learning to differentiate between areas of the brain that are less relevant to Alzheimer’s, it is much more likely that a highly accurate prediction can be made about the progression of mild cognitive impairment.

Source: https://www.digitalcameraworld.com/

First Trial of Alzheimer’s Nasal Vaccine to Begin

Brigham and Women’s Hospital will test the safety and efficacy of a nasal vaccine aimed at preventing and slowing Alzheimer’s disease, the Boston hospital announced Tuesday. The start of the small, Phase I clinical trial comes after nearly 20 years of research led by Howard L. Weiner, MD, co-director of the Ann Romney Center for Neurologic Diseases at the hospital. The trial will include 16 participants between the ages of 60 and 85, all with early symptomatic Alzheimer’s but otherwise generally healthy. They will receive two doses of the vaccine one week apart, the hospital said in a press release. The participants will enroll from the Ann Romney Center. A Phase I clinical trial is designed to establish the safety and dosage for a potential new medication. If it goes well, a much larger trial would be needed to test its effectiveness.

The vaccine uses a substance called Protollin, which stimulates the immune system.

Protollin is designed to activate white blood cells found in the lymph nodes on the sides and back of the neck to migrate to the brain and trigger clearance of beta amyloid plaques — one of the hallmarks of AD [Alzheimer’s disease],” the hospital explains. It notes that Protollin has been found to be safe in other vaccines. “The launch of the first human trial of a nasal vaccine for Alzheimer’s is a remarkable milestone,” said Weiner in the hospital’s press release. “Over the last two decades, we’ve amassed preclinical evidence suggesting the potential of this nasal vaccine for AD. If clinical trials in humans show that the vaccine is safe and effective, this could represent a nontoxic treatment for people with Alzheimer’s, and it could also be given early to help prevent Alzheimer’s in people at risk.”

The researchers say they aim to “determine the safety and tolerability of the nasal vaccine” in the trial and observe how Protollin affects participants’ immune response, including how it affects their white blood cells. “The immune system plays a very important role in all neurologic diseases,” Weiner added. “And it’s exciting that after 20 years of preclinical work, we can finally take a key step forward toward clinical translation and conduct this landmark first human trial.”

Research in this area has paved the way for us to pursue a whole new avenue for potentially treating not only AD, but also other neurodegenerative diseases,” said Tanuja Chitnis, MD, professor of neurology at Brigham and Women’s Hospital and principal investigator of the trial.

I-Mab Biopharma and Jiangsu Nhwa Pharmaceutical are responsible for developing, manufacturing and commercializing Protollin.

Source: https://www.cbsnews.com/

Breakthrough Opens New Method to Fight Alzheimer’s

During experiments in animal models, researchers at the University of Kansas (KU)  have discovered a possible new approach to immunization against Alzheimer’s disease (AD). Their method uses a recombinant methionine (Met)-rich protein derived from corn that was then oxidized in vitro to produce the antigen: methionine sulfoxide (MetO)-rich protein. This antigen, when injected to the body, goads the immune system into producing antibodies against the MetO component of beta-amyloid, a protein that is toxic to brain cells and seen as a hallmark of Alzheimer’s disease.

As we age, we have more oxidative stress, and then beta-amyloid and other proteins accumulate and become oxidized and aggregated – these proteins are resistant to degradation or removal,” said lead researcher Jackob Moskovitz, associate professor of pharmacology & toxicology at the KU School of Pharmacy. “In a previous 2011 published study, I injected mouse models of Alzheimer’s disease with a similar methionine sulfoxide-rich protein and showed about 30% reduction of amyloid plaque burden in the hippocampus, the main region where damage from Alzheimer’s disease occurs.”

The MetO-rich protein used by Moskovitz for the vaccination of AD-model mice is able to prompt the immune system to produce antibodies against MetO-containing proteins, including MetO-harboring beta-amyloid. The introduction of the corn-based MetO-rich protein (antigen) fosters the body’s immune system to produce and deploy the antibodies against MetO to previously tolerated MetO-containing proteins (including MetO-beta-amyloid), and ultimately reduce the levels of toxic forms of beta-amyloid and other possible proteins in brain.

According to Moskovitz, there was a roughly 50% improvement in the memory of mice injected with the methionine sulfoxide (MetO)-rich protein versus the control.

The findings have been just published in the peer-reviewed open-access journal Antioxidants.

Source: https://today.ku.edu/

Nose Spray Vaccines Could Quash COVID Virus Variants

The relentless evolution of the COVID-causing coronavirus has taken a bit of the shine off the vaccines developed during the first year of the pandemic. Versions of the virus that now dominate circulationOmicron and its subvariants—are more transmissible and adept at evading the body’s immune defenses than its original form. The current shots to the arm can still prevent serious illness, but their ability to ward off infection completely has been diminished. And part of the reason may be the location of the jabs, which some scientists now want to change.

To block infections entirely, scientists want to deliver inoculations to the site where the virus first makes contact: the nose. People could simply spray the vaccines up their nostrils at home, making the preparation much easier to administer. There are eight of these nasal vaccines in clinical development now and three in phase 3 clinical trials, where they are being tested in large groups of people. But making these vaccines has proven to be slow going because of the challenges of creating formulations for this unfamiliar route that are both safe and effective.

What could be most important about nasal vaccines is their ability to awaken a powerful bodily defender known as mucosal immunity, something largely untapped by the standard shots. The mucosal system relies on specialized cells and antibodies within the mucus-rich lining of the nose and other parts of our airways, as well as the gut. These elements move fast and arrive first, stopping the virus, SARS-CoV-2, before it can create a deep infection. “We are dealing with a different threat than we were in 2020,” says Akiko Iwasaki, an immunologist at Yale University. “If we want to contain the spread of the virus, the only way to do that is through mucosal immunity.

Iwasaki is leading one of several research groups in the U.S. and elsewhere that are working on nasal vaccines. Some of the sprays encapsulate the coronavirusspike proteins—the prominent molecule that the virus uses to bind to human cells—into tiny droplets that can be puffed into the sinuses. Others add the gene for the spike to harmless versions of common viruses, such as adenoviruses, and use the defanged virus to deliver the gene into nasal tissue. Still others rely on synthetically bioengineered SARS-CoV-2 converted into a weakened form known as a live attenuated vaccine.

Sourc: https://www.scientificamerican.com/

Obesity Drug Achieves Weight Loss of 24 kg

People with obesity lost 24 kilograms on average when they were treated with the highest dose of a new hunger-blocking drug in a large clinical trial. “It’s really exciting. The weight loss they’re showing is dramatic – it’s as much as you get with successful bariatric surgery,” says Michael Cowley at Monash University in Melbourne, Australia, who wasn’t involved in the research.

The drug used, called tirzepatide, combines synthetic mimics of two hormones known as GLP-1 and GIP that our guts naturally release after we eat to make us feel full. In a late-stage clinical trial, more than 2500 people in nine countries, who weighed 105 kilograms on average at baseline, were asked to give themselves weekly injections of tirzepatide at low, medium or high doses or a placebo for 72 weeks, without knowing which one they were taking.

The highest dose of tirzepatide was most effective, resulting in 24 kilograms of weight loss on average, equivalent to a 22.5 per cent reduction in body weight. In comparison, participants taking the placebo lost just 2 kilograms on average. The results were announced on 28 April by US pharmaceutical giant Lilly, which is developing the drug.

In June 2021, the US Food and Drug Administration approved another obesity drug called semaglutide, which contains a GLP-1 mimic on its own, without the addition of GIP. Semaglutide also promotes weight loss, but by about 15 per cent on average, suggesting that the added GIP component in tirzepatide gives an extra boost, says Cowley. Like semaglutide, tirzepatide can trigger side effects such as nausea, vomiting, diarrhoea and constipation that seem worse at higher doses. However, doctors’ experience withsemaglutide has revealed that starting patients on low doses and gradually increasing them can avoid these side effects, and the same may be true for tirzepatide, says Joseph Proietto at the University of Melbourne in Australia. One advantage of obesity drugs is that they can be discontinued if necessary, says Proietto. “The downside of bariatric surgery is that you can never ever have a normal meal again, not even for a special occasion,” he says. “With medication, you can still do this.”

Source: https://www.monash.edu/
AND
https://www.newscientist.com/

mRNA Breakthrough Offers a Potential Heart Attack Cure

King’s College London researchers are turning to the same technology behind the mRNA COVID-19 vaccines to develop the first damage-reversing heart attack cure. They used mRNA to deliver the genetic instructions for specific proteins to damaged pig hearts, sparking the growth of new cardiac muscle cells. “The new cells would replace the dead ones and instead of forming a scar, the patient has new muscle tissue,” lead researcher Mauro Giacca said. Researchers are turning to the same technology behind Pfizer and Moderna’s vaccines to develop the first damage-reversing heart attack cure.

Diseases of the heart are the leading cause of death around the world; the WHO estimates that 17.9 million people died from cardiovascular disease in 2019, representing almost a third of all deaths. Of those, 85% are ultimately killed by heart attacks and strokes. Heart attacks occur when blood flow to parts of the heart is blocked, often due to fat or cholesterol build up. The cardiac muscle cells — marvelous little powerhouses that keep you beating throughout your entire life — are starved of oxygen and can be damaged or killed. Left in its wake is not the smoothly pumping cardiac muscle, but instead scar tissue.

We are all born with a set number of muscle cells in our heart and they are exactly the same ones we will die with. The heart has no capacity to repair itself after a heart attack,” explained Giacca.

At least, until now. To develop their heart attack cure, the researchers turned to mRNA, which delivers the instructions for protein creation to cells. Whereas the Pfizer and Moderna vaccines instruct cells to make the spike protein of SARS-CoV-2, priming the immune system against the virus, the same technology can deliver a potential heart attack cure by carrying the code for proteins that stimulate the growth of new heart cellsPharmaTimes reported. In an experiment with pigs (a close match for the human heart), the mRNA treatment stimulated new heart cells to grow after a heart attackregenerating the damaged tissues and creating new, functional muscle rather than a scar.

According to BioSpace, harnessing mRNA in this way has been dubbed “genetic tracking,” named for the way the mRNA’s progress is tracked via the new proteins it is creating. The technique is being explored to create vaccines for pathogens like HIV, Ebola, and malaria, as well as cancers and autoimmune and genetic diseases. While thus far their heart attack cure has only been successfully tested in porcine pumpers, the team hopes to begin human clinical trials within the next couple years. “Regenerating a damaged human heart has been a dream until a few years ago,” Giacca said, “but can now become a reality.”

Source: https://www.freethink.com/

California Reached 100% Clean Power

Renewable electricity met just shy of 100% of California’s demand for the first time on Saturday, officials said, much of it from large amounts of solar power produced along Interstate 10, an hour east of the Coachella Valley.

While partygoers celebrated in the blazing sunshine at the Stagecoach music festival,  “at 2:50 (p.m.), we reached 99.87 % of load served by all renewables, which broke the previous record,” said Anna Gonzales, spokeswoman for California Independent System Operator, a nonprofit that oversees the state’s bulk electric power system and transmission lines. Solar power provided two-thirds of the amount needed.

Environmentalists who’ve pushed for years for all of California’s power to come from renewables were jubilant as they watched the tracker edge to 100% and slightly beyond.

California busts past 100% on this historic day for clean energy!” Dan Jacobson, senior adviser to Environment California, tweeted.

Once it hit 100%, we were very excited,” said Laura Deehan, executive director for Environment California. She said the organization and others have worked for 20 years to push the Golden State to complete renewable power via a series of ever tougher mandates. “California solar plants play a really big role“.

But Gonzales said they doublechecked the data Monday, and had to adjust it slightly due to reserves and other resource needs.

The environmental group also pushed for 1 million solar rooftops statewide, which has been achieved, adding what some say is a more environmentally friendly form of solar power than the solar farms, which eat up large swaths of the Mojave desert and fragile landscapes.

Source: https://eu.usatoday.com/

Eye-scanning App Screens People for Alzheimer’s, ADHD

Researchers at the University of California San Diego (UC San Diego) have developed a smartphone app that could allow people to screen for Alzheimer’s disease, ADHD (Attention Deficit Hyperactivity Disorder) and other neurological diseases and disorders—by recording closeups of their eye. The app uses a near-infrared camera, which is built into newer smartphones for facial recognition, along with a regular selfie camera to track how a person’s pupil changes in size. These pupil measurements could be used to assess a person’s cognitive condition. The technology is described in a paper that will be presented at the ACM Computer Human Interaction Conference on Human Factors in Computing Systems (CHI 2022), which will take place from April 30 to May 5 in New Orleans as a hybrid-onsite event.

A smartphone user can image the eye using the RGB selfie camera and the front-facing near-infrared camera included for facial recognition. Measurements from this imaging could be used to assess the user’s cognitive condition

While there is still a lot of work to be done, I am excited about the potential for using this technology to bring neurological screening out of clinical lab settings and into homes,” said Colin Barry, an electrical and computer engineering Ph.D. student at UC San Diego and the first author of the paper, which received an Honorable Mention for Best Paper award. “We hope that this opens the door to novel explorations of using smartphones to detect and monitor potential health problems earlier on.

Pupil size can provide information about a person’s neurological functions, recent research has shown. For example, pupil size increases when a person performs a difficult cognitive task or hears an unexpected soundMeasuring the changes in pupil diameter is done by performing what’s called a pupil response test. The test could offer a simple and easy way to diagnose and monitor various neurological diseases and disorders. However, it currently requires specialized and costly equipment, making it impractical to perform outside the lab or clinic.

Engineers in the Digital Health Lab, led by UC San Diego electrical and computer engineering professor Edward Wang, collaborated with researchers at the UC San Diego Center for Mental Health Technology (MHTech Center) to develop a more affordable and accessible solution.

A scalable smartphone assessment tool that can be used for large-scale community screenings could facilitate the development of pupil response tests as minimally-invasive and inexpensive tests to aid in the detection and understanding of diseases like Alzheimer’s disease.  This could have a huge public health impact,” said Eric Granholm, a psychiatry professor at UC San Diego School of Medicine and director of the MHTech Center.

Source: https://ucsdnews.ucsd.edu/

Paper-Thin LoudSpeaker

MIT engineers have developed a paper-thin loudspeaker that can turn any surface into an active audio source. This thin-film loudspeaker produces sound with minimal distortion while using a fraction of the energy required by a traditional loudspeaker. The hand-sized loudspeaker the team demonstrated, which weighs about as much as a dime, can generate high-quality sound no matter what surface the film is bonded to.

To achieve these properties, the researchers pioneered a deceptively simple fabrication technique, which requires only three basic steps and can be scaled up to produce ultrathin loudspeakers large enough to cover the inside of an automobile or to wallpaper a room. Used this way, the thin-film loudspeaker could provide active noise cancellation in clamorous environments, such as an airplane cockpit, by generating sound of the same amplitude but opposite phase; the two sounds cancel each other out. The flexible device could also be used for immersive entertainment, perhaps by providing three-dimensional audio in a theater or theme park ride. And because it is lightweight and requires such a small amount of power to operate, the device is well-suited for applications on smart devices where battery life is limited.

MIT researchers have developed an ultrathin loudspeaker that can turn any rigid surface into a high-quality, active audio source. The straightforward fabrication process they introduced can enable the thin-film devices to be produced at scale.

It feels remarkable to take what looks like a slender sheet of paper, attach two clips to it, plug it into the headphone port of your computer, and start hearing sounds emanating from it. It can be used anywhere. One just needs a smidgeon of electrical power to run it,” says Vladimir Bulović, the Fariborz Maseeh Chair in Emerging Technology, leader of the Organic and Nanostructured Electronics Laboratory (ONE Lab), director of MIT.nano, and senior author of the paper.

Bulović wrote the paper with lead author Jinchi Han, a ONE Lab postdoc, and co-senior author Jeffrey Lang, the Vitesse Professor of Electrical Engineering.
The research has been published in IEEE Transactions of Industrial Electronics.

Source: https://news.mit.edu

How New Drug Reverses Hearing Loss

A gel that’s injected into the ear could reverse hearing loss. Called FX-322, the one-off jab works by encouraging dormant stem cells inside the ear to grow into healthy new auditory cells capable of transmitting sounds to the brain. Stem cells are immature cells found throughout the body, and many have the capacity to grow into virtually any type of tissue. The new drug prompts these dormant cells to grow into cilia. These tiny hair-like cells pick up sounds and turn them into electrical impulses that are sent along the auditory nerve to the brain for processing. Short-term hearing loss can occur as a result of ear infections or wax build-up.

Hearing loss due to damage to the cilia — for example, from repeated exposure to loud noise or changes in the inner ear as we age — is largely untreatable because the cells cannot repair themselves. Hearing loss is also linked with tinnitus (constant ringing or buzzing noise in the ears) and with an increased risk of dementia, possibly because the brain has to direct more energy towards understanding speech.

Hearing aids can help by amplifying sound, but the hope is that the new drug could do away with the need for them by restoring healthy hearing. Developed by Frequency Therapeutics, a company linked to the Massachusetts Institute of Technology in the U.S., the gel contains a mixture of drugs that, in laboratory tests, helped new hair cells form from a type of stem cell called progenitor cells. One of the drugs included is valproic acid, a readily available and relatively cheap drug already used as an anti-convulsant for epilepsy. Unlike other types of stem cell, progenitor cells cannot develop into any form of body tissue. Instead they are more likely to develop into cells near where they are found in the body.

Milking Cow Cells in a Lab for Animal-Free Dairy

In a lab in Boston, a startup has spent the last few months cultivating mammary cells from a cow—and recently succeeded in finding the perfect conditions to get those cells to produce real cow milk without an animal.  “We spend a lot of time trying to understand how the biology works in a cow, and then trying to do that,” says Sohail Gupta, CEO and cofounder of the startup, called Brown Foods, which makes a product that it calls UnReal Milk.

The startup, which operates in India and the U.S., just completed a stint at the tech accelerator Y Combinator. Alternative-dairy sales keep growing: In 2020, according to the most recent data available, sales of oat, soy, almond, and other alt-milk products made up 15% of all milk sales in the U.S., a 27% growth over the previous two years. But Brown Foods, like others in the space, recognized that plant-based milk still can’t replicate traditional dairy.

They’re not yet there in terms of taste and texture,” Gupta says. They also often have less protein and other nutrients. He argues that other new milk alternatives, including those that use precision fermentation to make animal-free dairy proteins, also can’t perfectly match dairy since they still use plant ingredients for fat and other components. There are multiple reasons to move away from traditional dairy, including the fact that cows raised for milk and meat are responsible for around 30% of the world’s emissions of methane,a potent greenhouse gas. But Gupta thinks that it makes sense to stay as close to the natural process as possible. Mammary cells “have evolved naturally over centuries to produce milk in mammals,” he says. “So these cells have the entire genetic architecture to produce the fats, the carbs, the proteins.

The company’s biochemical engineers have been studying how the cells behave, what they need nutritionally to survive, and what triggers lactation. “We’re trying to emulate nature and understand what kind of chemical signals are released in a mammal to trigger the cells to lactate and start secreting milk and get into the lactation phase,” he says. Now that they’ve shown that it can work at the small scale in the lab, they’re beginning to prepare for commercial production in larger bioreactors. The company believes that it can eventually reach price parity with conventional milk. In early calculations, it says that it could cut the greenhouse gas emissions from milk by 90%. (Unlike lab-grown meat, which requires an energy-intensive process of growing cells, producing milk just requires keeping cells alive, and has a far smaller footprint.)

Source: https://www.fastcompany.com/

27 Proteins that May Predict Heart Disease Risk

In a new study, scientists have reported findings that show a blood test can be used to predict Cardiac Vascular Disease (CVD). The research, published in the journal Science Translational Medicine, opens the door to more individualized treatment plans for CVD. It may also improve the speed at which new CVD drugs can be identified and developed. When a new drug is developed, scientists have to make sure that it is both effective and safe. This is a rigorous process that can often take many years. While important, this significantly slows down the speed at which new drugs can be developed, and also increases the costs.

One way of increasing the speed and reducing the cost of drug development without sacrificing efficacy or safety is to use a surrogate biomarker as a predictor of risk. If a surrogate can reliably predict risk, then some stages of clinical trials can be streamlinedFinding a surrogate that can accurately predict the risk of certain diseases can also benefit patients directly. If a clinician can measure a reliable surrogate they can potentially prevent a disease before it has developed, reducing the risks to the patient.

For situations where clinical cardiovascular outcomes studies are required today, a surrogate enables unsafe or ineffective candidate drugs to be terminated early and cheaply and supports the acceleration of safe and effective drugs. Participants in the trials do not have to have events or die in order to contribute to the signal.” said Dr. Stephen Williams — Chief Medical Officer at SomaLogic, and the corresponding author of the present study. “In personalized medicine, a surrogate enables cost-effective allocation of treatments to the people who need them the most, and potentially increases the uptake of newer more effective drugs so that outcomes are improved,” said Dr. Williams.

In 2004 the United States Food and Drug Administration (FDA) published a report Trusted Source recommending that researchers identify biomarker surrogates that could help in CVD drug development and improve individualized patient care.

AI-designed Antibody Enters Clinical Trials

The Israeli company Biolojic Design will conduct a trial for cancer patients in Australia with a new type of drugAulos Biosciences is now recruiting cancer patients to try it’s world’s first antibody drug designed by a computer. The computationally designed antibody, known as AU-007, was planned by the artificial intelligence platform of Israeli biotech company Biolojic Design from Rehovot, in a way that would target a protein in the human body known as interleukin-2 (IL-2). The goal is for the IL-2 pathway to activate the body’s immune system and attack the tumors.

The clinical trial will be conducted on patients with final stage solid tumors and will last about a year – but the company hopes to present interim results during 2022. The trial has raised great hopes because if it is successful, it will pave the way for the development of a new type of drug using computational biology and “big data.” Aulos presented pre-clinical data from a study on 19 mice – and they all responded positively to the treatment. In the 17-day trial period of the study, the antibody led to the complete elimination of the tumors in 10 of the mice – and to a significant delay in the development of the tumors in the other nine mice.

Aulos was founded in Boston as a spin-off of Biolojic and venture capital firm Apple Tree Partners, which invested $40 million in the company to advance the antibody project and prove its clinical feasibility. Drugs based on antibodies are considered to be one of the greatest hopes for anti-cancer solutions. Among the best-known in the field are Keytruda, mostly used to treat melanomas and lung cancer; and Herceptin for breast cancer. But the antibodies given today to cancer patients are created by a method that also has disadvantages – most are produced by the immune system in mice, and then are replicated to enable mass production.

Source: https://www.haaretz.com/

Synthetic Neurons

Synthetic neurons made of hydrogel could one day be used in sophisticated artificial tissues to repair organs such as the heart or the eyes. Hagan Bayley at the University of Oxford and his colleagues devised a synthetic material that can act in a similar way to a human neuron. Made from hydrogel, the artificial neurons are about 0.7 millimetres across ­– about 700 times wider than a human neuron, but similar to giant axons found in squid. They can also be made up to 25 millimetres long, which is similar in length to a human optic nerve running from the eye to the brain.
When a light is shone on the synthetic neuron, it activates proteins that pump hydrogen ions into the cell. These positively charged ions then move through the neuron, carrying an electrical signal. The speed of transmission was too fast to measure with the team’s equipment and is probably faster than the rate in natural neurons, says Bayley. When the positive charge reaches the tip of the neuron, it makes adenosine triphosphate (ATP) – a neurotransmitter chemicalmove from one water droplet to another. In future work, the researchers hope to make the synthetic neuron interact with another via an ATP signal, just as neurons connect with each other at synapses.
The team bundled seven of the neurons together to work in parallel as a synthetic nerve. “This allows us to send multiple signals simultaneously,” says Bayley. “They can all have very different frequencies and so it’s a very versatile signal.” The main purpose is to send different pieces of information down the same pathway, he says.

Artificial nerve cells made from biocompatible materials have been made in a lab for the first time. The innovation may one day be used in synthetic tissues to repair organs such as the heart or the eyes. 

However, the artificial neurons still have a long way to go. Unlike real neurons, there is no mechanism to recycle and create new neurotransmitters in the synthetic system. The neurons therefore only work for a few hours, says Bayley. “The more you do science, the more you find out how clever science is by virtue of evolution.” Alain Nogaret at the University of Bath in the UK says the innovation could play a major role in improving neuro-implants such as artificial retinas by the end of the decade. “The emulation of nervous activity in soft materials is a major step towards non-invasive brain-machine interfaces and solutions addressing neurodegenerative disease.”

Bayley hopes to eventually use these synthetic neurons to deliver different types of drugs simultaneously to treat wounds more quickly and precisely. “Using light, we could maybe release drug molecules in a patterned way,” he says.
Source: https://www.nature.com/ 
AND
https://www.scientiststudy.com/

New Process for Production of Genetically Engineered Immune Cells

When using a patient’s own cells to develop a personalized immunotherapy, scientists often struggle to engineer an adequate dose. To capture more T cells for such autologous cell therapy, City of Hope—one of the largest cancer research and treatment organizations in the U.S.—plans to integrate the Curate CELL PROCESSING SYSTEM into its workflow to manufacture investigational CAR-T cell immunotherapy. This system takes a new approach to T-cell separation.

The Curate technology has been evaluated by the Beckman Research Institute of City of Hope as part of a new process for production of genetically engineered immune cells,” says Angelo Cardoso, MD, PhD, director of the laboratory of cellular medicine at City of Hope. “High-cell viability, recovery of critical cell subsets, significant time savings, and potential for integration in a closed-system platform were specifications that were evaluated for the Curate system.”

According to Curate Biosciences, this system captures many of the cells of interest. “We get very good recovery of white blood cells,” says Joan Haab, PhD, senior vice president, manufacturing & supply chain operations at Curate Biosciences. “We typically recover above 90% of the white blood cells in a sample.”

To do that, this system uses microfluidics. Haab compares it to the Pachinko game, which includes many pathways for a ball—in this case, a cellto follow. The microfluidic channels separate the cells by size. As Haab explains it: “This provides multiple opportunities to capture white blood cells.”

Most current methods of manufacturing an autologous immunotherapy collect the cells with chemical gradients and centrifugation. “You’re spinning cells around in chemicals and pelleting them, which is not the way to keep them the happiest,” Haab says. By relying on a gentler and non-chemical approach, Curate hopes to collect more T cells that are more fit for engineering a therapy.

Source: https://www.genengnews.com

Conscious Artificial Brains

One way in which scientists are studying how the human body grows and ages is by creating artificial organs in the laboratory. The most popular of these organs is currently the organoid, a miniaturized organ made from stem cells. Organoids have been used to model a variety of organs, but brain organoids are the most clouded by controversy.

Current brain organoids are different in size and maturity from normal brains. More importantly, they do not produce any behavioral output, demonstrating they are still aprimitive model of a real brain. However, as research generatesbrain organoids of higher complexity, they will eventually have the ability to feel and think. In response to this anticipation, Associate Professor Takuya Niikawa of Kobe University and Assistant Professor Tsutomu Sawai of Kyoto University’s Institute for the Advanced Study of Human Biology (WPI-ASHBi), in collaboration with other philosophers in Japan and Canada, have written a paper on the ethics of research using conscious brain organoids. The paper can be read in the academic journal Neuroethics.

Working regularly with both bioethicists and neuroscientists who have created brain organoids, the team has been writing extensively about the need to construct guidelines on ethical research. In the new paper, Niikawa, Sawai and their coauthors lay out an ethical framework that assumes brain organoids already have consciousness rather than waiting for the day when we can fully confirm that they do.

We believe a precautionary principle should be taken,” Sawai said. “Neither science nor philosophy can agree on whether something has consciousness. Instead of arguing about whether brain organoids have consciousness, we decided they do as a precaution and for the consideration of moral implications.

To justify this assumption, the paper explains what brain organoids are and examines what different theories of consciousness suggest about brain organoids, inferring that some of the popular theories of consciousness permit them to possess consciousness.

Ultimately, the framework proposed by the study recommends that research on human brain organoids follows the ethical principles similar to those for animal experiments. Therefore, recommendations include using the minimum number of organoids possible and doing the upmost to prevent pain and suffering while considering the interests of the public and patients.

Source: https://www.eurasiareview.com/

Tumors Partially Destroyed with Sound Don’t Come Back

Noninvasive sound technology developed at the University of Michigan (U-M) breaks down liver tumors in rats, kills cancer cells and spurs the immune system to prevent further spread—an advance that could lead to improved cancer outcomes in humans. By destroying only 50% to 75% of liver tumor volume, the rats’ immune systems were able to clear away the rest, with no evidence of recurrence or metastases in more than 80% of animals.

The 700kHz, 260-element histotripsy ultrasound array transducer used in Prof. Xu’s lab

Even if we don’t target the entire tumor, we can still cause the tumor to regress and also reduce the risk of future metastasis,” said Zhen Xu, professor of biomedical engineering at U-M and corresponding author of the study in Cancers. Results also showed the treatment stimulated the rats’ immune responses, possibly contributing to the eventual regression of the untargeted portion of the tumor and preventing further spread of the cancer.

The treatment, called histotripsy, noninvasively focuses ultrasound waves to mechanically destroy target tissue with millimeter precision. The relatively new technique is currently being used in a human liver cancer trial in the United States and Europe. In many clinical situations, the entirety of a cancerous tumor cannot be targeted directly in treatments for reasons that include the mass’ size, location or stage. To investigate the effects of partially destroying tumors with sound, this latest study targeted only a portion of each mass, leaving behind a viable intact tumor. It also allowed the team, including researchers at Michigan Medicine and the Ann Arbor VA Hospital, to show the approach’s effectiveness under less than optimal conditions.

Histotripsy is a promising option that can overcome the limitations of currently available ablation modalities and provide safe and effective noninvasive liver tumor ablation,” said Tejaswi Worlikar, a doctoral student in biomedical engineering. “We hope that our learnings from this study will motivate future preclinical and clinical histotripsy investigations toward the ultimate goal of clinical adoption of histotripsy treatment for liver cancer patients.”

Liver cancer ranks among the top 10 causes of cancer related deaths worldwide and in the U.S. Even with multiple treatment options, the prognosis remains poor with five-year survival rates less than 18% in the U.S. The high prevalence of tumor recurrence and metastasis after initial treatment highlights the clinical need for improving outcomes of liver cancer. Where a typical ultrasound uses sound waves to produce images of the body’s interior, U-M engineers have pioneered the use of those waves for treatment. And their technique works without the harmful side effects of current approaches such as radiation and chemotherapy.

Our transducer, designed and built at U-M, delivers high amplitude microsecond-length ultrasound pulses—acoustic cavitation—to focus on the tumor specifically to break it up,” Xu said. “Traditional ultrasound devices use lower amplitude pulses for imaging.”

Source: https://news.umich.edu/

There Are Two Types of Narcissist, and the Difference Is Crucial

In a time when flaunting your best self on social media has become a norm, narcissistic traits seem to be everywhere. In today’s slang, off-putting behaviors like entitlement, superiority, and self-congratulating are known as ‘flexing‘. Such traits might be more common these days, but being narcissistic is still seen as a pathological personality trait, akin to being sadistic, manipulative, or even psychopathic. However, a 2021 study of 270 people with a median age of 20 lends more credit to the notion that narcissistic behaviors are not always driven by the same things as psychopathy.

“For a long time, it was unclear why narcissists engage in unpleasant behaviors, such as self-congratulation, as it actually makes others think less of them. Our work reveals that these narcissists are not grandiose, but rather insecure,” said clinical psychologist Pascal Wallisch from New York University (NYU). “More specifically, the results suggest that narcissism is better understood as a compensatory adaptation to overcome and cover up low self-worth,” added clinical psychologist Mary Kowalchyk, also from NYU.

Psychologists do already distinguish between two rather different types of narcissists: ‘vulnerable narcissists‘ who have low self-esteem, attachment anxiety, and are highly sensitive to criticism; and ‘grandiose narcissists‘, who have high self-esteem and self-aggrandizement. This latest research helps to further disentangle the two. Kowalchyk and team used a series of measures to assess the levels of different traits including narcissism, self-esteem, and psychopathy for each of their participants, and found that flexing behavior is strongly associated with individuals who also have high insecurities and sense of guilt. Those exhibiting psychopathy showed relatively low levels of guilt.

Source: https://www.sciencealert.com/

Natural Killer Cells, Primed with an Antibody, Induce Remissions in Patients with Advanced Lymphoma

Two patients with advanced Hodgkin lymphoma were told their tumors were
so resistant to treatment that hospice was their best option. Then, they were
enrolled in a clinical trial of a novel immunotherapy involving so-called
natural killer cells. After treatment, they saw complete remission.
Researchers say the results are a hopeful if preliminary sign of the potential of immunotherapies harnessing natural killer, or NK, cellsinnate immune system cells that have certain advantages over the more commonly recognized adaptive T cell cancer therapies.
The treatment in the study, developed by the University of Texas MD Anderson Cancer Center and the German drug maker Affimed, combined offthe-shelf NK cells with a separate antibody that primes the cells to recognize a specific protein signature of the tumors. Two additional patients administered
the same treatment have shown ongoing partial responses.

These results show you just how powerful NK cells are,” said Katy Rezvani,
a stem-cell transplant physician and NK cell researcher at MD Anderson, who
is spearheading the development of this new treatment.
It’s amazing when you see these responses for patients who have so few
options, patients who’ve been told that they should go to hospice,” Rezvani
said.“I cannot begin to tell you how satisfying this is for clinicians.
Data from the study is to be presented at the annual meeting of the American
Association for Cancer Research (AACR).
Source: https://www.mdanderson.org/
AND
https://www.mskcc.org/

How to Repair Damaged Bones

Over the last 30 years, the scientific community has been working to develop a synthetic alternative to bone grafts for repairing diseased or damaged bone. McGill University researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to advance a novel method for growing synthetic bone tissue. The rapidly advancing field of  tissue engineering is focused on growing bone  in the lab on materials called scaffolds, then transferring these structures into a person’s body to repair bone damage. Like the bone it mimics, scaffolds need an interconnected network of small and large pores that allow cells and nutrients to spread and help generate new bone tissue. The McGill team’s promising process works by modifying the internal structure of a material, called , to make it more conducive to regenerating bone tissue.

Graphene oxide is an ultrathin, extra strong compound that is being used increasingly in electronics, optics, chemistry, energy storage, and biology. One of its  is that when  are placed on it, they tend to transform into bone-generating cells called osteoblasts. The multidisciplinary group—comprising researchers from McGill‘s Departments of Mining and Materials Engineering, Electrical Engineering, and Dentistry—found that adding an emulsion of oil and water to the graphene oxide, then freezing it at two different temperatures, yielded two different sizes of pores throughout the material.Professor Marta Cerruti said that when they “seeded” the now-porous scaffolding with stem cells from mouse bone marrow, the cells multiplied and spread inside the network of pores, a promising sign the new approach could eventually be used to regenerate bone tissue in humans.

We showed that the scaffolds are completely biocompatible, that the cells are happy when you put them in there, and that they’re able to penetrate all through the scaffold and colonize the whole scaffold,” she stated.

The researchers used the BMIT-BM beamline at the CLS to visualize the different sized pores inside the scaffolding as well as the growth and spread of the cells. Lead researcher Yiwen Chen, a Ph.D. student working under Cerruti, said their work would not have been possible without the synchrotron because the low density of graphene oxide means it absorbs only a very small amount of light.

To our knowledge, this is the first time that people have used synchrotron light to see the structure of graphene oxide scaffolds,” said Chen.

Source: https://phys.org/

Hidden Signs in Your Retina Indicate Alzheimer’s Decades Before Symptoms

Alzheimer’s is an insidious brain disease marked by a slow mental decline that can develop unnoticed for decades before symptoms arise, but hidden signs of the condition might exist much sooner. A simple eye test may make diagnosing the earliest stages of ‘diseases of old age’ possible when people are much younger, University of Otago  researchers in New Zeland hope.

Parts of our retina have previously been proposed as biomarkers for Alzheimer’s, but researchers from Otago’s Dunedin Multidisciplinary Health and Development Research Unit have been investigating the retina’s potential to indicate cognitive change earlier in life.

Study lead Dr Ashleigh Barrett-Young says diseases of old age, such as Alzheimer’s, are usually diagnosed when people start forgetting things or acting out of character.

This is often when the disease is quite far along. Early detection is possible through MRI or other brain imaging, but this is expensive and impractical for most.

“In the near future, it’s hoped that artificial intelligence will be able to take an image of a person’s retina and determine whether that person is at risk for Alzheimer’s long before they begin showing symptoms, and when there is a possibility of treatment to mitigate the symptoms,” she says.

The study, published in JAMA Ophthalmology, analysed data from 865 Dunedin Study participants looking specifically at the retinal nerve fibre layer (RNFL) and ganglion cell layer (GCL) at age 45.

Source: https://www.otago.ac.nz/

Parkinson’s Disease Symptoms Seen Years Before Diagnosis

Data from a new U.K. study with the most diverse group of patients ever reported show that Parkinson’s disease symptoms — including tremors, cognitive difficulties, epilepsy, and hearing loss — can emerge up to 10 years before a diagnosis. Moreover, ethnicity or socioeconomic status were not found to be associated with Parkinson’s risk.

This study confirms that many of the symptoms and early features of Parkinson’s can occur long before a diagnosis,” Alastair Noyce, PhD, the study’s lead investigator and a researcher at Queen Mary University of London, said in a university press release.

We’re hoping to identify people at high risk of Parkinson’s even before obvious symptoms appear — which means that we could do more than just improve quality of life for patients, and perhaps be in the position to slow down or cure Parkinson’s in the future,” Noyce said.

Importantly, this study also identified hearing loss and seizures as early symptoms of Parkinson’s disease.

The study, “Assessment of Risk Factors and Early Presentations of Parkinson Disease in Primary Care in a Diverse UK Population,” was published in JAMA Neurology.

Source: https://www.qmul.ac.uk/

How to Keep Cancer from Returning after Surgery

After surgery to remove tumors, some cancer cells can be left behind where they can grow back or spread to a new part of the body. Researchers at the University of Wisconsin-Madison have now developed a hydrogel that can be applied post-surgery to prevent or slow tumor regrowth. The gel works by releasing two compounds selected to strategically keep cancer from coming back after surgery. First is a drug called Pexidartinib, which is already in use to inhibit tumor-associated macrophages (TAMs). These are immune cells that have, for unclear reasons, “switched sides” and now contribute to creating a pro-cancer environment. As such, inhibiting these TAMs slows the growth (or regrowth) of cancer.

A microscope image of the hydrogel (teal) containing platelets with antibodies (red) and tumor-fighting drug nanoparticles (green)

The second component is made up of PD-1 antibodies, which help train T cells to recognize and attack cancer cells. These are bound to platelets for stability. Together, the two components prevent the formation of a microenvironment that’s favorable to cancer growth, and help the immune system clear out any cancer cells remaining after surgery. After its work is done, the gel is designed to biodegrade safely in the body.

The researchers tested the gel in mouse models of several different types of cancers, including colon cancer, melanoma, sarcoma, and triple negative breast cancer. The gel significantly reduced recurrence and metastasis of the cancer, and extended the survival rates of the mice – all control animals succumbed within 36 days, while survival rates ranged between 50 and 66 percent for treated mice, depending on the type of cancer.

The local application of the gel also helps prevent side effects that can arise if a drug is delivered system-wide. As such, no major side effects were seen in the test mice. Importantly, the team says that some of these cancers don’t usually respond well to immune therapy, and are prone to metastasizing, so the effectiveness of the gel treatment is encouraging.

We are really glad to see that this local strategy can work against so many different kinds of tumors, especially these non-immunogenic tumors,” said Quanyin Hu, lead researcher on the study. “We are even more glad to see this local treatment can inhibit tumor metastasis.”

Source: https://newatlas.com/

How to ‘Time Jump’ Skin Cells

Research from the Babraham Institute has developed a method to “time jump” human skin cells by 30 years, turning back the aging clock for cells without losing their specialized function. Work by researchers in the Institute’s Epigenetics research program has been able to partly restore the function of older cells, as well as rejuvenating the molecular measures of biological age. The research is published today in the journal eLife, and while this topic is still at an early stage of exploration, it could revolutionize regenerative medicine.

As we age, our cells‘ ability to function declines and the  accumulates marks of aging. Regenerative biology aims to repair or replace cells including old ones. One of the most important tools in regenerative biology is our ability to createinducedstem cells. The process is a result of several steps, each erasing some of the marks that make cells specialized. In theory, these stem cells have the potential to become any cell type, but scientists aren’t yet able to reliably recreate the conditions to re-differentiate stem cells into all cell types.

The new method, based on the Nobel Prize-winning technique scientists use to make stem cells, overcomes the problem of entirely erasing cell identity by halting reprogramming part of the way through the process. This allowed researchers to find the precise balance between reprogramming cells, making them biologically younger, while still being able to regain their specialized cell function.

In 2007, Shinya Yamanaka was the first scientist to turn normal cells, which have a specific function, into  which have the special ability to develop into any cell type. The full process of stem cell reprogramming takes around 50 days using four key molecules called the Yamanaka factors. The new method, called “maturation phase transient reprogramming,” exposes cells to Yamanaka factors for just 13 days. At this point, age-related changes are removed and the cells have temporarily lost their identity. The partly reprogrammed cells were given time to grow under normal conditions, to observe whether their specific skin cell function returned. Genome analysis showed that cells had regained markers characteristic of  (fibroblasts), and this was confirmed by observing collagen production in the reprogrammed cells.

Young fibroblasts in the first image, the two are after 10 days, on the right with treatment, the last two are after 13 days, right with treatment. Red shows collagen production which has been restored

To show that the cells had been rejuvenated, the researchers looked for changes in the hallmarks of aging. As explained by Dr. Diljeet Gill, a postdoc in Wolf Reik’s lab at the Institute who conducted the work as a Ph.D. student, “Our understanding of aging on a molecular level has progressed over the last decade, giving rise to techniques that allow researchers to measure age-related biological changes in human cells. We were able to apply this to our experiment to determine the extent of reprogramming our new method achieved.”

Source: https://phys.org/

256 Quantum Bits (Qubits) Computer

A team of physicists from the Harvard-MIT Center for Ultracold Atoms and other universities has developed a special type of quantum computer known as a programmable quantum simulator capable of operating with 256 quantum bits, or “qubits.” The system marks a major step toward building large-scale quantum machines that could be used to shed light on a host of complex quantum processes and eventually help bring about real-world breakthroughs in material science, communication technologies, finance, and many other fields, overcoming research hurdles that are beyond the capabilities of even the fastest supercomputers today. Qubits are the fundamental building blocks on which quantum computers run and the source of their massive processing power.

Physicists developed a special type of quantum computer known as a programmable quantum simulator capable of operating with 256 quantum bits, or “qubits”

This moves the field into a new domain where no one has ever been to thus far,” said Mikhail Lukin, the George Vasmer Leverett Professor of Physics, co-director of the Harvard Quantum Initiative, and one of the senior authors of the study published today in the journal Nature. “We are entering a completely new part of the quantum world.” According to Sepehr Ebadi, a physics student in the Graduate School of Arts and Sciences and the study’s lead author, it is the combination of system’s unprecedented size and programmability that puts it at the cutting edge of the race for a quantum computer, which harnesses the mysterious properties of matter at extremely small scales to greatly advance processing power.

Under the right circumstances, the increase in qubits means the system can store and process exponentially more information than the classical bits on which standard computers run. The number of quantum states that are possible with only 256 qubits exceeds the number of atoms in the solar system,” Ebadi said, explaining the system’s vast size. Already, the simulator has allowed researchers to observe several exotic quantum states of matter that had never before been realized experimentally, and to perform a quantum phase transition study so precise that it serves as the textbook example of how magnetism works at the quantum level.

Source: https://www.thebrighterside.news/

Shock-Absorbing, Reusable Body Armor

Mechanical engineers from Johns Hopkins University in Baltimore have found a new way to build body armor with a lightweight elastomer material that relies on a complex liquid crystal structure. The resulting armor is “lighter, stronger, and reusable,” according to the university’s press release. That could be a game-changer in the highly deformable world of body armor.

Sung Hoon Kang—senior author of the new paper, published in February in the journal Advanced Materials—is part of the tantalizingly named Hopkins Extreme Materials Institute (HEMI), established in 2012 to study “science associated with materials and structures under extreme conditions and demonstrating extreme performance.” Its projects are funded by organizations like the U.S. Department of Energy and the National Science Foundation, with areas of study including things like how materials behave in Earth’s mantle.

It’s easy to see how Earth’s mantle is extreme, with some of the highest temperatures and pressures on the planet. Body armor is a different application, but something that is still very extreme: absorbing gunshots, for example, and spreading that energy out in a way that does not harm the wearer is no small feat.

We are excited about our findings on the extreme energy absorption capability of the new material,” Kang says in the statement.

The idea of a material that can outperform today’s helmets and car bumpers piqued Kang’s curiosity. One of the major areas for improvement is deformation, which is the way the force of an impact presses material way out of shape. Think of a car’scrumple zone,” which is literally designed to collapse to absorb impact; you’re not exactly “reusing” that portion of the car afterward, especially in higher-speed crashes.

Many helmet and impact-absorbing materials dissipate energy through inelastic mechanisms, such as plastic deformation and fracture and fragmentation. However, these materials can become permanently damaged after one-time usage and are not suitable for repeated use,” the researchers write.

So if the non-reusable mechanisms are inelastic—which makes sense, the opposite of elastic and therefore unable to “bounce back”—how do we do things differently? This is where the idea of metamaterials comes into play. A metamaterial is something carefully engineered on the micro-scale to have properties that a simple layer of plywood or metal would not have. The goal is to build better functionality starting at the atomic level.

Source: https://hub.jhu.edu/
AND
https://www.popularmechanics.com/

How to Block Pain

Researchers have published the first proof-of-concept results from a years-long program to develop tiny, wireless devices that can treat neurological diseases or block pain. The nerve stimulators require no batteries and instead draw both their power and programming from a low-powered magnetic transmitter outside the body.
The MagnetoElectric Bio ImplanT—aka ME-BIT—is placed surgically and an electrode is fed into a blood vessel toward the nerve targeted for stimulation. Once there, the device can be powered and securely controlled with a near-field transmitter worn close to the body. Researchers successfully tested the technology on animal models and found it could charge and communicate with implants several centimeters below the skin.
The implant, detailed in Nature Biomedical Engineering, could replace more invasive units that now treat Parkinson’s disease, epilepsy, chronic pain, hearing loss, and paralysis.

Because the devices are so small, we can use blood vessels as a highway system to reach targets that are difficult to get to with traditional surgery,” says Jacob Robinson, an associate professor of electrical and computer engineering and of bioengineering at Rice University. “We’re delivering them using the same catheters you would use for an endovascular procedure, but we would leave the device outside the vessel and place a guidewire into the bloodstream as the stimulating electrode, which could be held in place with a stent.”

The ability to power the implants with magnetoelectric materials eliminates the need for electrical leads through the skin and other tissues. Leads like those often used for pacemakers can cause inflammation, and sometimes need to be replaced. Battery-powered implants can also require additional surgery to replace batteries.

ME-BIT’s wearable charger requires no surgery. The researchers showed it could even be misaligned by several inches and still sufficiently power and communicate with the implant.

The programmable, 0.8-square-millimeter implant incorporates a strip of magnetoelectric film that converts magnetic energy to electrical power. An on-board capacitor can store some of that power, and a “system-on-a-chipmicroprocessor translates modulations in the magnetic field into data. The components are held together by a 3D-printed capsule and further encased in epoxy. The magnetic field generated by the transmitter—about 1 milliTesla—is easily tolerated by tissues, the researchers say. They estimate the current implant can generate a maximum of 4 milliwatts of power, sufficient for many neural stimulation applications.

One of the nice things is that all the nerves in our bodies require oxygen and nutrients, so that means there’s a blood vessel within a few hundred microns of all the nerves,” Robinson says. “It’s just a matter of tracing the right blood vessels to reach the targets. “With a combination of imaging and anatomy, we can be pretty confident about where we place the electrodes,” he says.

Source: https://www.futurity.org/

Mach 4 Portable Missile Delivered to Ukrainian Army

Military experts believe footage of a Russian helicopter being blown out of the sky by a missile in Ukraine shows a British-made weapons system in action. In March, the UK government announced it may send Starstreak, a form of man-portable air-defence system (MANPADS), to Ukraine to help the country defend itself against the Russian invasion. UK defence minister Ben Wallace insisted the technology falls within the definition of defensive weapons, as he confirmed on March 16 to the BBC the UK was sending the weapon to Ukraine. A video circulating on social media shows a helicopter being hit by a missile, reportedly in the Luhansk region, in the east of Ukraine.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Starstreak is a highly portable, short-range air-defence system, manufactured in the UK. The manufacturer, the french company Thales, says the weapon is “optimised to provide defence against air threats including fixed-wing Fighter Ground Attack aircraft and late unmasking Attack Helicopters“. It can be moved by a person (in the MANPAD role) or mounted onto a vehicle, making it highly flexible and adaptable to different battlefield situations.

One of the standout features is the speed of the projectiles fired from the system. Thales says the missile is made up of three tungsten darts, which reach speeds in excess of Mach 3 (more than 3,700 km per hour). According to multiple sources including Defence News, this makes STARStreak the fastest short-range surface-to-air missile in the world.

https://www.euronews.com

3D Printing Pills In 7 Seconds

Long lines at the pharmacy may soon be a thing of the past! Getting your hands on needed medication can be a lengthy process with multiple steps involving doctor’s visits, referrals, prescriptions, and trips to the pharmacy. Moreover, mass-manufactured medicines may treat only some of your symptoms, relying on a one size fits most approach.

A new method for manufacturing medicines could solve some of these problems in the future. Alvaro Goyanes from the Department of Pharmacology at the University of Santiago de Compostela, and colleagues, have used innovations in 3D printing to produce customized pharmaceuticals in seconds. Their findings have been published in the journal Additive Manufacturing.

There are multiple 3D printing technologies, each of which utilize a different method for turning raw materials into printed objects. Some start as a powder or filament which is manipulated into a finished product, while others use a container filled with printable liquid. This method is known as vat polymerization and typically involves interactions with light which transform liquid monomers into solid polymers. In nearly every instance, the printing happens one layer at a time, which can mean that printing even small objects requires a considerable investment of time. Scientists used a modified version of vat polymerization to drastically reduce the amount of time needed to print medications.

Normally, in 3D printing, what you’re doing is called additive manufacturing. Every time you create a layer it takes time because the printer moves, or something changes. We created a mirrored system with light coming from three directions. There are no layers, the reaction takes place all at the same time,” explained Goyanes.

Typically, vat polymerization printers have only one source of light at the bottom, and layers are created one at a time, but this new system creates the entire object all at once, at the point where the three light sources come together. The entire printing process takes as little as seven seconds.

To create pharmaceuticals, researchers mixed active drug compounds into the monomers while they are in their liquid state. Once the printing is complete, those compounds are trapped within the polymers. Importantly, multiple tablets can be printed at one time, reducing the print time per tablet.

Right now, we are printing three tablets at a time, but it’s possible to print more than that at the same time. The fastest we managed to print was seven seconds, so the time per tablet is only a couple of seconds,” Goyanes said.

It’s worth noting that the monomers they’re using to print their medicine tablets are not currently approved for pharmaceutical use and further research is needed to ensure there aren’t any unexpected reactions occurring during the printing process. If all goes well, volumetric 3D printers could be deployed to hospital settings or pharmacies to rapidly print medications on demand.

The teams true focus, however, is developing a process for individualized medications, customized to the patient. Because the process is nearly instant and creates tablets in numbers more suited for individual prescriptions, future doctors could mix compounds at will to produce medications suited to the individual. You could feasibly even create a single tablet which contains all of the prescriptions a particular patient needs in a single pill.

Source: https://www.syfy.com/

Ultrasound to Command Bacteria to Nuke Tumors

Scientists at Caltech have genetically engineered, sound-controlled bacteria that seek and destroy cancer cells. In a new paper appearing in the journal Nature Communications, researchers from the lab of Mikhail Shapiro, professor of chemical engineering and Howard Hughes Medical Institute investigator, show how they have developed a specialized strain of the bacteria Escherichia coli (E. coli) that seeks out and infiltrates cancerous tumors when injected into a patient’s body. Once the bacteria have arrived at their destination, they can be triggered to produce anti-cancer drugs with pulses of ultrasound.

The goal of this technology is to take advantage of the ability of engineered probiotics to infiltrate tumors, while using ultrasound to activate them to release potent drugs inside the tumor,” Shapiro says.

The starting point for their work was a strain of E. coli called Nissle 1917, which is approved for medical uses in humans. After being injected into the bloodstream, these bacteria spread throughout the body. The patient’s immune system then destroys them—except for those bacteria that have colonized cancerous tumors, which offer an immunosuppressed environment.

To turn the bacteria into a useful tool for treating cancer, the team engineered them to contain two new sets of genes. One set of genes is for producing nanobodies, which are therapeutic proteins that turn off the signals a tumor uses to prevent an anti-tumor response by the immune system. The presence of these nanobodies allow the immune system to attack the tumor. The other set of genes act like a thermal switch for turning the nanobody genes on when the bacteria reaches a specific temperature.

By inserting the temperature-dependent and nanobody genes, the team was able to create strains of bacteria that only produced the tumor-suppressing nanobodies when warmed to a trigger temperature of 42–43 degrees Celsius. Since normal human body temperature is 37 degrees Celsius, these strains do not begin producing their anti-tumor nanobodies when injected into a person. Instead, they quietly grow inside the tumors until an outside source heats them to their trigger temperature.

But how do you heat bacteria that are located in one specific location, potentially deep inside the body where a tumor is growing? For this, the team used focused ultrasound (FUS). FUS is similar to the ultrasound used for imaging internal organs, or a fetus growing in the womb, but has higher intensity and is focused into a tight point. Focusing the ultrasound on one spot causes the tissue in that location to heat up, but not the tissue surrounding it; by controlling the intensity of the ultrasound, the researchers were able to raise the temperature of that tissue to a specific degree.

Source: https://www.caltech.edu/

Regenerative Therapy Reverses Hearing Loss

The biotechnology company Frequency Therapeutics is seeking to reverse hearing lossnot with hearing aids or implants, but with a new kind of regenerative therapy. The company uses small molecules to program progenitor cells, a descendant of stem cells in the inner ear, to create the tiny hair cells that allow us to hearHair cells die off when exposed to loud noises or drugs including certain chemotherapies and antibiotics. Frequency’s drug candidate is designed to be injected into the ear to regenerate these cells within the cochlea. In clinical trials, the company has already improved people’s hearing as measured by tests of speech perception—the ability to understand speech and recognize words.

Speech perception is the No. 1 goal for improving hearing and the No. 1 need we hear from patients,” says Frequency co-founder and Chief Scientific Officer Chris Loose Ph.D.

In Frequency’s first clinical study, the company saw statistically significant improvements in speech perception in some participants after a single injection, with some responses lasting nearly two years. The company has dosed more than 200 patients to date and has seen clinically meaningful improvements in speech perception in three separate clinical studies, with some improvements lasting nearly two years after a single injection. Another study failed to show improvements in hearing compared to the placebo group, but the company attributes that result to flaws in the design of the trial. Now Frequency is recruiting for a 124-person trial from which preliminary results should be available early next year.

The company’s founders, including Loose, MIT Institute Professor Robert Langer, CEO David Lucchino MBA, Senior Vice President Will McLean Ph.D., and Harvard-MIT Health Sciences and Technology affiliate faculty member Jeff Karp, are already gratified to have been able to help people improve their hearing through the clinical trials. They also believe they’re making important contributions toward solving a problem that impacts more than 40 million people in the U.S. and hundreds of millions more around the world.

Hearing is such an important sense; it connects people to their community and cultivates a sense of identity,” says Karp, who is also a professor of anesthesia at Brigham and Women’s Hospital. “I think the potential to restore hearing will have enormous impact on society.

Source: https://www.frequencytx.com/
AND
https://neurosciencenews.com/

Nano-Robots Injected into your Bloodstream to Fight Disease

What if there was a magical robot that could cure any disease? Don’t answer that. It’s a stupid question. Everyone knows there’s no one machine that could do that. But maybe a swarm made up of tens of thousands of tiny autonomous micro-bots could? That’s the premise laid out by proponents of nanobot medical technology. In science fiction, the big idea usually involves creating tiny metal robots via some sort of magic-adjacent miniaturization technology.

Luckily for us, the reality of nanobot tech is infinitely cooler. A team of researchers from Australia have developed a mind-blowing prototype that could work as a proof-of-concept for the future of medicine. Called “autonomous molecular machines,” the new nanotechnology eschews the traditional visage of microscopic metal automatons in favor of a more natural approach.

Inspired by biology, we design and synthesize a DNA origami receptor that exploits multivalent interactions to form stable complexes that are also capable of rapid subunit exchange”, explained the researchers. “DNA nanobots are synthetic nanometer-sized machines made of DNA and proteins. They’re autonomous because DNA itself is a self-assembling machine. Our natural DNA not only carries the code our biology is written in, it also knows when to execute. That’s part of the reason why, for example, your left and right feet tend to grow at roughly the same rate.”

Previous work in the field of DNA nanotechnology has demonstrated self-assembling machines capable of transferring DNA code, much like their natural counterparts. But the new tech out of Australia is unlike anything we’ve ever seen before.
Using the DNA origami receptor to demonstrate stable interactions with rapid exchange of both DNA and protein subunits, thus highlighting the applicability of the approach to arbitrary molecular cargo, an important distinction with canonical toehold exchange between single-stranded DNA. These particular nanobots can transfer more than just DNA information. Theoretically speaking, they could deliver any conceivable combination of proteins throughout a given biological system. To put that in simpler terms: the scientists should be able to eventually program swarms of these nanobots to hunt down bacteria, viruses, and cancer cells inside of our bodies. Each member of the swarm could carry a specific protein and, when they’ve found a bad cell, they could assemble their proteins into a formation designed to eliminate the threat.

Source: https://thenextweb.com/

Burst of Ultrasound Waves Can Break up Kidney Stones in 10 minutes

A small study shows that ultrasound bursts reduce kidney stones‘ volume by 90%, according to research published this week in the Journal of Urology.

Using burst wave lithotripsy (BWL), UW Medicine urologists were able to fragment the stones in 10-minute procedures on patients who were under anesthesia. Eventually, urologists could use this procedure on conscious patients in a clinic visit, said Dr. Mathew Sorensen, a study co-author. Kidney stones are common, affecting 1 in 10 Americans at a cost of $10 billion per year to treat, the report said.  While many stones pass on their own, treatments are sometimes needed to help expel them.

Every year, more than 600 people in the throes of kidney-stone pain seek emergency care at Harborview and UW Medical Center (University of Washington)  in Seattle. Kidney stones that become stuck in the urinary tract can cause debilitating pain: The obstruction of urine flow also can result in kidney swelling and cramping and set the stage for infection or lasting damage. Many stones can be treated with a technique called extracorporeal shock wave lithotripsy (ESWL) where sound waves are used to break the stone so that the fragments would be more likely to pass. In some cases, however, ESWL only fractures the stones rather than pulverizing them, Sorensen said.  Ureteroscopy is another minimally invasive way to treat stones but often requires a temporary stent, which can be quite uncomfortable.

The ways we have to currently treat stones have some downsides,” he said. “Most involve anesthesia.”

In contrast to the shock waves used in ESWL, the BWL procedure uses “short harmonic bursts” of ultrasound energy, potentially enabling the stones to be broken up in a shorter procedure without the need for sedation or anesthesia. Pre-clinical studies supported the effectiveness of BWL in breaking experimental stones of varying size and composition, the study noted.

In this study, Sorensen and urology colleague Dr. Jonathan Harper, the study’s lead author, performed initial studies in human patients with kidney stones. The patients were undergoing ureteroscopy, which is used to treat larger stones. Before that treatment, the stones were treated with BWL for no longer than 10 minutes. Using the ureteroscope, the researchers were able to directly observe how well the ultrasound waves worked to break the stones, as well as observe any injury to the kidney tissues.

Source: https://newsroom.uw.edu/

Microplastics Found in Human Blood for First Time

Microplastic pollution has been detected in human blood for the first time, with scientists finding the tiny particles in almost 80% of the people tested. The discovery shows the particles can travel around the body and may lodge in organs. The impact on health is as yet unknown. But researchers are concerned as microplastics cause damage to human cells in the laboratory and air pollution particles are already known to enter the body and cause millions of early deaths a year. Huge amounts of plastic waste are dumped in the environment and microplastics now contaminate the entire planet, from the summit of Mount Everest to the deepest oceans. People were already known to consume the tiny particles via food and water as well as breathing them in, and they have been found in the faeces of babies and adults.

The scientists analysed blood samples from 22 anonymous donors, all healthy adults and found plastic particles in 17. Half the samples contained PET plastic, which is commonly used in drinks bottles, while a third contained polystyrene, used for packaging food and other products. A quarter of the blood samples contained polyethylene, from which plastic carrier bags are made.

Our study is the first indication that we have polymer particles in our blood – ​it’s a breakthrough result,” said Prof Dick Vethaak, an ecotoxicologist at Vrije Universiteit Amsterdam in the Netherlands. “But we have to extend the research and increase the sample sizes, the number of polymers assessed, etc.” Further studies by a number of groups are already under way, he said.

It is certainly reasonable to be concerned,” Vethaak told the Guardian. “The particles are there and are transported throughout the body.” He said previous work had shown that microplastics were 10 times higher in the faeces of babies compared with adults and that babies fed with plastic bottles are swallowing millions of microplastic particles a day. “We also know in general that babies and young children are more vulnerable to chemical and particle exposure,” he said. “That worries me a lot.”

The new research is published in the journal Environment International and adapted existing techniques to detect and analyse particles as small as 0.0007mm.

Source: https://vu.nl/
AND
https://www.theguardian.com/

Male Contraceptive Pill Found 99% Effective in Mice

A team of scientists reported they had developed an oral male contraceptive that is 99 percent effective in mice without causing side effects, and could enter human trials by the end of this year. The findings will be presented at the American Chemical Society‘s spring meeting, and mark a key step towards expanding birth control options — as well asresponsibilities — for men.

Ever since the female birth control pill was first approved in the 1960s, researchers have been interested in a male equivalent, Md Abdullah Al Noman, a graduate student at the University of Minnesota who will present the work, told AFP.

Multiple studies showed that men are interested in sharing the responsibility of birth control with their partners,” he said — but until now, there have been only two effective options available: condoms or vasectomies. Vasectomy reversal surgery is expensive and not always successful.

The female pill uses hormones to disrupt the menstrual cycle, and historic efforts to develop a male equivalent targeted the male sex hormone testosterone. The problem with this approach, however, was that it caused side effects such as weight gain, depression and increased levels of a cholesterol known as low-density lipoprotein, which increases heart disease risks. The female pill also carries side effects, including blood-clotting risks — but since women face becoming pregnant in the absence of contraception, the risk calculation differs.

To develop a non-hormonal drug, Noman, who works in the lab of Professor Gunda Georg, targeted a protein called “retinoic acid receptor (RAR) alpha.” Inside the body, vitamin A is converted into different forms, including retinoic acid, which plays important roles in cell growth, sperm formation, and embryo development. Retinoic acid needs to interact with RAR-alpha to perform these functions, and lab experiments have shown mice without the gene that creates RAR-alpha are sterile.

For their work, Noman and Georg developed a compound that blocks the action of RAR-alpha. They identified the best molecular structure with the help of a computer model.

“If we know what the keyhole looks like, then we can make a better key — that’s where the computational model comes in,” said Noman.

Source: https://www.france24.com/

Solar Power Station in Space

The UK government is reportedly considering a £16 billion proposal to build a solar power station in space. Space-based solar power is one of the technologies to feature in the government’s Net Zero Innovation Portfolio. It has been identified as a potential solution, alongside others, to enable the UK to achieve net zero by 2050. But how would a  in space work? What are the advantages and drawbacks to this technology?

Space-based solar power involves collecting solar energy in space and transferring it to Earth. While the idea itself is not new, recent technological advances have made this prospect more achievable.

The space-based  involves a solar power satellite—an enormous spacecraft equipped with . These panels generate electricity, which is then wirelessly transmitted to Earth through high-frequency radio waves. A ground antenna, called a rectenna, is used to convert the radio waves into electricity, which is then delivered to the .

A space-based solar power station in orbit is illuminated by the Sun 24 hours a day and could therefore generate electricity continuously. This represents an advantage over terrestrial solar power systems (systems on Earth), which can produce electricity only during the day and depend on the weather.

With  projected to increase by nearly 50% by 2050, space-based solar power could be key to helping meet the growing demand on the world’s energy sector and tackling global temperature rise.

Source: https://phys.org/

A New Blood Test Detects Alzheimer’s Dementia with 93 percent Accuracy

A blood test developed at Washington University School of Medicine in St. Louis has proven highly accurate in detecting early signs of Alzheimer’s disease in a study involving nearly 500 patients from across three continents, providing further evidence that the test should be considered for routine screening and diagnosis.

Our study shows that the blood test provides a robust measure for detecting amyloid plaques associated with Alzheimer’s disease, even among patients not yet experiencing cognitive declines,” said senior author Randall J. Bateman, MD,  Professor of Neurology. “A blood test for Alzheimer’s provides a huge boost for Alzheimer’s research and diagnosis, drastically cutting the time and cost of identifying patients for clinical trials and spurring the development of new treatment options,” Bateman said. “As new drugs become available, a blood test could determine who might benefit from treatment, including those at very early stages of the disease.”

Developed by Bateman and colleagues, the blood test assesses whether amyloid plaques have begun accumulating in the brain based on the ratio of the levels of the amyloid beta proteins Aβ42 and Aβ40 in the blood.

Researchers have long pursued a low-cost, easily accessible blood test for Alzheimer’s as an alternative to the expensive brain scans and invasive spinal taps now used to assess the presence and progression of the disease within the brain.

Evaluating the disease using PET brain scans – still the gold standard – requires a radioactive brain scan, at an average cost of $5,000 to $8,000 per scan. Another common test, which analyzes levels of amyloid-beta and tau protein in cerebrospinal fluid, costs about $1,000 but requires a spinal tap process that some patients may be unwilling to endure.

This study estimates that prescreening with a $500 blood test could reduce by half both the cost and the time it takes to enroll patients in clinical trials that use PET scans. Screening with blood tests alone could be completed in less than six months and cut costs by tenfold or more, the study finds.

Source: https://medicine.wustl.edu/

Medicine and Psychedelics

As mental health continues to decline, what will happen when medicine and virtual worlds come together in the Metaverse? The world is becoming more connected as cryptocurrency, blockchain, nonfungible token projects, the Metaverse and other online communities gain popularity.

However, we’re also seeing rates of depression and feelings of isolation and loneliness skyrocket. This development is certainly not causal, but it is something to consider as younger generations become more involved in virtual spaces. The global COVID-19 pandemic has exacerbated a national mental health crisis. Mental Health America reported that 47.1 million people in the U.S. are living with a mental health condition..

Would you consider logging onto your computer to meet with your cryptographically certified doctor or therapist? How about receiving a prescription delivered to your door? Many young people actually feel more comfortable in a virtual setting, surrounded by peers and represented by their chosen avatar.

So how does this dream become reality? It all starts with innovation and nature. Researchers and doctors have been exploring the medicinal world of fungi and their power to heal and regenerate. Fungi have been core to this planet’s wellbeing for billions of years, and we’re just beginning to understand the psychoactive effects that certain fungi have on the human psyche.

President Richard Nixon put a halt to all research on psychedelics in 1970 when he deemed renowned psychologist and writer Timothy Leary the most dangerous man in America. He began the war on drugs and convinced society that these psychoactively medicinal fungi were the devil’s work. Scientific research into the benefits of psychedelics was set back twenty years before researchers could start back up and resume their studies. Now, psychedelics are making headlines, and the efficacy of the treatments is showing possibly the best results known to science.

Through psychedelic therapies, such as those being professionally performed in research being conducted by the Multidisciplinary Association for Psychedelic Studies (MAPS), the UC Berkeley Center for the Science of Psychedelics, the Center for Psychedelic Medicine in NYU Langone’s Department of Psychiatry, the Center for Psychedelic Research at Imperial College London, the Johns Hopkins Center for Psychedelic and Consciousness Research, and other institutions, patients are learning how to process their trauma instead of suppressing it. With minimal doses of psychedelic medicine, recovery rates trend upwards and patients continue to get better on their own.

Source: https://cointelegraph.com

 

Engineering an “Invisible Cloak” for Bacteria to Deliver Cancer Drugs

Scientists exploring a novel but highly promising avenue of cancer treatment have developed a type of “invisibility cloak” that helps engineered bacteria sneak through the body’s immune defenses. The result is more powerful delivery of anti-cancer drugs and shrinking of tumors in mice, with the scientists hopeful the approach can overcome toxicity issues that have plagued these techniques so far.

Traditional forms of cancer treatment – radiotherapy, chemotherapy and immunotherapy – each have their own strengths when it comes to combating tumors, and what’s known as therapeutic bacteria could bring its own set of skills into the mix. Bacteria itself can have powerful anti-tumor effects, but genetic engineering could allow it to take on entirely new capabilities, including releasing specific compounds or carrying potent anti-cancer drugs. There are a number of challenges in using bacteria for this purpose, however, with the issue of toxicity chief among them. Living bacteria can grow rapidly in the body, and because the body’s immune system sees them as a threat, too many can trigger an extreme inflammatory response.

In clinical trials, these toxicities have been shown to be the critical problem, limiting the amount we can dose bacteria and compromising efficacy,” said Columbia University‘s Jaeseung Hahn, who co-led the research. “Some trials had to be terminated due to severe toxicity.

Addressing this toxicity problem would mean finding (or engineering) bacteria that can evade the body’s immune system and safely make it to a tumor to fulfill their anti-cancer potential. Hahn’s team has made new inroads in this space by turning to sugar polymers called capsular polysaccharides (CAP), which naturally coat bacterial surfaces and protect them from immune attacks.

We hijacked the CAP system of a probiotic E. coli strain Nissle 1917,” said Tetsuhiro Harimoto, the study’s co-lead author. “With CAP, these bacteria can temporarily evade immune attack; without CAP, they lose their encapsulation protection and can be cleared out in the body. So we decided to try to build an effective on/off switch.”

Source: https://www.engineering.columbia.edu/

Acoustic Fabric

Having trouble hearing? Just turn up your shirt. That’s the idea behind a new “acoustic fabric” developed by engineers at MIT and collaborators at Rhode Island School of DesignThe team has designed a fabric that works like a microphone, converting sound first into mechanical vibrations, then into electrical signals, similarly to how our ears hearAll fabrics vibrate in response to audible sounds, though these vibrations are on the scale of nanometers — far too small to ordinarily be sensed. To capture these imperceptible signals, the researchers created a flexible fiber that, when woven into a fabric, bends with the fabric like seaweed on the ocean’s surface.

The fiber is designed from a “piezoelectric” material that produces an electrical signal when bent or mechanically deformed, providing a means for the fabric to convert sound vibrations into electrical signalsThe fabric can capture sounds ranging in decibel from a quiet library to heavy road traffic, and determine the precise direction of sudden sounds like handclaps. When woven into a shirt’s lining, the fabric can detect a wearer’s subtle heartbeat features. The fibers can also be made to generate sound, such as a recording of spoken words, that another fabric can detectA study detailing the team’s design appears in Nature. Lead author Wei Yan, who helped develop the fiber as an MIT postdoc, sees many uses for fabrics that hear.

Wearing an acoustic garment, you might talk through it to answer phone calls and communicate with others,” says Yan, who is now an assistant professor at the Nanyang Technological University in Singapore. “In addition, this fabric can imperceptibly interface with the human skin, enabling wearers to monitor their heart and respiratory condition in a comfortable, continuous, real-time, and long-term manner.”

Yan’s co-authors include Grace Noel, Gabriel Loke, Tural Khudiyev, Juliette Marion, Juliana Cherston, Atharva Sahasrabudhe, Joao Wilbert, Irmandy Wicaksono, and professors John Joannopoulos and Yoel Fink at MIT, along with collaborators from the Rhode Island School of Design (RISD), Lei Zhu from Case Western Reserve University, Chu Ma from the University of Wisconsin at Madison, and Reed Hoyt of the U.S. Army Research Institute of Environmental Medicine.

Source: https://news.mit.edu/

New Drug Could Protect Against Aging

Senolytics are an emerging class of drugs designed to target zombie-like cells that have stopped dividing and build up in the body as we age, and the past few years have seen some exciting discoveries that demonstrate their potential. Adding another to the list are Mayo Clinic researchers, who have shown that these drugs can protect against aging and its related diseases, by acting on a protein long associated with longevity. The zombie-like cells involved in this research are known as senescent cells, and their accumulation during aging is associated with a range of diseases. Recent studies have shown that using senolytics to clear them out could serve as new and effective treatments for dementia and diabetes, and also improve health and lifespan more broadly.

The Mayo Clinic team were exploring how senolytics can influence levels of a protein called a-klotho, known to help protect older people from the effects of aging. The role of this protein in the aging process is well established and has placed it at the center of much research in this space, with studies demonstrating how it could help reverse osteoarthritis and regenerate old musclesLevels of a-klotho are also known to decrease with age, and studies have shown these declines shorten the lifespan of mice. Conversely, inserting genes that encode for the protein has been shown to increase the lifespan of mice by 30 percent. Boosting its levels in humans has been problematic, however, as its larger size would require it to be administered intravenously. But now the Mayo Clinic scientists believe they have found another route, as senolytic drugs can be administered orally.

They first showed that senescent cells reduce levels of a-klotho in human cells. They then demonstrated that using a combination of senolytic drugs on three different types of mice could counter this and increase levels of a-klotho. This effect was then observed in follow-up experiments on patients with idiopathic pulmonary fibrosis, a lung disease that can cause breathing difficulty, frailty and death.

“We show that there is an avenue for an orally active, small-molecule approach to increase this beneficial protein and also to amplify the action of senolytic drugs,” says James Kirkland, M.D., Ph.D., a Mayo Clinic internist and senior author of the study.

Source: https://www.thelancet.com/

Tiny Bubbles Destroy Tumours in Seven Minutes

Following her diagnosis with liver cancer last June, 68-year-old Sheila Riley braced herself for painful and gruelling treatmentsSurgery, chemotherapy, radio-therapy and even ablation — where heat is used to destroy tumours — are some of medicine’s most effective tools against cancer, but the potential side-effects can be hard to bear. In fact, Sheila was spared these thanks to a radical new form of therapy that uses tiny bubbles of gas to destroy tumours within minutes and doesn’t leave a mark on the body. She was one of the first patients in the UK to undergo histotripsy, where focused ultrasound waves are directed from outside the body to destroy tumours by generating thousands of exploding gas bubbles. So rapid is the procedure that her tumour was obliterated painlessly — in under seven minutes.

It was amazing,’ says the grandmother of eight, who had the treatment last August at St James’s University Hospital in Leeds. ‘I didn’t need any medication — not even painkillers afterwards,’ adds Sheila, who lives in Bradford with her partner Frank, 70. ‘I was able to go shopping the next day, and two days after my treatment I was out with friends. It didn’t even leave a mark on my skin.

It is now hoped the procedure can help those with tumours in other parts of the bodyHistotripsy was pioneered by researchers at the University of Michigan in the U.S. and relies on a process called cavitation — creating an empty space inside something solid — to eradicate cancer. First, a beam of ultrasound energy is directed through the skin to the tumour site. As the beam hits the targeted spot, it activates thousands of pockets of gas that occur naturally in tissue throughout the body, even tumours, as a result of the respiratory process. These tiny pockets of gas are usually dormant, but when blasted with the sound waves, they expand, vibrate and explode, forming a high-energy cloud of microbubbles in the tumour. As they rapidly expand and collapse, the bubbles break up surrounding cancerous tissue, liquifying it into a solution that then gets passed out of the body as waste.

Unlike existing treatments such as microwave ablation, where a heat-generating probe is used to ‘cook’ tumour cells, there is no heat that might damage surrounding healthy tissue, making cavitation potentially safer. This capacity for ultrasound to destroy tissue has been known about for years but was not previously adopted as a cancer treatment because it was too difficult to control the bubble clouds and avoid damaging healthy tissue.

However, the process has now been fine-tuned and the energy source can be better directed inside the tumour, avoiding the risk of nearby healthy tissue or organs being affected. An international trial is now under way looking at histotripsy for liver cancer. The chief investigator, Professor Tze Min Wah, a senior consultant interventional radiologist at St James’s University Hospital, believes cavitation could transform cancer treatment. ‘Rather than using heat, radiation or surgery to remove the tumour, the bubble cloud created by histotripsy is so powerful that it ruptures the tumour but doesn’t damage the tissue around it,’ she says.

Source: https://www.dailymail.co.uk/

Nanoparticles Help to Produce Rapid, Efficient Hydrogen from Water

UCSC chemists developed a simple method to make aluminum nanoparticles that split water and generate hydrogen gas rapidly under ambient conditions. Aluminum is a highly reactive metal that can strip oxygen from water molecules to generate hydrogen gas. Its widespread use in products that get wet poses no danger because aluminum instantly reacts with air to acquire a coating of aluminum oxide, which blocks further reactions.

For years, researchers have tried to find efficient and cost-effective ways to use aluminum’s reactivity to generate clean hydrogen fuel. A new study by researchers at UC Santa Cruz shows that an easily produced composite of gallium and aluminum creates aluminum nanoparticles that react rapidly with water at room temperature to yield large amounts of hydrogen. The gallium was easily recovered for reuse after the reaction, which yields 90% of the hydrogen that could theoretically be produced from reaction of all the aluminum in the composite.

We don’t need any energy input, and it bubbles hydrogen like crazy. I’ve never seen anything like it,” said UCSC Chemistry Professor Scott Oliver.

Oliver and Bakthan Singaram, professor of chemistry and biochemistry, are corresponding authors of a paper on the new findings, published February 14 in Applied Nano Materials.

The reaction of aluminum and gallium with water has been known since the 1970s, and videos of it are easy to find online. It works because gallium, a liquid at just above room temperature, removes the passive aluminum oxide coating, allowing direct contact of aluminum with water. The new study, however, includes several innovations and novel findings that could lead to practical applications.

https://news.ucsc.edu/

The Quantum Gravity

How can Einstein‘s theory of gravity be unified with quantum mechanics? It is a challenge that could give us deep insights into phenomena such as black holes and the birth of the universe. Now, a new article in Nature Communications, written by researchers from Chalmers University of Technology, Sweden, and MIT, U.S., presents results that cast new light on important challenges in understanding quantum gravity.

We strive to understand the laws of nature and the language in which these are written is mathematics. When we seek answers to questions in physics, we are often led to new discoveries in mathematics too. This interaction is particularly prominent in the search for quantum gravity—where it is extremely difficult to perform experiments,” explains Daniel Persson, Professor at the Department of Mathematical Sciences at Chalmers university of technology.

An example of a phenomenon that requires this type of unified description is . A black hole forms when a sufficiently heavy star expands and collapses under its own gravitational force, so that all its mass is concentrated in an extremely small volume. The quantum mechanical description of black holes is still in its infancy but involves spectacular advanced mathematics.

The challenge is to describe how gravity arises as an ’emergent’ phenomenon. Just as everyday phenomena—such as the flow of a liquid—emerge from the chaotic movements of individual droplets, we want to describe how gravity emerges from quantum mechanical system at the microscopic level,” says Robert Berman, Professor at the Department of Mathematical Sciences at Chalmers University of Technology.

In an article recently published in the journal Nature Communications, Daniel Persson and Robert Berman, together with Tristan Collins of MIT in the U.S., showed how gravity emerges from a special quantum mechanical system in a simplified model for quantum gravity called the holographic principle.

Using techniques from the mathematics that I have researched before, we managed to formulate an explanation for how gravity emerges by the holographic principle, in a more precise way than has previously been done,” explains Robert Berman.

The new article may also offer new insight into mysterious dark energy. In Einstein’s general theory of relativity, gravity is described as a geometric phenomenon. Just as a newly made bed curves under a person’s weight, heavy objects can bend the geometric shape of the universe. But according to Einstein’s theory, even the empty space—the “vacuum state” of the universe—has a rich geometric structure. If you could zoom in and look at this vacuum on a microscopic level, you would see quantum mechanical fluctuations or ripples, known as dark energy. It is this mysterious form of energy that, from a larger perspective, is responsible for the accelerated expansion of the universe.

Source: Nature Communications.com


Augmented Reality (AR) Revolutionizes Surgery

Dr Stephen Quinn, a gynaecologist at hospitals in the NHS Trust Imperial College, appears on TV show to help a patient, Hilda, with a condition causing her swollen abdomen. After taking careful scans of Hilda’s body, the team are able to show her the growths, called fibroids, that are behind her pain.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

I’ve spent a lot of my career looking at MRI scans of pelvises, and having these images is extremely helpful in clinic,” said Quinn. “But using augmented reality just took that to a whole different level. It was fantastic being able to to fully visualise exactly what was going on in the pelvis ahead of the surgery to remove the fibroids.”

Unfortunately, the technology is a way off being available on the NHS, but Quinn said AR’s use could be commonplace within the next decade.

For the show, radiologists at Imperial hospitals provided artists with in-depth scans of each patient. Dr Dimitri Amiras, a musculoskeletal consultant radiologist at Imperial, also worked on the experiment.

First, patients would undergo routine scans. “In order to define what the organ is and where the pathology is, that’s all done by radiologists. We are the ones to identify it and look at the imaging techniques work out what is good tissue, what’s bad tissue,” said Amiras. “Then, once we’ve got those images with relevant bits identified, digital artists may draw around them or even use artificial intelligence to make all the pretty pictures and the shiny stuff.”

Once finished, the patients and doctors would wear an AR device to ‘see’ the body part in front of them. Each was 3D, and could be zoomed in or out, rotated, and compared to the same areas on a healthy individual.

Source: https://www.sciencefocus.com/

The Fountain of Youth

A step toward discovering the fountain of youth could involve protecting against the inevitable accumulation of “senescentcells associated with aging and age-related diseases. Now, researchers from Japan have identified the MondoA protein as key to protecting against the accumulation of senescent cells.

In a study published this month in Cell Reports, researchers led by Osaka University have shown that MondoA delays cellular senescence, and therefore promotes longevity, by activating . Autophagy is a process whereby cells undergo controlled breakdown and recycling of their components, which is important for maintaining stable conditions in the cellular environment and for enabling adaptation to stress. Activation of autophagy by MondoA partly involves suppressing a protein called Rubicon, which is a negative regulator of autophagy. Rubicon can increase with aging in various tissues and model organisms, which can cause the decline in autophagy seen with aging.

Furthermore, MondoA is also essential to maintaining stable conditions of parts of the cell called mitochondria, which are responsible for energy production. MondoA does this by regulating another molecule, Prdx3, which is involved in mitochondrial turnover. Mitochondria are constantly fusing and dividing, which is important for maintaining their health. Prdx3 is part of the process by which autophagy occurs in mitochondria, preventing senescence. The research team led by Osaka University concluded that MondoA plays a key role in the regulation of Prdx3 and therefore in maintaining mitochondrial stability.

Particularly dense accumulation of senescent cells has been observed in the kidney. The researchers therefore looked at ischemic acute kidney injury (AKI) in mice.

Mice with ischemic AKI and reduced levels of MondoA showed increased senescence,” explains lead author Hitomi Yamamoto-Imoto. “We also found that decreased MondoA in the nucleus correlated with human aging and ischemic AKI. MondoA therefore counteracts cellular  in aging and ischemic AKI in both mice and humans.”

Drugs that eliminate senescent cells, called senolytics, are currently being considered as treatment for age-associated diseases. However, senescent  play important roles, and their complete removal may have considerable side effects. “Our work shows that the transcriptional activation of MondoA can protect against , kidney injury associated with aging, and organismal aging,” explains senior author Tamotsu Yoshimori. “Activation of MondoA and therefore autophagy could be a potentially safe therapeutic strategy.” This work could well open new and safer avenues for the treatment of aging and age-related diseases.

Source: https://phys.org/

SpaceX Sent Starlink Internet Terminals to Ukraine

SpaceX CEO Elon Musk sent a truckload of Starlink antennas — which can be used to connect to the company’s satellite-based internet service — to Ukraine this week, responding to a plea from the country’s vice prime minister amid fears that Ukrainians could lose internet access if Russia continues its attacks on communication infrastructure. But using satellite services can be dangerous in wartime, as evidenced by a history of states using satellite signals to geolocate and target enemies, cybersecurity experts said.

If an adversary has a specialized plane aloft, it can detect [a satellite] signal and home in on it,” Nicholas Weaver, a security researcher at the University of California at Berkeley, explained via email.

It isn’t necessarily easy, but the Russians have a lot of practice on tracking various signal emitters in Syria and responding. Starlink may work for the moment, but anyone setting a [Starlink] dish up in Ukraine needs to consider it as a potential giant target.

In short: “It may be useful, but for safety’s sake you don’t want to set it (or really any distinctive emitter) up in Ukraine anywhere close to where you would not want a Russian bomb dropping,” Weaver said.
Shortly after this story was originally published, Musk also weighed in on Twitter, saying “Important warning: Starlink is the only non-Russian communications system still working in some parts of Ukraine, so probability of being targeted is high. Please use with caution.”
He went on to advise users in Ukraine to “turn on Starlink only when needed and place antenna away as far away from people as possible,” and to “place light camouflage over antenna to avoid visual detection.”

A 1889 “Flu” Similar to SARS-CoV-2 is Now Under Investigation

In May 1889, people living in Bukhara, a city that was then part of the Russian Empire, began sickening and dying. The respiratory virus that killed them became known as the Russian flu. It swept the world, overwhelming hospitals and killing the old with special ferocity.

Schools and factories were forced to close because so many students and workers were sick. Some of the infected described an odd symptom: a loss of smell and taste. And some of those who recovered reported a lingering exhaustion. The Russian flu finally ended a few years later, after at least three waves of infection.

Its patterns of infection and symptoms have led some virologists and historians of medicine to now wonder: Might the Russian flu actually have been a pandemic driven by a coronavirus? And could its course give us clues about how our pandemic will play out and wind down?

If a coronavirus caused the Russian flu, some believe that pathogen may still be around, its descendants circulating worldwide as one of the four coronaviruses that cause the common cold. If so, it would be different from flu pandemics whose viruses stick around for a while only to be replaced by new variants years later that cause a new pandemic.

Source: https://www.nytimes.com/

‘Drug Factory’ Implants Could Eliminate Cancer

Rice University bioengineers have shown they can eradicate advanced-stage ovarian and colorectal cancer in mice in as little as six days with a treatment that could be ready for human clinical trials later this year. The researchers used implantabledrug factories” the size of a pinhead to deliver continuous, high doses of interleukin-2, a natural compound that activates white blood cells to fight cancer. The drug-producing beads can be implanted with minimally invasive surgery. Each contains cells engineered to produce interleukin-2 that are encased in a protective shell.

The treatment and animal test results are described online today in a Science Advances study co-authored by Omid VeisehAmanda Nash and colleagues from Rice, the University of Texas MD Anderson Cancer Center, the University of Virginia and others.

Veiseh, an assistant professor of bioengineering whose lab produced the treatment, said human clinical trials could begin as soon as this fall because one of his team’s key design criteria was helping cancer patients as quickly as possible. The team chose only components that had previously proven safe for use in humans, and it has demonstrated the safety of the new treatment in multiple tests.

Rice University bioengineers Amanda Nash (left) and Omid Veiseh with vials of bead-like “drug factories” they created to treat cancer. The beads are designed to continuously produce natural compounds that program the immune system to attack tumors. 

We just administer once, but the drug factories keep making the dose every day, where it’s needed until the cancer is eliminated,” Veiseh said. “Once we determined the correct dose — how many factories we needed — we were able to eradicate tumors in 100% of animals with ovarian cancer and in seven of eight animals with colorectal cancer.”

In the newly published study, researchers placed drug-producing beads beside tumors and within the peritoneum, a sac-like lining that supports intestines, ovaries and other abdominal organs. Placement within this cavity concentrated interleukin-2 within tumors and limited exposure elsewhere. “A major challenge in the field of immunotherapy is to increase tumor inflammation and anti-tumor immunity while avoiding systemic side effects of cytokines and other pro-inflammatory drugs,” said study co-author Dr. Amir Jazaeri, professor of gynecologic oncology and reproductive medicine at MD Anderson. “In this study, we demonstrated that the ‘drug factories’ allow regulatable local administration of interleukin-2 and eradication of tumor in several mouse models, which is very exciting. This provides a strong rationale for clinical testing.

Source: https://news.rice.edu/

Drug Reduces Brain Inflammation, Protects Against Alzheimer’s

An anti-inflammatory drug candidate, known as 3,6’-dithiopomalidomide (DP), designed by researchers at the National Institute on Aging (NIA), protected lab mice against cognitive decline by reducing brain inflammation. An international research team led by the NIA scientists published their findings in Alzheimer’s and Dementia: The Journal of the Alzheimer’s Association. NIA is part of the National Institutes of Health.

The study results provide new evidence that brain inflammation — which occurs decades before Alzheimer’s symptoms are noticeable — is a key neuropathological pathway of interest in efforts to find potential treatments for Alzheimer’s.

To investigate whether brain inflammation was directly involved in cognitive loss, researchers used a mouse model specially designed to produce up to five times the normal levels of beta-amyloid plaques. These plaques are a hallmark sign of Alzheimer’s and are thought to contribute to a destructive inflammatory response in the brain. After four months of treatment with DP, the mice showed reduced brain inflammation and neuron death, and they had more neural connections in the brain areas responsible for memory and attention. DP-treated mice also showed improvement in behavioral laboratory tasks that test spatial and working memory as well as anxiety behaviors and motor function, results the researchers see as protective against cognitive impairment.

Source: https://www.nih.gov/

3D Printers to Produce Personalized Medicines

CurifyLabs and Natural Machines have entered a strategic partnership to develop a technology that enables customized medicine production through 3D printing – producing personalized medicines for human and veterinary patients, on-site in pharmacies and hospitals. Compounding is the manual preparation of individualized drug treatments for patients where an optimal treatment cannot be achieved with the currently available medicinal products. There are many talented pharmacists who are able to compound drugs manually but the process is ineffective and lacks quality control.

With this partnership, we are developing a unique Medicine-as-a-Service concept for pharmacy compounding and we believe that our partnership with Natural Machines will bring an affordable and superior 3D printing platform to the market. Together we can revolutionize the industry within personalized medicine offering localized, on-demand drug manufacturing.”, said Charlotta Topelius, CEO, CurifyLabs. This partnership aims to develop a unique solution that optimizes and automates the compounding process in pharmacies and hospitals, by utilizing 3D printers. CurifyLabs will commercialize the solution on a global scale. The two companies aim to introduce the technology to the market globally during 2022.

Our initial pilots have proved the potential to print personalized medicines based on CurifyLabs’ pharmaceutical formulations. We continue to focus on adapting the technology to establish a new approach for personalized medicine for our customers, based on pharma grade ingredients and integrated quality control”, said Niklas Sandler Topelius, Chief Scientific Officer, CurifyLabs.

Our partnership with CurifyLabs will help us to grow our portfolio. At Natural Machines, we have solutions for the food sector and the personal care industry, and now with this strategic partnership, we add the pharmaceutical field. This partnership will leverage both CurifyLabs’ experience and latest developments in pharma with our extensive 3D printing expertise, providing a new solution that aligns with the growing global trend of product personalization,” said Lynette Kucsma, founder and CMO of Natural Machines.

Source: https://www.3dprintingmedia.network/

Moderna Announces mRNA Vaccine Targeting Herpes and Cancer

Building on the momentum of its extraordinarily successful mRNA COVID-19 vaccine, biotechnology company Moderna has announced three new mRNA development targets. The company is now setting its vaccine sights on the herpes simplex virus, the varicella-zoster virus, and a novel cancer vaccine.  mRNA COVID-19 vaccines were demonstrating extraordinary safety and efficacyModerna has just announced a trio of new developmental targets. These three new mRNA vaccine targets sit alongside the company’s previously announced focuses on HIV, influenza, cytomegalovirus (CMV), and the Epstein-Barr virus (EBV).
The biggest newly announced target is a mRNA vaccine against the herpes simplex virus (HSV).  HSV-2 is the world’s most common sexually transmitted disease, with around 10 percent of people thought to be infected. Some researchers have also hypothesized the herpes virus may play a role in the onset of neurodegenerative diseases such as Alzheimer’s.

The second mRNA target announced by Moderna is aimed at the varicella-zoster virus (VSV). This is the virus that causes chicken pox and it is also a latent virus that can remain dormant for years after an initial infection. When VSV reactivates it causes a disease known as shinglesModerna’s targeting of shingles follows an announcement last month from Pfizer indicating it too will be looking at developing an mRNA vaccine for this common disease.

The final newly announced mRNA target is for a vaccine aimed at two antigens expressed by some cancer cells. The vaccine focuses on two antigens: Indoleamine 2,3-dioxygenase (IDO) and programmed death-ligand 1 (PD-L1). Both molecules are known to play a role in the growth of tumor cells. The goal of an mRNA vaccine for cancer would be to train the body’s immune cells to detect tumor cells expressing these specific antigens. The mRNA vaccine will initially be tested on advanced or metastatic skin cancer and a type of lung cancer called non-small cell lung carcinoma.

We are committed to addressing latent viruses with the goal of preventing the lifelong medical conditions that they cause with our mRNA vaccine programs,” said Stephane Bancel, CEO of Moderna. “With our HSV and VZV vaccine candidates, we also hope to improve the quality of life for those with symptomatic disease. With our new checkpoint cancer vaccine, we look forward to exploring if we can induce T cells specific to PD-L1 and IDO1 through vaccination. Our research teams are working on additional mRNA candidates, which we look forward to sharing in the future.

Source: https://www.accesswire.com/

Airbus to test hydrogen-fueled engine on A380 jet

Airbus just moved one step closer to launching the world’s first zero-emission commercial aircraft by 2035. The French aircraft maker has announced plans to test hydrogen fuel technology using a modified version of one of its A380 jetliners, which were discontinued last year. Airbus has partnered with CFM International, a joint venture between GE and Safran Aircraft Engines, on the hugely significant hydrogen demonstration program.

The plane manufacturer will use an “A380 flying testbed fitted with liquid hydrogen tanks” to trial propulsion technology for its future hydrogen aircraft.
According to Llewellyn, the aim of the “flight laboratory” is to learn more about hydrogen propulsion systems in real ground and flight conditions, thus enabling Airbus to press on with its plans for a zero-emission aircraft in just over a decade.
Test flights are currently estimated to take place in 2026, provided everything goes to plan. The news comes over a year after Airbus unveiled three hydrogen-based concepts under the ZEROe banner.
“This is the most significant step undertaken at Airbus to usher in a new era of hydrogen-powered flight since the unveiling of our ZEROe concepts back in September 2020,” Sabine Klauke, chief technical officer for Airbus, said in a statement.
By leveraging the expertise of American and European engine manufacturers to make progress on hydrogen combustion technology, this international partnership sends a clear message that our industry is committed to making zero-emission flight a reality.”
Aviation generates 2.8% of global CO2 emissions the global fuel consumption by commercial airlines reached 95 billion gallons in 2019.
The global aviation industry has pledged to slash emissions to half their 2005 levels by 2050.
A number of air carriers are moving towards sustainable aviation fuel (SAF) in order to help reduce the environmental impact of flying, with British Airways‘ parent company IAG revealing plans to power 10% of its flights with SAF by 2030 and United Airlines completing its first successful flight by 100% sustainable fuel last year.
However, Airbus is hedging its bets on hydrogen, which can potentially reduce aviation’s carbon emissions by up to 50%, according to the airplane manufacturer.

Source: https://edition.cnn.com/

Love Hormone Oxytocin Delivered in a Nasal Spray Fights Obesity

Scientists suspect that one element of the obesity epidemic is that the brains of obese people respond differently to images of delicious, calorically dense foods. Obese individuals’ brains seem to light up at the sight of donuts, pizza, and other calorie bombs, even when they’re no longer hungrySome studies have suggested that this heightened activity might predispose people to overeating. Today, nearly 40 percent of American adults are obese, and obesity is predicted to become the leading cause of cancer among Americans, replacing smoking, within five or 10 years. (It’s still not clear yet which comes first—the obesity or the overactive brain activity.)

Part of the reason for the obesity epidemic is that people eat when they’re not hungry,” says Elizabeth Lawson, an associate professor of medicine at Harvard Medical School and a neuroendocrinologist at Massachusetts General Hospital.

A remedy for this over-activation in the brain might come from an unexpected source: oxytocin, the brain chemical often associated with love and social relationships. Oxytocin is sometimes called the “love hormone” because it’s released during sex, childbirth, and breastfeeding. People who are in the early stages of falling in love have higher levels of oxytocin than normal. The drug ecstasy also increases concentrations of the hormone in the blood. Oxytocin has a variety of other surprising functions. A form of the chemical, Pitocin, induces labor, and another form might help treat stomach pain. Early studies have suggested that the hormone might boost social skills among kids with autism. Now Lawson and other researchers are investigating whether oxytocin might also prevent overeating.

Lawson and her colleagues recently showed images of high-calorie foods to 10 overweight and obese men. She found that the regions of the brain involved in eating for pleasure lit up when the men viewed the images. A dose of oxytocin, compared with a placebo, weakened the activity in those regions, and it also reduced the activity between them. Meanwhile, oxytocin didn’t have that effect when the men viewed images of low-calorie foods or household items. Lawson’s colleagues presented the research, which has not yet been published in a peer-reviewed journal, last month at Endo 2019, the Endocrine Society’s annual meeting.

One of the key ways oxytocin works in limiting the amount of food that we eat is that it speeds up the satiety process, or reaching fullness,” says Pawel Olszewski, an associate professor of physiology at the University of Waikato, in New Zealand, who was not involved with Lawson’s study. “Then, oxytocin works through brain areas that are associated with the pleasure of eating, and it decreases our eating for pleasure.”

Source: https://www.thebrighterside.news/

Sanofi Covid Vaccine Shows 100% Efficacy Against Severe Disease

Sanofi and GlaxoSmithKline Plc, the pharma giants that stumbled in the race to develop a Covid-19 shot, found their vaccine protects against severe disease and hospitalization and will submit data to regulators for clearance. The duo said data from a trial shows that two doses of the Sanofi-GSK vaccine have 100% efficacy against severe Covid-19 and hospitalizations and 58% efficacy against any symptomatic Covid-19 disease. They said the safety of the vaccine was favorable too.

Meanwhile, a separate study showed it could increase neutralizing antibody levels 18- to 30-fold when used as a booster in people who’ve received other types of shots first. Shares in Sanofi rose as much as 1.7% in Paris on Wednesday, while GSK rose as much as 1.6% in London.

The data should allow the vaccine giants to finally play a big role in the pandemic fight, after repeated development delays allowed nimbler competitors like Moderna Inc. and the BioNTech SEPfizer Inc. alliance to rush ahead with messenger-RNA products. Those companies, along with AstraZeneca Plc and Johnson & Johnson, steered highly effective products rapidly to market, helping save millions of lives and earning tens of billions of dollars in revenue.

While the Sanofi-Glaxo product appears to be on par with the mRNA shots when it comes to preventing severe disease and hospitalization, the efficacy may trail somewhat in terms of symptomatic disease, Sam Fazeli, an analyst at Bloomberg Intelligence, said in a note.

The vaccine will find a place among people reticent to take mRNA vaccines and in lower-income countries, making for a modest commercial impact on Sanofi and Glaxo,” Fazeli said.

Source: https://www.bloomberg.com/

Turn Stem Cells Into Bone Using Nothing More Than Sound

Researchers have used sound waves to turn stem cells into bone cells, in a tissue engineering advance that could one day help patients regrow bone lost to cancer or degenerative disease. The innovative stem cell treatment from RMIT researchers in Australia offers a smart way forward for overcoming some of the field’s biggest challenges, through the precision power of high-frequency sound waves.

Tissue engineering is an emerging field that aims to rebuild bone and muscle by harnessing the human body’s natural ability to heal itself. A key challenge in regrowing bone is the need for large amounts of bone cells that will thrive and flourish once implanted in the target area. To date, experimental processes to change adult stem cells into bone cells have used complicated and expensive equipment and have struggled with mass production, making widespread clinical application unrealistic. Additionally, the few clinical trials attempting to regrow bone have largely used stem cells extracted from a patient’s bone marrow – a highly painful procedure.

In a new study published in the journal Small, the RMIT research team showed stem cells treated with high-frequency sound waves turned into bone cells quickly and efficiently. Importantly, the treatment was effective on multiple types of cells including fat-derived stem cells, which are far less painful to extract from a patient. Co-lead researcher Dr Amy Gelmi said the new approach was faster and simpler than other methods.

A magnified image showing adult stem cells in the process of turning into bone cells after treatment with high-frequency sound waves. Green colouring shows the presence of collagen, which the cells produce as they become bone cells

The sound waves cut the treatment time usually required to get stem cells to begin to turn into bone cells by several days,” said Gelmi, a Vice-Chancellor’s Research Fellow at RMIT. “This method also doesn’t require any special ‘bone-inducing’ drugs and it’s very easy to apply to the stem cells. “Our study found this new approach has strong potential to be used for treating the stem cells, before we either coat them onto an implant or inject them directly into the body for tissue engineering.”

The high-frequency sound waves used in the stem cell treatment were generated on a low-cost microchip device developed by RMIT. Co-lead researcher Distinguished Professor Leslie Yeo and his team have spent over a decade researching the interaction of sound waves at frequencies above 10 MHz with different materials. The sound wave-generating device they developed can be used to precisely manipulate cells, fluids or materials. “We can use the sound waves to apply just the right amount of pressure in the right places to the stem cells, to trigger the change process,” Yeo said. “Our device is cheap and simple to use, so could easily be upscaled for treating large numbers of cells simultaneously – vital for effective tissue engineering.”

Source: https://www.rmit.edu.au/

How to Control Neurons in the Brain

Researchers out of San Diego’s Salk Institute have gotten mice to move their limbs by stimulating brain cells using ultrasound. When mice were engineered to have their brain cells produce a special protein, the researchers found that hitting them with ultrasoundturned on” the cells, causing small, but perceptible, movements in their limbs. The technique, called “sonogenetics,” is the latest in a line of methods that look to stimulate and alter neurons directly, without using drugs.

We’ve spent so much time over the last few decades focusing on pharmacologic therapies,” said Colleen Hanlon, a biologist at Wake Forest not involved with the study. “This paper is another really important piece to this puzzle of developing neural circuit-based therapeutics for disease.”

 Sonogenetics is just one of the ways researchers have begun controlling neurons in the brain, turning them off or on at will. Perhaps the most well-known method is using electrical stimulation. In deep brain stimulation, researchers surgically implant electrodes into specific areas of the brain. When these electrodes fire off at the right time and with the right frequency, they can make tremors disappear, improve memory, and even treat depression.

Taking a step up on the wildness scale, scientists can also activate, or turn off, neurons using light, a technique called optogenetics. Optogenetics works by genetically engineering brain cells to produce light-sensitive proteins, which can be hit with a laser, causing the neuron to fire or not. A similar mechanism is behind sonogenetics, except the protein reacts to ultrasound. Ultrasound is appealing because of its well-understood safety profile and the fact that it is already used to target locations deep within the body. “Ultrasound is safe, noninvasive, and can be easily focused through thin bone and tissue to volumes of a few cubic millimeters,” the researchers wrote in their study, published in Nature Communications.

In optogenetics, by contrast, because skin and bone are opaque, even powerful lights will have a hard time reaching neurons deeper than the outer layer of the brain. Salk neuroscientist Sreekanth Chalasani and his colleagues pioneered sonogenetics several years ago in a tiny worm called a nematode. In the worms, they used an ultrasound-reacting protein called TRP-4. But when they put it into mammalian cells, well … nada. And thus began a six-year quest to find an ultrasound-reactive protein that works in mammals. They found it — a protein called TRPA1. The researchers first tested the protein in mouse neurons in the lab. When those cells reacted to ultrasound by producing electrical signals, they engineered it into living mice. When the TRPA1-producing mice were exposed to ultrasound, electrical signals coursed through their limbs — and a little bit of movement, too.

It’s a very exciting contribution and an important step,” adds Caltech sonogenetics researcher Mikhail Shapiro, who was uninvolved with the work.  “This is one of the papers that’s come out over the last several years that shows that it’s a real possibility that you can use ultrasound to directly modulate the activity of specific neurons.”

Source: https://www.freethink.com/

Cancer Drug Could Patients Stay Disease-free

In 2010, three patients received an experimental form of immunotherapy for leukemia through a clinical trial at the University of Pennsylvania. Two of the patients went into complete remission—and stayed that way.  The treatment, known as CAR T-cell therapy, is now FDA-approved to treat certain blood cancers. It involves engineering a patient’s own white blood cells to attack cancerous cells and then returning them to the body. Since clinical trials and FDA approval, CAR T-cell therapy has already been used to successfully treat and clear certain cancers. However, CAR T-cell therapy doesn’t lead to lasting remissions for every patient, and it can cause serious side effects. A new report offers clues about why the treatment is sometimes remarkably effective.

The two patients who responded well to CAR T-cell therapy in 2010 remained disease free for over a decade. One of the men, a Californian named Doug Olson, is now 75. The other, William Ludwig, died early last year of COVID-19. Researchers were able to detect CAR T-cells lingering in Olson and Ludwig’s bloodstreams long after their cancers disappeared, although the types of immune cells that persisted were slightly different than anticipated, the team reported in Nature.

Two T-cells (red) attack an oral squamous cancer cell (white)—a fight that’s part of the natural immune response. Clinical researchers are developing a new type of therapy that modifies a patient’s T-cells to better attack cancer

Now we can finally say the word ‘cure’ with CAR T-cells,” Carl June, the principal investigator for the University of Pennsylvania trial, told The New York Times.

Olson and Ludwig were among the earliest recipients of CAR T-cell therapy, allowing clinicians a chance to track the patients’ cells and condition over the past decade. “To use the word ‘cure,’ you really need a long time to follow up to make sure people don’t relapse,” says David Maloney, the medical director of cellular immunotherapy at the Immunotherapy Integrated Research Center at the Fred Hutchinson Cancer Research Center in Seattle. “When we get these people out to 10 and 11 years post-treatment, that encourages us to be a little more forceful in saying that perhaps patients are cured in some cases.”

 

Source: https://www.popsci.com/

How to Rebuild Bone Tissue

The rapidly advancing field of  tissue engineering is focused on growing bone  in the lab on materials called scaffolds, then transferring these structures into a person’s body to repair bone damage. Like the bone it mimics, scaffolds need an interconnected network of small and large pores that allow cells and nutrients to spread and help generate new bone tissue.

The McGill team’s promising process works by modifying the internal structure of a material, called , to make it more conducive to regenerating bone tissueGraphene oxide is an ultrathin, extra strong compound that is being used increasingly in electronics, optics, chemistry, energy storage, and biology. One of its  is that when  are placed on it, they tend to transform into bone-generating cells called osteoblasts.

The multidisciplinary group—comprising researchers from McGill‘s Departments of Mining and Materials Engineering, Electrical Engineering, and Dentistry—found that adding an emulsion of oil and water to the graphene oxide, then freezing it at two different temperatures, yielded two different sizes of pores throughout the material.

Professor Marta Cerruti said that when they “seeded” the now-porous scaffolding with stem cells from mouse bone marrow, the cells multiplied and spread inside the network of pores, a promising sign the new approach could eventually be used to regenerate bone tissue in humans.

We showed that the scaffolds are completely biocompatible, that the cells are happy when you put them in there, and that they’re able to penetrate all through the scaffold and colonize the whole scaffold,” she stated.

Source: https://phys.org/

AI Can Control SuperHeated Plasma Inside a Fusion Reactor

DeepMind’s streak of applying its world-class AI to hard science problems continues. In collaboration with the Swiss Plasma Center at EPFL—a university in Lausanne, Switzerland—the UK-based AI firm has now trained a deep reinforcement learning algorithm to control the superheated soup of matter inside a nuclear fusion reactor. The breakthrough, published in the journal Nature, could help physicists better understand how fusion works, and potentially speed up the arrival of an unlimited source of clean energy.

This is one of the most challenging applications of reinforcement learning to a real-world system,” says Martin Riedmiller, a researcher at DeepMind.

In nuclear fusion, the atomic nuclei of hydrogen atoms get forced together to form heavier atoms, like helium. This produces a lot of energy relative to a tiny amount of fuel, making it a very efficient source of power. It is far cleaner and safer than fossil fuels or conventional nuclear power, which is created by fissionforcing nuclei apart. It is also the process that powers stars.

Controlling nuclear fusion on Earth is hard, however. The problem is that atomic nuclei repel each other. Smashing them together inside a reactor can only be done at extremely high temperatures, often reaching hundreds of millions of degreeshotter than the center of the sun. At these temperatures, matter is neither solid, liquid, nor gas. It enters a fourth state, known as plasma: a roiling, superheated soup of particles.

The task is to hold the plasma inside a reactor together long enough to extract energy from it. Inside stars, plasma is held together by gravity. On Earth, researchers use a variety of tricks, including lasers and magnets. In a magnet-based reactor, known as a tokamak, the plasma is trapped inside an electromagnetic cage, forcing it to hold its shape and stopping it from touching the reactor walls, which would cool the plasma and damage the reactor. Controlling the plasma requires constant monitoring and manipulation of the magnetic field. The team trained its reinforcement-learning algorithm to do this inside a simulation. Once it had learned how to control—and change—the shape of the plasma inside a virtual reactor, the researchers gave it control of the magnets in the Variable Configuration Tokamak (TCV), an experimental reactor in Lausanne. They found that the AI was able to control the real reactor without any additional fine-tuning. In total, the AI controlled the plasma for only two seconds—but this is as long as the TCV reactor can run before getting too hot.

Source: https://www.technologyreview.com/

Scientists Have Possibly Cured HIV

An American research team reported that it has possibly cured HIV in a woman for the first time. Building on past successes, as well as failures, in the HIV-cure research field, these scientists used a cutting-edge stem cell transplant method that they expect will expand the pool of people who could receive similar treatment to several dozen annually.

Their patient stepped into a rarified club that includes three men whom scientists have cured, or very likely cured, of HIV. Researchers also know of two women whose own immune systems have, quite extraordinarily, apparently vanquished the virus. Carl Dieffenbach, director of the Division of AIDS at the National Institute of Allergy and Infectious Diseases, one of multiple divisions of the National Institutes of Health that funds the research network behind the new case study, told NBC News that the accumulation of repeated apparent triumphs in curing HIV “continues to provide hope.”

It’s important that there continues to be success along this line,” he said.

In the first case of what was ultimately deemed a successful HIV cure, investigators treated the American Timothy Ray Brown for acute myeloid leukemia, or AML. He received a stem cell transplant from a donor who had a rare genetic abnormality that grants the immune cells that HIV targets natural resistance to the virus. The strategy in Brown’s case, which was first made public in 2008, has since apparently cured HIV in two other people. But it has also failed in a string of others. This therapeutic process is meant to replace an individual’s immune system with another person’s, treating their cancer while also curing their HIV. First, physicians must destroy the original immune system with chemotherapy and sometimes irradiation. The hope is that this also destroys as many immune cells as possible that still quietly harbor HIV despite effective antiretroviral treatment. Then, provided the transplanted HIV-resistant stem cells engraft properly, new viral copies that might emerge from any remaining infected cells will be unable to infect any other immune cells.

Source: https://www.nbcnews.com/

New Vaccine to Ward off Cancer Permanently

A Merseyside man has become the first in the UK to receive a ‘vaccine’ that is hoped will stop his recurring head and neck cancer from returning, in a clinical research trial which may help bring further ground-breaking treatments for the disease. The clinical research team at The Clatterbridge Cancer Centre has given patient Graham Booth an injection of a therapy tailor-made to his personal DNA and designed to help his own immune system ward off cancer permanently.

Graham first had head and neck cancer in 2011 and it then returned four times, each time meaning he needed gruelling treatment, including facial surgery, reconstruction and radiotherapy. He is now hoping this new treatment – part of the Transgene clinical research study – will mean it does not come back. Dad-of-five Graham, 54, will have a year-long course of immunotherapy injections in a bid to keep him cancer-free, part of a research project designed to reduce deaths and recurrence in head and neck cancers, including of the throat, neck, mouth and tongue. Graham, of West Kirkby, said he was not worried about being the first person in the UK to receive this pioneering treatment and that it “opened new doorways” which gave him hope that the cancer would not come back.

When I had my first cancer treatment in 2011, I was under the impression that the cancer would not return. My biggest fear was realised in 2016 when it came back and then in 2019 and then two cases in 2021,” explains Graham. “Last year I had the feeling of the cancer progressing and there were not a lot of options left. This clinical trial has opened new doorways and gives me a bit of hope that my cancer won’t come back.”

And this could open doorways for other people. I’m hopefully looking at a brighter future. A bit of hope that it never returns again – which would mean the world to my family and everyone around me.”

Source: https://www.cityam.com/

Engineered Antibody Helps Block SARS-CoV-2 Transmission

Researchers at UC Davis Health have engineered a novel antibody, FuG1, that can directly interfere with the cell-to-cell transmission ability of SARS-CoV-2, the virus that causes COVID-19FuG1 targets the enzyme furin, which the  uses for its efficient chain of infections in human cells. The approach could be added to existing SARS-CoV-2 antibody cocktails for greater function against emerging variants.

We developed an approach that interferes with the transmission chain of SARS-CoV-2. The COVID-19 vaccines are a great lifesaver in reducing hospitalizations and severe illness. Yet, we are now learning that they may not be as effective in controlling the transmissibility of the virus,” said Jogender Tushir-Singh, senior author of the study.

Tushir-Singh is an associate professor in the Department of Medical Microbiology and Immunology and a member of the UC Davis Comprehensive Cancer Center therapeutics program. His research uses rational protein engineering to generate multi-targeting  as cancer therapeutics. When the pandemic hit, he began thinking of similar strategies that might work to limit the spread of the coronavirus.

Furin, found throughout the human body, is involved in various functions of cells. It is a type of enzyme, a protease, that can break down proteins into smaller components. It does this by cutting, or cleaving, the polybasic peptide bonds within the proteins. In cleaving these bonds, furin often acts as a switch, changing an inactive protein into an active one. For example, furin cleaves the inactive proparathyroid hormone into parathyroid hormone, which regulates calcium levels in the blood. It can also cleave and activate viruses that enter . Pathogens that utilize furin in their  include HIV, influenza, dengue fever and SARS-CoV-2.

When SARS-CoV-2 infects a human cell, it is in its active state, having already “cleaved” its , a key protein that binds to ACE2 receptors to gain entry. But when the virus is being synthesized within the host cell—when it is replicating—the  is in an inactive state. The virus needs to use the host cell’s furin to cut the spike protein into two parts, S1 and S2, which makes the spike active on the viral particles for efficient transmissibility upon release.

The virus exploits the host’s furin to transmit from one cell to another and another. This added activation step is what makes the virus highly transmissible,” said Tanmoy Mondal, the first author for the study and a post-doctoral researcher at UC Davis Health. But inhibiting furin to limit the SARS-CoV-2 chain of infection cycle is not a straightforward mechanism. “Furin is found throughout the  and is needed for the normal functioning of many biological processes. Stopping furin from doing its job causes high body toxicity. That is why the standard furin inhibitor drugs are not a clinically feasible option,” Tushir-Singh said.

Instead, he and his team engineered a conjugated antibody targeting the SARS-CoV-2 spike protein. The design is similar to therapeutic monoclonal (IgG) antibodies but includes an added featureFc-extended peptide—that specifically interferes with the host furin. The researchers named this approach FuG1.

A study evaluating the efficacy of the engineered antibody was published in Microbiology Spectrum.

Source: https://phys.org/

 

How to Bioprint Muscles

Researchers at Harvard Medical School and Sichuan University have developed a novel means of 3D bioprinting live human muscle-tendon tissues. As opposed to normal extrusion bioprinting, which involves depositing cells along X and Y axes, the team’s ‘cryo-bioprinting’ process sees them frozen and stacked vertically, in a way that allows for the creation of freestanding, mixed-cell tissues. According to the scientists, their technique also yields tissues that are more robust and versatile than those produced via conventional bioprinting, particularly when it comes to those anisotropic in nature, thus they say it could now find regenerative medicine, drug discovery, or personalized therapeutic applications.

To overcome the tissue-stacking issues, the researchers have turned to ‘ice-templating,’ a freezing process that causes microchannels to form within cell-laden hydrogel-based structures once they thaw. Naturally, doing so would ordinarily damage the viability of such cells, so to prevent this, the team loaded theirs with the cryoprotective agents (CPAs) melezitose and dimethyl sulfoxide.

Once frozen, the researchers then used ultraviolet (UV) light to vertically cross-link this novel bio-ink, and extrude it into tissues composed of high-resolution, honeycomb-like microchannel networks, capable of supporting various different types of cell, whether they be skeletal muscle myoblasts or human umbilical vein endothelial cells.

Our results indicate that [our] bio-ink, consisting of gelatin methacryloyl and CPAs, could be effectively used in vertical 3D cryo-bioprinting to enable cell encapsulation at high viability,” explained the team in their paper. “With the help of the interconnected, anisotropic, gradient microchannels formed by directional freezing during the process, the desired cellular alignments were also realized.

Given that 3D bioprinting is an emerging technology, it’s hardly surprising that its format is continually subject to change, with researchers constantly bringing innovative new ideas to the field. Just last month, scientists at the UK’s University of Birmingham and University of Huddersfield, revealed that they had developed a novel skin 3D bioprinting technique that enables the treatment of chronic wounds.

Elsewhere, on a more commercial level, Inventia Life Science raised $25 million towards the development of its RASTRUM 3D bioprinting technology in December 2021. In effect, the firm’s approach is designed to enable the layering of cell-loaded droplets onto one another at pace, in a way that allows them to join on contact and doesn’t affect their overall viability.

Looking even further back, researchers at Imperial College London have also experimented with cell-freezing as a means of bioprinting viable human implants.

Source: https://3dprintingindustry.com/

Could Sound Replace Pacemakers and Insulin Pumps?

Imagine a future in which crippling epileptic seizures, faltering hearts and diabetes could all be treated not with scalpels, stitches and syringes, but with sound. Though it may seem the stuff of science fiction, a new study shows that this has solid real-world potential.

Sonogenetics – the use of ultrasound to non-invasively manipulate neurons and other cells – is a nascent field of study that remains obscure amongst non-specialists, but if it proves successful it could herald a new era in medicine.

In the new study published in Nature Communications, researchers from the Salk Institute for Biological Studies in California, US, describe a significant leap forward for the field, documenting their success in engineering mammalian cells to be activated using ultrasound. The team say their method, which they used to activate human cells in a dish and brain cells inside living mice, paves the way toward non-invasive versions of deep brain stimulation, pacemakers and insulin pumps.

Going wireless is the future for just about everything,” says senior author Dr Sreekanth Chalasani, an associate professor in Salk’s Molecular Neurobiology Laboratory. “We already know that ultrasound is safe, and that it can go through bone, muscle and other tissues, making it the ultimate tool for manipulating cells deep in the body.

Chalasani is the mastermind who first established the field of sonogenetics a decade ago. He discovered that ultrasound sound waves beyond the range of human hearing — can be harnessed to control cells. Since sound is a form of mechanical energy, he surmised that if brain cells could be made mechanically sensitive, then they could be modified with ultrasound.

In 2015 his research group provided the first successful demonstration of the theory, adding a protein to cells of a roundworm, Caenorhabditis elegans, that made them sensitive to low-frequency ultrasound and thus enabled them to be activated at the behest of researchers.

Chalasani and his colleagues set out to search for a new protein that would work in mammals. Although a few proteins were already known to be ultrasound sensitive, no existing candidates were sensitive at the clinically safe frequency of 7MHz – so this was where the team set their sights. To test whether TRPA1 protein could activate cell types of clinical interest in response to ultrasound, the team used a gene therapy approach to add the genes for human TRPA1 to a specific group of neurons in the brains of living mice. When they then administered ultrasound to the mice, only the neurons with the TRPA1 genes were activated.

Clinicians treating conditions including Parkinson’s disease and epilepsy currently use deep brain stimulation, which involves surgically implanting electrodes in the brain, to activate certain subsets of neurons. Chalasani says that sonogenetics could one day replace this approach—the next step would be developing a gene therapy delivery method that can cross the blood-brain barrier, something that is already being studied. Perhaps sooner, he says, sonogenetics could be used to activate cells in the heart, as a kind of pacemaker that requires no implantation.

Source: https://www.salk.edu/
AND
https://cosmosmagazine.com/

Synthetic Tooth Enamel is Stronger than Actual Human Teeth

An international team of researchers developed the synthetic enamel to outperform the real thing, according to a paper of their findings published in the journal Science. If all goes well, the findings could finally provide a compelling solution to decaying teeth.

To develop it, the team needed to replicate the interconnected nanowires of calcium in natural teeth, according to a press release from the American Association for the Advancement of Science. They were able to create a nanocomposite system that effectively imitated the toughness of actual enamel while maintaining its viscoelasticity.

They then tested the material by coating it to different shaped objects including human teeth. The team found it “exhibited high stiffness, hardness, strength, viscoelasticity, and toughness, exceeding the properties of enamel and previously manufactured bulk enamel-inspired materials,” according to the study.

It’s still a ways away from becoming commercially viable yet, but the team now plans to test the synthetic enamel to ensure it can, you know, survive in our disgusting mouths for an extended period of time. If things go well, the material could even be used on things other than teeth, such as pacemakers or damaged bones.

It’s undoubtedly an interesting and exciting bit of news considering that replicating enamel has been a longtime goal of dental researchers. Let’s just hope it can come out soon so those of us with sensitive teeth can finally stop suffering every time we eat an ice cream cone.

https://futurism.com/

Gene Therapy for Heart Arrhythmias

One possible treatment option for cardiac arrhythmias are approaches that enhance electrical excitability and action potential conduction in the heart. One way this could be done is by stably overexpressing mammalian voltage-gated sodium channels. However, the channels’ large size precludes delivery via viral vectors. Now, researchers have demonstrated a gene therapy that helps heart muscle cells electrically activate in live mice. The first demonstration of its kind, the approach features engineered bacterial genes that code for sodium ion channels and could lead to therapies to treat a wide variety of electrical heart diseases and disorders.

This detailed image of a single mouse heart muscle cell shows its cell membrane expressing the new sodium ion channel genes (magenta) after researchers delivered the therapy through an injection into the mouse veins

We were able to improve how well heart muscle cells can initiate and spread electrical activity, which is hard to accomplish with drugs or other tools,” said Nenad Bursac, PhD, professor of biomedical engineering at Duke University. “The method we used to deliver genes in heart muscle cells of mice has been previously shown to persist for a long time, which means it could effectively help hearts that struggle to beat as regularly as they should.”

The platform“utilizes small-size, codon-optimized engineered prokaryotic sodium channels (BacNav) driven by muscle-specific promoters that significantly enhance excitability and conduction in rat and human cardiomyocytes in vitro and adult cardiac tissues from multiple species in silico.”

Several years ago, members of the lab mutated bacterial genes so that the channels they encode could become active in human cells. In this new work, Tianyu Wu, doctoral student, further optimized the content of the genes and combined them with a promoter that exclusively restricts channel production to heart muscle cells.

We worked to find where the sodium ion channels were actually formed, and, as we hoped, we found that they only went into the working muscle cells of the heart within the atria and ventricles,” Wu said. “We also found that they did not end up in the heart cells that originate the heartbeat, which we also wanted to avoid.”

As a proof of concept, tests on cells suggested that the treatment improves electrical excitability enough to prevent human abnormalities like arrhythmias. More specifically, the work showed that “the expression of BacNav significantly reduces occurrence of conduction block and reentrant arrhythmias in fibrotic cardiac cultures.

The work is published in Nature Communications, in the paper, Engineered bacterial voltage-gated sodium channel platform for cardiac gene therapy.”

Source: https://pratt.duke.edu/
AND
https://www.genengnews.com/

CRISPR Gene Editing Tackles Rare Diseases

Paddy Doherty remembers his father as a proud, hard-working family man who stayed physically fit for most of his life. A career in construction and various home improvement projects kept him active until his 60s, when Doherty first caught glimpses of a worrying decline in his dad’s health.

“I noticed him getting breathless on walks. He’d stop for a while and maybe make an excuse for stopping, saying, ‘Oh, isn’t that a lovely tree’ or whatever,” said Doherty, who lives in Ireland. Doctors chalked it up to angina, or chest pain caused by reduced blood flow to the heart, symptomatic of an underlying heart problem.

But two years later, when Doherty’s father died of a sudden heart attack, the true cause was discovered: a rare disease called transthyretin (ATTR) amyloidosis, characterized by a misfolded protein that builds up in the heart and interferes with normal function.

Patients left untreated with this type of amyloidosis develop heart failure, low blood pressure, horrible bowel disturbance, and eventually become incontinent of urine and feces,” said Julian Gillmore, nephrologist and head of the National Amyloidosis Centre at University College London. “It’s a truly awful, gradually progressive disease that is ultimately fatal.”

In February last year, Doherty – now about age 65 – began to experience the same early breathing symptoms his father had had. As an avid hiker who has trekked the Himalayas, he was surprised to find himself getting winded on local hill walks. Testing confirmed that Doherty had a hereditary form of ATTR amyloidosis.

But there was one bit of good news: If Doherty had been diagnosed even a year earlier, no treatment options would have been available to him – an all-too-common situation for over 30 million U.S. patients with rare diseases. But Gillmore, Doherty’s doctor, offered him the chance to participate in an early stage clinical trial using CRISPR, a groundbreaking genome editing therapy with the potential to cure his ATTR amyloidosis in a single dose.

Source: https://www.unionleader.com/

CRISPR Used to Activate Genes in Human Immune Cells, Not just Edit them

 

Maqnetic Seed to Kill Cancer

One promising possibility for next-gen cancer treatments involves infiltrating tumors with specially-designed particles and heating them up to destroy the cancerous tissue, and new research from the University of College London (UCL) takes this technology into new terrain. The team’s solutions leverages MRI scanning to steer magnetic seeds to the site with a high level of precision, offering new hopes of advanced treatments for hard-to-reach cancers. The technique at the heart of this research is known as magnetic hyperthermia, and it is a technology that has shown some exciting potential in recent years. The idea is to use carefully placed magnetic particles to heat up targeted cancer cells without harming surrounding healthy tissue, and is currently only used in humans to treat very aggressive forms of brain cancer. We’ve seen scientists make promising inroads when it comes to making this technology more effective, such as combining it with chemotherapy to enhance the efficacy of both approaches, heating the particles up with lasers to selectively take out the cancer cells, or delivering clusters of particles intravenously to have them passively accumulate in the tumor.

The UCL team sought to improve on a couple of drawbacks of current techniques, such as the limited ability to manipulate the particles once they are in the body, and a reliance on multiple particles to get the job done. The researchers call their solution “minimally invasive image-guided ablation” (MINIMA), and it instead uses a single ferromagnetic thermoseed that can be steered to the tumor site with an MRI scanner and promptly heated up to deal the damage.

Magnetic seeds can be steered into cancer tissue to kill it with heat

MINIMA is a new MRI-guided therapy that has the potential to avoid traditional side effects by precisely treating the tumor without harming healthy tissues,” said senior author Professor Mark Lythgoe. “Because the heating seed is magnetic, the magnetic fields in the MRI scanner can be used to remotely steer the seed through tissue to the tumor. Once at the tumor, the seed can then be heated, destroying the cancer cells, while causing limited damage to surrounding healthy tissues.”

The 2-mm seeds are made from a metal alloy, are spherical in shape, and are implanted into tissue before being drawn towards the tumor site. This was demonstrated in mouse models where, while being tracked to within 0.3-mm accuracy, the seeds could be navigated to the cancer and then heated up to take out the tumor.

We are now able to image and navigate a thermoseed in real-time through the brain using an MRI scanner,” said Lythgoe. “As MRI is already used to detect the boundaries of cancers, the seed can be moved precisely to ensure it does not stray into surrounding healthy tissue. As the seed is guided through the tissue it can be heated to destroy the cancer. This combines therapy and diagnosis into a single device, creating a completely new class of imaging therapy.”

The scientists imagine the MINIMA technology finding use in tackling difficult-to-reach and aggressive brain cancers, along with other cancers that call for minimally invasive therapies, such as prostate. The even imagine fashioning the seeds into tiny tools that can be deployed for even more powerful cancer-fighting effects. “In the longer term, we will change the shape of the seed to act as a tiny cutting scalpel that could be guided through tissue, which would allow surgeons to perform remotely controlled operations, revolutionizing non-invasive surgery,” said Lythgoe.

The research was published in the journal Advanced Science

Source: University of College London

Blood iron levels could be key to slowing ageing

Genes linked to ageing that could help explain why some people age at different rates to others have been identified by scientists. The international study using genetic data from more than a million people suggests that maintaining healthy levels of iron in the blood could be a key to ageing better and living longerThe findings could accelerate the development of drugs to reduce age-related diseases, extend healthy years of life and increase the chances of living to old age free of disease, the researchers say.

Scientists from the University of Edinburgh and the Max Planck Institute for Biology of Ageing in Germany focused on three measures linked to biological ageinglifespan, years of life lived free of disease (healthspan), and being extremely long–lived (longevity). Biological ageing – the rate at which our bodies decline over timevaries between people and drives the world’s most fatal diseases, including heart disease, dementia and cancers.

The researchers pooled information from three public datasets to enable an analysis in unprecedented detail. The combined dataset was equivalent to studying 1.75 million lifespans or more than 60,000 extremely long-lived people. The team pinpointed ten regions of the genome linked to long lifespan, healthspan and longevity. They also found that gene sets linked to iron were overrepresented in their analysis of all three measures of ageing.

Source: https://www.thebrighterside.news/

Mercedes-Benz Unveils 1,000 km-per-Charge Battery

Mercedes-Benz (DAIGn.DE) on Monday took the wraps off its battery-powered VISION EQXX prototype which it says will have a range of more than 1,000 kilometres (km) per charge, taking a big stride in its electric vehicle (EV) ambitions.

Daimler, soon to be rebranded Mercedes-Benz, announced plans in 2021 to invest more than 40 billion euros ($45 billion) by 2030 to take on Tesla (TSLA.O) in an all-electric car market, including building eight battery plants. From 2025, all its new vehicle platforms will only make EVs, it has said.

The VISION EQXX, dubbed the most-efficient Mercedes-Benz ever built, will have energy consumption of less than 10 kilowatt hours (kWh) per 100 km, said DaimlerTesla‘s (TSLA.O) Model S 60 currently consumes 18.1 kWh over the same distancedata on its website shows.

The Mercedes-Benz VISION EQXX is how we imagine the future of electric cars,” Mercedes-Benz CEO Ola Kaellenius said.

Daimler will test-drive the prototype before the middle of the year on various types of terrain, Chief Technology Officer (CTO) Markus Schaefer told journalists.

Some components of the prototype would be available in Mercedes-Benz vehicles within two to three years, Schaefer said. However, the CTO declined to specify when the 1,000 km-range battery would be market-readyWhen such a vehicle would go on sale is a “market decision” to be determined once the carmaker had established how much range customers expected and what they would be willing to pay, he said.

How to Regrow Amputated Limbs

Scientists in the US have successfully regrown the lost legs of a group of frogs in a significant advance for regenerative medicine. The research is an important step to one day helping people who have experienced the loss of a limb and opens the door to the potential use of a similar treatment on humans in the future.

The African clawed frog used in the research does not have the ability to naturally regenerate a limb and was treated with a five-drug cocktail over 24 hours. That brief treatment set in motion an 18-month period of regrowth that restored a functional leg.

It’s exciting to see that the drugs we selected were helping to create an almost complete limb,” said Nirosha Murugan, research affiliate at the Allen Discovery Centre at Tufts and first author of the paper outlining the experiment. “The fact that it required only a brief exposure to the drugs to set in motion a months-long regeneration process suggests that frogs and perhaps other animals may have dormant regenerative capabilities that can be triggered into action”.

The researchers used a group of 115 adult African clawed frogs. They amputated a limb of each frog, then split them up into three groups; one group received the full treatment, one group received no treatment to act as a control and one group received partial treatment. Scientists triggered the regenerative process in the frogs by enclosing the wound for 24 hours in a silicone cap, which they call a BioDome, containing a silk protein gel loaded with the five-drug cocktail. The drugs each had a different purpose, including tamping down inflammation and encouraging the new growth of nerve fibres, blood vessels, and muscle. The bioreactor helped to stop the natural tendency to close off the stump, and instead encourage the regenerative process.

Source: https://www.euronews.com/

The First Small Modular Nuclear Reactor is Chinese

China is now home to the world’s first small modular nuclear reactor. The Huaneng Group Co.’s 200-megawatt unit 1 reactor at Shidao Bay provides power to the grid in Shandong province. The reactor can use nuclear energy for various functions including power generation. It can also be used in the mining sector, industrial parks and for high-end consumption industries. The plant uses helium instead of water to produce power. Its fourth-generation reactor shuts down passively in case of any problem. The small module reactors or SMRs, at 200 megawatts are nearly one-fifth the size of Hualong One, which happens to be China’s first homegrown reactor design.

SMRs should be less costly to build and operate, faster to implement and have shorter shutdown times during refuelling than traditional nuclear plants,” Jefferies analyst Bolor Enkhbaatar said.

The application of SMRs has the ability to drastically cut down the consumption of fossil fuel energy in China. This can further help in promoting energy conservation and carbon emission reduction.

A report by Bloomberg reveals that no country in the world is spending on a nuclear plant as much as China. The country is expected to invest $440 billion into new plants in the coming 10 years. China has reportedly built 51 nuclear power units with 19 under construction. It currently has the world’s third-largest park of nuclear reactors after the US and France and has invested in developing the nuclear energy sector.

Source: https://www.wionews.com/

Robot Performs much Better than Humans at Surgery

For years, the world of medicine has been steadily advancing the art of robot-assisted procedures, enabling doctors to enhance their technique inside the operating theatre. Now US researchers say a robot has successfully performed keyhole surgery on pigs all on its own without the guiding hand of a human. Furthermore, they add, the robot surgeon produced “significantly better” results than humans.

Smart Tissue Autonomous Robot (Star) carried out laparoscopic surgery to connect two ends of an intestine in four pigs. The robot excelled at the procedure, which requires a high level of precision and repetitive movements

Axel Krieger, of Johns Hopkins University, said it marked the first time a robot had performed laparoscopic surgery without human help. “Our findings show that we can automate one of the most intricate and delicate tasks in surgery: the reconnection of two ends of an intestine,” he said. “The Star performed the procedure in four animals and it produced significantly better results than humans performing the same procedure.”

Connecting two ends of an intestine is a challenging procedure in gastrointestinal surgery, requiring a surgeon to apply stitches – or sutures – with high accuracy and consistency. Even a slight hand tremor or misplaced stitch can result in a leak that could result in a patient suffering fatal complications. Krieger, an assistant professor of mechanical engineering at Johns Hopkins, helped create the robot, a vision-guided system designed specifically to suture soft tissue. It improves a 2016 model that repaired a pig’s intestines, but required a large incision to access the intestine and more guidance from humans.
Experts say new features allow for improved surgical precision, including specialised suturing tools and imaging systems that provide more accurate visualisations of the surgical field.
Source: https://www.theguardian.com/

Researchers Build AI That Builds AI

Artificial intelligence is largely a numbers game. When deep neural networks, a form of AI that learns to discern patterns in data, began surpassing traditional algorithms 10 years ago, it was because we finally had enough data and processing power to make full use of them.

Today’s neural networks are even hungrier for data and power. Training them requires carefully tuning the values of millions or even billions of parameters that characterize these networks, representing the strengths of the connections between artificial neurons. The goal is to find nearly ideal values for them, a process known as optimization, but training the networks to reach this point isn’t easy.

Training could take days, weeks or even months,” said Petar Veličković, a staff research scientist at DeepMind in London.

That may soon change. Boris Knyazev of the University of Guelph in Ontario and his colleagues have designed and trained a “hypernetwork” — a kind of overlord of other neural networks — that could speed up the training process. Given a new, untrained deep neural network designed for some task, the hypernetwork predicts the parameters for the new network in fractions of a second, and in theory could make training unnecessary. Because the hypernetwork learns the extremely complex patterns in the designs of deep neural networks, the work may also have deeper theoretical implications.

For now, the hypernetwork performs surprisingly well in certain settings, but there’s still room for it to grow — which is only natural given the magnitude of the problem. If they can solve it, “this will be pretty impactful across the board for machine learning,” said Veličković.

Source: https://www.quantamagazine.org

Pfizer-BioNTech begin Omicron vaccine trial

Pfizer and BioNTech have begun enrollment for a clinical trial to test the safety and immune response of their Omicron-specific Covid-19 vaccine in adults aged up to 55, the companies announced in a statement. The pharmaceutical giant could be ready to file for regulatory approval of the shot by March.

The company’s head of vaccine research Kathrin Jansen underscored that current data showed that boosters against the original Covid strain continued to protect against severe outcomes with Omicron. Still she recognizes the need to be prepared in the event this protection wanes over time and to potentially help address Omicron and new variants in the future.”

This study is part of our science-based approach to develop a variant-based vaccine that achieves a similar level of protection against Omicron as it did with earlier variants but longer duration of protection.”

The trial will involve 1,420 people aged 18-55. It did not include people older than 55 because the goal of the study was to examine the immune response of participants dosed, rather than estimate vaccine efficacy. The trial is taking place across the United States and South Africa, and the first participant was dosed in North Carolina. The volunteers are split into three groups. The first involves people who previously received two doses of the current Pfizer-BioNTech vaccine 90-180 days prior to enrollment, and will receive one or two doses of the Omicron vaccine. The second will be people who got three doses of the current vaccine 90-180 days prior to the study and will receive either another dose of the original shot or an Omicron-specific vaccine. The third and final group are people who have never previously received a Covid vaccine, and will receive three doses of the Omicron-specific vaccine.

The Pfizer-BioNTech vaccine was the first Covid shot to be authorized in the West, in December 2020.

Source: https://www.france24.com/

Cognitive Deficits Months After Mild COVID

A novel study led by researchers from the University of Oxford has investigated the lingering cognitive effects of mild COVID-19 in the months following infection. The research revealed minor deficits in attention and memory can be seen for up to six months following a mild infection. It is becoming increasingly clear that a severe case of COVID-19 can result in lasting impacts to the brain. Alongside these acute impacts on the brain, there are persistent cognitive deficits being reported by long COVID patients that last months past an initial infection.

This new study, published in the journal Brain Communications, set out to investigate the other end of the disease spectrum. Here, the focus was on cognitive impacts in asymptomatic to moderate COVID-19 patients who do not report symptoms of long COVID.

More than 150 subjects were recruited for the study, with around 60 reporting a PCR-confirmed case of mild COVID-19 up to nine months prior. The cohort completed 12 different online tests designed to measure a range of cognitive functions, from sustained attention and semantic reasoning to mental rotation and spatial–visual attention.

Even a mild case of COVID-19 can lead to long-term neurological problems

“What is surprising is that although our COVID-19 survivors did not feel any more symptomatic at the time of testing, they showed degraded attention and memory,” said Zhao. “Our findings reveal that people can experience some chronic cognitive consequences for months.”

It is unclear exactly what could be causing these specific impairments so many months after an initial infection. The researchers hypothesize the virus may be causing a variety of immunological and microvascular changes in the brain. But the good news is, as study co-author Masud Husain explained, these potential cognitive impairments seem to disappear between six and nine months after initial infection.

We still do not understand the mechanisms that cause these cognitive deficits, but it is very encouraging to see that these attention and memory return largely to normal in most people we tested by six to nine months after infection, who demonstrated good recovery over time,” Husain said. “Reassuringly, COVID-19 survivors performed well in most abilities tested, including working memory, executive function, planning and mental rotation,” the authors write in the new study. “However, they displayed significantly worse episodic memory (up to six months post-infection) and greater decline in vigilance with time on task (for up to nine months).”

The vigilance task is used to evaluate how quickly a person is fatigued during a cognitive exercise demanding consistent attention. Compared to a control group the COVID patients displayed rapid declines in accuracy on the task after about four minutes of concentration. Sijia Zhao, an author on the new study from the University of Oxford, said it was surprising to see these minor cognitive deficits in the recovered COVID-19 subjects because none of the cohort were subjectively reporting any neurological problem.

The full paper, ‘Rapid vigilance and episodic memory decrements in COVID-19 survivors‘, can be read in Brain Communications

Source: https://www.ox.ac.uk/

How to Reverse Muscle Loss Due to Aging

An international team led by uOttawa Faculty of Medicine researchers have published findings that could contribute to future therapeutics for muscle degeneration due to old age, and diseases such as cancer and muscular dystrophyIn a study appearing in the Journal of Cell Biology, which publishes peer-reviewed research on cellular structure and function, the authors said their work demonstrates the importance of the enzyme GCN5 in maintaining the expression of key structural proteins in skeletal muscle. Those are the muscles attached to bone that breathing, posture and locomotion all rely on.

We found that if you delete GCN5 expression from muscle it will no longer be able to handle extreme physical stress,” says Dr. Keir Menzies, a molecular biologist at the Faculty of Medicine’s Biochemistry, Microbiology and Immunology department and cross-appointed as an associate professor at the Interdisciplinary School of Health Sciences.

Over the span of roughly five years, the uOttawa-led international collaboration painstakingly experimented with a muscle-specific mouse knockout” of GCN5, a well-studied enzyme which regulates multiple cellular processes such as metabolism and inflammation. Through a series of manipulations, scientists produce lab mice in which specific genes are disrupted, or knocked out, to unveil animal models of human disease and better understand how genes work.

In this case, multiple experiments were done to examine the role the GCN5 enzyme plays in muscle fiber. What they found with this line of muscle-specific mouse knockouts was a notable decline in muscle health during physical stress, such as downhill treadmill running, a type of exercise known by athletes to cause micro-tears in muscle fibres to stimulate muscle growth. The lab animals’ muscle fibers became dramatically weaker as they scurried downhill, like those of old mice, while wild-type mice were not similarly impacted

Dr. Menzies, the senior author of the study, says the findings are akin to what is observed in advanced aging, or myopathies and muscular dystrophy, a group of genetic diseases that result in progressive weakness and loss of muscle mass. It was supported by human data, including an observed negative correlation between muscle fiber diameter and Yin Yang 1, a highly multifunctional protein that is pivotal to a slew of cellular processes and found by the Menzies lab to be a target of GCN5. Ultimately, the team’s research found that GCN5 boosts the expression of key structural muscle proteins, notably dystrophin, and a lack of it will reduce them.

Source: https://rupress.org/
AND
https://www.thebrighterside.news

Rejuvenation by Controlled Reprogramming

On 19 January 2022, co-founders Rick Klausner and Hans Bishop publicly launched an aging research initiative called Altos Labs, with $3 billion in initial investment from backers including tech investor Yuri Milner and Amazon founder Jeff Bezos. This is the latest in a recent surge of investment in ventures seeking to build anti-aging interventions on the back of basic research programs looking at epigenetic reprogramming. In December, cryptocurrency company Coinbase’s cofounder Brian Armstrong and venture capitalist Blake Byers founded NewLimit, an aging-focused biotech backed by an initial $105 million investment, with the University of California, San Francisco’s Alex Marson and Stanford’s Mark Davis as advisors.

The discovery of the Yamanaka factors’ — four transcription factors (Oct3/4, Sox2, c-Myc and Klf4) that can reprogram a differentiated somatic cell into a pluripotent embryonic-like state — earned Kyoto University researcher Shinya Yamanaka a share of the Nobel prize in 2012. The finding, described in 2006, transformed stem cell research by providing a new source of embryonic stem cell (ESC)-like cells, induced pluripotent stem cell (iPSCs), that do not require human embryos for their derivation. But in recent years, Yamanaka factors have also become the focus for another burgeoning area: aging research.

So-called partial reprogramming consists in applying Yamanaka factors to cells for long enough to roll back cellular aging and repair tissues but without returning to pluripotency. Several groups, including those headed by Stanford University’s Vittorio Sebastiano, the Salk Institute’s Juan Carlos Izpisúa Belmonte and Harvard Medical School’s David Sinclair, have shown that partial reprogramming can dramatically reverse age-related phenotypes in the eye, muscle and other tissues in cultured mammalian cells and even rodent models by countering epigenetic changes associated with aging. These results have spurred interest in translating insights from animal models into anti-aging interventions. “This is a pursuit that has now become a race,” says Daniel Ives, CEO and founder of Cambridge, UK-based Shift Bioscience.

The Yamanaka factors that can reprogram cells into their embryonic-like state are at the heart of longevity research

We’re investing in this area [because] it is one of the few interventions we know of that can restore youthful function in a diverse set of cell types,” explains Jacob Kimmel, a principal investigator at Alphabet subsidiary Calico Life Sciences in South San Francisco, California. The zeal is shared by Joan Mannick, head of R&D at Life Biosciences, who says partial reprogramming could be potentially “transformative” when it comes to treating or even preventing age-related diseases. Life Biosciences, a startup co-founded by David Sinclair, is exploring the regenerative capacity of three Yamanaka factors (Oct4, Sox2 and Klf4).

Source: https://www.nature.com/

Eye Scan Predicts Mortality Risk

Using deep learning to predictretinal age” from images of the internal surface of the back of the eye, an international team of scientists has found that the difference between the biological age of an individual’s retina and that person’s real, chronological age, is linked to their risk of death. This ‘retinal age gap’ could be used as a screening tool, the investigators suggest.

Reporting on development of their deep learning model and research results in the British Journal of Ophthalmology, first author Zhuoting Zhu, PhD, at Guangdong Academy of Medical Sciences, together with colleagues at the Centre for Eye Research Australia, Sun Yat-Sen University, and colleagues in China, Australia, and Germany, concluded that in combination with previous research, their study results add weight to the hypothesis that “… the retina plays an important role in the aging process and is sensitive to the cumulative damages of aging which increase the mortality risk.”

Estimates suggest that the global population aged 60 years and over will reach 2.1 billion in 2050, the authors noted.

Aging populations place tremendous pressure on healthcare systems.

But while the risks of illness and death increase with age, these risks vary considerably between different people of the same age, implying that ‘biological aging’ is unique to the individual and may be a better indicator of current and future health. As the authors pointed out, “Chronological age is a major risk factor for frailty, age-related morbidity and mortality. However, there is great variability in health outcomes among individuals with the same chronological age, implying that the rate of aging at an individual level is heterogeneous. Biological age rather than chronological age can better represent health status and the aging process.

Several tissue, cell, chemical, and imaging-based indicators have been developed to pick up biological aging that is out of step with chronological aging. But these techniques are fraught with ethical/privacy issues as well as often being invasive, expensive, and time consuming, the researchers noted.

Source: https://www.genengnews.com/

Injectable Electroactive “Microbots” Heal Broken Bones

Inspired by the growth of bones in the skeleton, researchers at the universities of Linköping in Sweden and Okayama in Japan have developed a combination of materials that can morph into various shapes before hardening. The material is initially soft, but later hardens through a bone development process that uses the same materials found in the skeleton…

When we are born, we have gaps in our skulls that are covered by pieces of soft connective tissue called fontanelles. It is thanks to fontanelles that our skulls can be deformed during birth and pass successfully through the birth canal. Post-birth, the fontanelle tissue gradually changes to hard bone. Now, researchers have combined materials which together resemble this natural process.

We want to use this for applications where materials need to have different properties at different points in time. Firstly, the material is soft and flexible, and it is then locked into place when it hardens. This material could be used in, for example, complicated bone fractures. It could also be used in microrobots – these soft microrobots could be injected into the body through a thin syringe, and then they would unfold and develop their own rigid bones”, says Edwin Jager, associate professor at the Department of Physics, Chemistry and Biology (IFM) at Linköping University.

The idea was hatched during a research visit in Japan when materials scientist Edwin Jager met Hiroshi Kamioka and Emilio Hara, who conduct research into bones. The Japanese researchers had discovered a kind of biomolecule that could stimulate bone growth under a short period of time. Would it be possible to combine this biomolecule with Jager’s materials research, to develop new materials with variable stiffness?

In the study published in Advanced Materials, the researchers constructed a kind of simple “microrobot”, one which can assume different shapes and change stiffness. The researchers began with a gel material called alginate. On one side of the gel, a polymer material is grown. This material is electroactive, and it changes its volume when a low voltage is applied, causing the microrobot to bend in a specified direction. On the other side of the gel, the researchers attached biomolecules that allow the soft gel material to harden. These biomolecules are extracted from the cell membrane of a kind of cell that is important for bone development. When the material is immersed in a cell culture medium – an environment that resembles the body and contains calcium and phosphor – the biomolecules make the gel mineralise and harden like bone.

One potential application of interest to the researchers is bone healing. The idea is that the soft material, powered by the electroactive polymer, will be able to manoeuvre itself into spaces in complicated bone fractures and expand. When the material has then hardened, it can form the foundation for the construction of new bone. In their study, the researchers demonstrate that the material can wrap itself around chicken bones, and the artificial bone that subsequently develops grows together with the chicken bone.

Source: https://liu.se/

Mind-controlled Robots

Two EPFL research groups teamed up to develop a machine-learning program that can be connected to a human brain and used to command a robot. The program adjusts the robot’s movements based on electrical signals from the brain. The hope is that with this invention, tetraplegic patients will be able to carry out more day-to-day activities on their own. Tetraplegic patients are prisoners of their own bodies, unable to speak or perform the slightest movement. Researchers have been working for years to develop systems that can help these patients carry out some tasks on their own.

People with a spinal cord injury often experience permanent neurological deficits and severe motor disabilities that prevent them from performing even the simplest tasks, such as grasping an object,” says Prof. Aude Billard, the head of EPFL’s Learning Algorithms and Systems Laboratory. “Assistance from robots could help these people recover some of their lost dexterity, since the robot can execute tasks in their place.”

Prof. Billard carried out a study with Prof. José del R. Millán, who at the time was the head of EPFL’s Brain-Machine Interface Laboratory but has since moved to the University of Texas. The two research groups have developed a computer program that can control a robot using electrical signals emitted by a patient’s brain. No voice control or touch function is needed; patients can move the robot simply with their thoughts. The study has been published in Communications Biology, an open-access journal from Nature Portfolio.

To develop their system, the researchers started with a robotic arm that had been developed several years ago. This arm can move back and forth from right to left, reposition objects in front of it and get around objects in its path. “In our study we programmed a robot to avoid obstacles, but we could have selected any other kind of task, like filling a glass of water or pushing or pulling an object,” says Prof. Billard. This entailed developing an algorithm that could adjust the robot’s movements based only on a patient’s thoughts. The algorithm was connected to a headcap equipped with electrodes for running electroencephalogram (EEG) scans of a patient’s brain activity. To use the system, all the patient needs to do is look at the robot. If the robot makes an incorrect move, the patient’s brain will emit an “error message” through a clearly identifiable signal, as if the patient is saying “No, not like that.” The robot will then understand that what it’s doing is wrong – but at first it won’t know exactly why. For instance, did it get too close to, or too far away from, the object? To help the robot find the right answer, the error message is fed into the algorithm, which uses an inverse reinforcement learning approach to work out what the patient wants and what actions the robot needs to take. This is done through a trial-and-error process whereby the robot tries out different movements to see which one is correct.

The process goes pretty quickly – only three to five attempts are usually needed for the robot to figure out the right response and execute the patient’s wishes. “The robot’s AI program can learn rapidly, but you have to tell it when it makes a mistake so that it can correct its behavior,” says Prof. Millán. “Developing the detection technology for error signals was one of the biggest technical challenges we faced.” Iason Batzianoulis, the study’s lead author, adds: “What was particularly difficult in our study was linking a patient’s brain activity to the robot’s control system – or in other words, ‘translating’ a patient’s brain signals into actions performed by the robot. We did that by using machine learning to link a given brain signal to a specific task. Then we associated the tasks with individual robot controls so that the robot does what the patient has in mind.

Source: https://actu.epfl.ch/

Nuclear Fusion Is Now a Question of “If”, Not “When”

A small railway town in southern England could go down in history as the place where nuclear fusion kicked off. The reaction process – which would generate vast amounts of low-carbon energy – has evaded scientists for decades, but a private company in Didcot, Oxfordshire says it’s now a question of if, not when.

Tokamak Energy is firing its nuclear reactor up to 50 million degrees celsius – almost twice the core temperature of the sun. By shooting 140,000 amps of electricity into a cloud of hydrogen gas, the team are trying to force hydrogen atoms to fuse, thereby creating helium. These fusion forces are the same ones that power the sun. While there’s no danger that Didcot could become the new centre of the solar system, the industrial estate could spark the start of a cheap, clean energy supply.

We will crack it,” CEO Chris Kelsall told the BBC on a recent trip, “the answer is out there right now with Mother Nature as we speak. What we have to do is find that key and unlock the safe to that solution. It will be found.”

Having ramped the temperature up to mind-boggling degrees, the experiment’s next step is to see if nuclear fusion can produce more energy than it uses. In case it rings alarm bells to anyone in the vicinity, nuclear fusion is very different from nuclear fission and its associated disasters. The process occurs inside a ‘tokamak’ – a device which uses a powerful magnetic field to contain the swirling cloud of hydrogen gas. This stops the superheated plasma from touching the edge of the vessel, as it would otherwise melt anything it comes into contact with. If anything goes wrong inside a fusion reactor, the device just stops – so there’s no risk of this astronomical heat being unleashed.

The plasma has to be heated to 10 times the temperature of the sun to get it going, and is capable of fusing two hydrogen nuclei into a helium nucleus. Nuclear fission, on the other hand, is the dangerous kind. This creates energy by splitting one ‘heavy’ atom (typically uranium) into two. This breakdown generates a large amount of radioactive waste in the process, which remains hazardous for years. Fusion cannot produce a runaway chain reaction, like the one that happened at Chernobyl in 1986, so no exclusion zone is needed around Milton Park, Didcot, where the reactor is based. Laura Hussey, an editor who works minutes away at a publishing office on the business park, says she is “really encouraged to hear how safe it is and really happy to see this big investment in clean energy.”

Source: https://www.euronews.com/

Time Cells Discovered in the Brain

How does our brain know that “thisfollows “that”? Two people meet, fall in love and live happily ever after—or sometimes not. The sequencing of events that takes place in our head—with one thing coming after another—may have something to do with so-called time cells recently discovered in the human hippocampus. The research provides evidence for how our brain knows the start and end of memories despite time gaps in the middle. As these studies continue, the work could lead to strategies for memory restoration or enhancement.

The research has focused on “episodic memory,” the ability to remember the “what, where and when” of a past experience, such as the recollection of what you did when you woke up today. It is part of an ongoing effort to identify how the organ creates such memories. A team led by Leila Reddy, a neuroscience researcher at the French National Center for Scientific Research, sought to understand how human neurons in the hippocampus represent temporal information during a sequence of learning steps to demystify the functioning of time cells in the brain. In a study published this summer in the Journal of Neuroscience, Reddy and her colleagues found that, to organize distinct moments of experience, human time cells fire at successive moments during each task. The study provided further confirmation that time cells reside in the hippocampus, a key memory processing center. They switch on as events unfold, providing a record of the flow of time in an experience. “These neurons could play an important role in how memories are represented in the brain,” Reddy says. “Understanding the mechanisms for encoding time and memory will be an important area of research.”

Hippocampi, one in each brain hemisphere

Matthew Self, a co-author of the study and a senior researcher in the department of vision and cognition at the Netherlands Institute for Neuroscience, emphasizes the importance of these hippocampal time cells’ role in encoding experiences into memory. “When we recall a memory, we are able to remember not only what happened to us but also where we were and when it happened to us,” he says. “We think that time cells may be the underlying basis for encoding when something happened.”

While researchers have known about the existence of time cells in rodent brains for decades, they were first identified in the human brain late last year by researchers at the University of Texas Southwestern Medical Center and their colleagues. To better understand these cells, Reddy and her team examined the hippocampal activity of patients with epilepsy who had electrodes implanted in their brain to evaluate a possible treatment for their condition. The subjects agreed to participate in two different experiments after their surgery.

During the surgery, the electrodes are inserted through small holes of around two millimeters in the skull. These holes are sealed until the patients recover from the surgery and are monitored for up to two weeks with the electrodes in place in an epilepsy monitoring unit, or EMU,” Self says. “We record the hippocampal neuronal activity while the patients are performing tasks in the EMU for a period of about one week after the surgery.”

In the first experiment, the study participants were presented with a sequence of five to seven pictures of different people or scenes in a predetermined order that was repeated multiple times. A given image, say of a flower, was shown for 1.5 seconds, followed by a half-second pause and then another image—a dog, for instance. In a random 20 percent of the image intervals throughout the sessions, the parade of pictures stopped, and participants had to decide which of two images was the next correct one in the sequence before continuing. The researchers discovered that, over the course of 60 repetitions of the entire sequence, all of the time-sensitive neurons fired at specific moments in intervals between quizzes, no matter which image was shown.

Source: https://www.scientificamerican.com/

How to Prevent Tooth Loss

Research headed by scientists at the National Institute of Dental and Craniofacial Research (NIDCR) has shown how blocking the function of the blood clotting protein, fibrin, prevents bone loss from periodontal (gum) disease in mice. Drawing on animal and human data, the study—headed by NIDCR investigators Niki Moutsopoulos, DDS, PhD, and Thomas Bugge, PhD, found that build-up of fibrin triggers an overactive immune response that damages the gums and underlying bone. The results suggest that suppressing abnormal fibrin activity could hold promise for preventing or treating periodontal disease, as well as other inflammatory disorders—including arthritis and multiple sclerosis—that are marked by fibrin buildup.

Severe periodontal disease can lead to tooth loss and remains a barrier to productivity and quality of life for far too many Americans, especially those lacking adequate access to dental care,” said NIDCR director Rena D’Souza, DDS, PhD. “By providing the most comprehensive picture yet of the underlying mechanisms of periodontal disease, this study brings us closer to more effective methods for prevention and treatment.”

Periodontal disease is a bacterial infection of the tissues supporting the teeth. The condition affects nearly half of people in the United States who are over the age 30, and 70% of those who are 65 years and older. In its early stages, periodontal disease causes redness and swelling (inflammation) of the gums. In advanced stages, called periodontitis, the underlying bone becomes damaged, leading to tooth loss. While scientists have known that periodontitis is driven in part by an exaggerated immune cell response, until now, it was unclear what triggered the response, and how it caused tissue and bone damage.

Moutsopoulos, Bugge, and colleagues reported their findings in Science, in a paper titled, “Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier.”

 

Source: https://www.genengnews.com/

Ravaged Landscape of COVID-19 Lungs

A revolutionary tool designed to broaden our understanding of human anatomy has for the first time provided scientists with a cellular-level look at lungs damaged by COVID-19. In healthy lungs, the blood vessel system that oxygenates the blood is separate from the system that feeds the lung tissue itself. But in some severe respiratory illnesses, such as pneumonia, pressures caused by the infection can lead blood vessels in the heart and lungs to expand and grow, sometimes cutting through the body and forming channels between parts of the pulmonary system that shouldn’t be connected. Similarly, COVID-19 infections can create the same types of abnormal channels. The channels give unoxygenated blood coming into the lungs an alternate exit ramp, allowing it to essentially skip the line and shoot back into the body without picking up any oxygen molecules first. Scientists believed that this could be a cause of the low blood oxygen levels sometimes experienced by COVID-19 patients, a condition known as hypoxemia.

Blood vessel growth is a very controlled process,” said Claire Walsh, a medical engineer at University College London and the first author of the imaging study, published in the journal Nature Methods. “It should be in this lovely tree-like branching structure. And you look at the COVID lungs, and you can just see it’s in these big clumps of really dense vessels all over the place, so that it just looks … wrong.

Walsh’s team, which included clinicians from Germany and France, has procured sharper-than-ever images of these warped structures, thanks to an imaging technique known as HiP-CT, or Hierarchical Phase-Contrast Tomography, which allows them to zoom in on any body part with 100 times the resolution of a traditional CT scan. Although the technique can only be used to capture images of samples removed from a body and preserved in a way that minimizes interference (rather than of organs that are still