This is default featured slide 1 title
This is default featured slide 2 title
This is default featured slide 3 title
This is default featured slide 4 title
This is default featured slide 5 title

Carlos Ghosn: “Driverless Cars Similar To Antibiotics”

Carlos Ghosn, CEO of the Renault-Nissan-Mitsubishi Alliance car maker (ranked 1 in the world),  has detailed the impact of the driverless car on human daily lives (Interview at the French TV BFM). There are between 1,3 million and 1,4 million death on roads every year in the world. The driverless car will eliminate 90% of the fatal accidents.

 “We are five years from safe, driverless cars for all“, adds Ghosn. “Driverless cars impact will be similar to the discovery of antibiotics“.

Famously given the moniker “Le Cost Killer” for his work transforming two ailing brands into one profit-making success story, Carlos Ghosn has achieved celebrity status in the car industry — and was once even portrayed as a superhero in a Japanese comic book.

Today the auto industry is experiencing a paradigm shift with the growth of the global electric vehicle (EV) market, as well as the vast potential offered by disruptive new areas like the autonomously-driven vehicle, using massively Artificial Intelligence. Despite the challenge of staying competitive and profitable in this changing environment, the Brazilian-born 64-year old believes the brands under his watch are already in pole position — and plan to stay there. But he has to stay vigilant and is aware of the dangers, acknowledging that businesses are pushing hard for driverless vehicles. “Amazon, Alibaba, Uberwhy are they interested in this? It’s very simple. The driver is the biggest cost they have — you make a quick calculation about a car running 24-7 for a month: the electricity bill is about $250 a month; the lease of the car is $300; plus three drivers, since you’re running for 24 hours a day, are going to cost you $15,000 per month.  So getting rid of the driver is a 90% reduction in costs.

That’s why Uber, DiDi all want to be the first to have this … because if my competitor gets this before me, I’m dead.”

https://www.forbes.com/

Electric Road For Electric Cars

In recent years, electric roads have emerged as potential alternatives to the heavy and expensive batteries currently needed in electric road vehicles. Now researchers at Lund University in Sweden have developed an even smarter technology – that doesn’t require digging up stretches of road to install the system. Instead, a small conductive rail is laid on top of segments of the road.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The vehicle has three contact points with the road through which it connects to the power supply. It works much in the same way as a charging pole; except the vehicle charges both while moving and standing still”, explains Mats Alaküla, professor of industrial electrical engineering and automation at Lund University.

The rail is only active when covered by the vehicle, making it a safe option for cities. The system notices when you leave a driving lane and automatically disconnects the “pick up”– reconnecting when you are back. As a driver you wouldn’t notice anything beyond a symbol on your dashboard.

The current challenges for electric vehicles include the large and expensive batteries needed and the limitations in driving range. An electric road solution reduces the need for batteries by up to 80%.

Modern conventional electric vehicles have a driving range of 300-500 kilometers. With an electric road system covering the national and European road network,  you only need a battery range of 50-100 kilometers, to keep you covered if you come to the end of an electric road”, says Mats Alaküla. For longer distances, around 50% of the national and European road network  (e.g 10 out of 20 km on average) needs the rail installed for vehicles to keep running non-stop. The implementation would be different in cities than in other areas, stresses Mats Alaküla. In cities, the rail would be installed strategically on select road segments, bus stops, loading docks for trucks or waiting lanes for taxis, for example. This way, more complicated areas like intersections or roundabouts can be avoided.

Source: https://www.lunduniversity.lu.se/

E- textiles Control Home Appliances With The Swipe Of A Finger

Electronic textiles could allow a person to control household appliances or computers from a distance simply by touching a wristband or other item of clothing — something that could be particularly helpful for those with limited mobility. Now researchers, reporting in ACS Nano, have developed a new type of e-textile that is self-powered, highly sensitive and washable.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

E-textiles are not new, but most existing versions have poor air permeability, can’t be laundered or are too costly or complex to mass-produce. Chinese researchers Jiaona Wang, Hengyu Guo, Congju Li and coworkers wanted to develop an E-textile that overcomes all of these limitations and is highly sensitive to human touch.

The researchers made a self-powered triboelectric nanogenerator by depositing an electrode array of conductive carbon nanotubes on nylon fabric. To make the E-textile washable, they incorporated polyurethane into the carbon nanotube ink, which made the nanotubes firmly adhere to the fabric. They covered the array with a piece of silk and fashioned the textile into a wristband. When swiped with a finger in different patterns, the E-textile generated electrical signals that were coupled to computers to control programs, or to household objects to turn on lights, a fan or a microwave from across the room. The E-textile is breathable for human skin, washable and inexpensive to produce on a large scale, the researchers say.

Source: https://www.eurekalert.org/

MIT Artificial Intelligence System Detects 85 Percent Of Cyber Attacks

While the number of cyber attacks continues to increase it is becoming even more difficult to detect and mitigate them in order to avoid serious consequences. A group of researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is working on an ambitious project, the development of a technology that is able to early detect cyber attacks. The experts in collaboration with peers from the startup PatternEx have designed an Artificial Intelligence system that is able to detect 85 percent of attacks by using data from more than 3.6 Billion lines of log files each day.

The researchers have developed a system that combines an Artificial Intelligence engine with human inputs. , which researchers call Analyst Intuition (AI), which is why it has been given the name of AI2. The AI2 system first performs an automatic scan of the content with machine-learning techniques and then reports the results to human analysts which have to discriminate events linked to cyber attacks. According to the experts at the MIT the approach implemented by the AI2 system is 3 times better than modern automated cyber attack detection systems.

“The team showed that AI2 can detect 85 percent of attacks, which is roughly three times better than previous benchmarks, while also reducing the number of false positives by a factor of 5. The system was tested on 3.6 billion pieces of data known as “log lines,” which were generated by millions of users over a period of three months.” states a description of the AI2 published by the MIT.

The greater the number of analyzes carried out by the system, the more accurate the subsequent estimates thanks to the feedback mechanism.

“You can think about the system as a virtual analyst,” says CSAIL research scientist Kalyan Veeramachaneni, who developed AI2 with Ignacio Arnaldo, a chief data scientist at PatternEx and a former CSAIL postdoc. “It continuously generates new models that it can refine in as little as a few hours, meaning it can improve its detection rates significantly and rapidly.”

Source: http://ai2.appinventor.mit.edu/
AND
https://securityaffairs.co/

Tesla’s Autopilot to get ‘full self-driving feature’ in August

Shares of Tesla Inc (TSLA.O) rose as much as 5 percent on Monday after Chief Executive Officer Elon Musk tweeted that its Autopilot driver assistance system will get full self-driving features following a software upgrade in August. Autopilot, a form of advanced cruise control, handles some driving tasks and warns those behind the wheel they are always responsible for the vehicle’s safe operation. But a spate of recent crashes has brought the system under regulatory scrutiny.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

To date, Autopilot resources have rightly focused entirely on safety. With V9, we will begin to enable full self-driving features,” Musk tweeted, replying to a Twitter user. Musk said the autopilot issue during lane-merging is better in the current software and will be fully fixed in the August update.

However, it was not clear what self-driving features would be included in the August updateTesla has been gradually upgrading its Autopilot features with regular software updates.

Tesla’s documentation on its website about the “full self-driving capabilities” package says that it is not possible to know exactly when each element of the functionality will be available, as this is highly dependent on local regulatory approval.

A consumer advocacy group on Friday urged Tesla to fix what it termed as “flaws” in Autopilot after a preliminary government report said a Model X driver did not have his hands on the vehicle’s steering wheel in the final six seconds before a fatal crash on March 23.

The software update is good news,” said analyst Chaim Siegel from Elazar Advisors, adding the stock was still benefiting from last week’s prediction by Musk that it would finally hit its production target for its Model 3 sedan.

Source: https://www.reuters.com/

Genetic Codes Mapping Of 3,000 Dangerous Bacteria

Scientists seeking new ways to fight drug-resistant superbugs have mapped the genomes of more than 3,000 bacteria, including samples of a bug taken from Alexander Fleming’s nose and a dysentery-causing strain from a World War One soldier. The DNA of deadly strains of plague, dysentery and cholera were also decoded in what the researchers said was an effort to better understand some of the world’s most dangerous diseases and develop new ways to fight them. The samples from Fleming – the British scientist credited with discovering the first antibiotic, penicillin, in 1928 – were among more than 5,500 bugs at Britain’s National Collection of Type Cultures (NCTC) one of the world’s largest collections of clinically relevant bacteria. The first bacteria to be deposited in the NCTC was a strain of dysentery-causing Shigella flexneri that was isolated in 1915 from a soldier in the trenches of World War One.

“Knowing very accurately what bacteria looked like before and during the introduction of antibiotics and vaccines, and comparing them to current strains, … shows us how they have responded to these treatments,” said Julian Parkhill of Britain’s Wellcome Sanger Institute who co-led the research. “This in turn helps us develop new antibiotics and vaccines.”

Specialists estimate that around 70 percent of bacteria are already resistant to at least one antibiotic that is commonly used to treat them. This has made the evolution of “superbugs” that can evade one or multiple drugs one of the biggest threats facing medicine today. Among the most serious risks are tuberculosis – which infects more than 10.4 million people a year and killed 1.7 million in 2016 alone – and gonorrhea, a sexually transmitted disease that infects 78 million people a year and which the World Health Organization says is becoming almost untreatable.

Source: https://www.reuters.com/

Driverless Taxi Service in US and France By The End Of The Year

The City of Lyon in France, will operate a regular cab service by the end of this year, using driverless electric vehicles from the french company Navya. As a pioneer and specialist in the autonomous vehicle market, Navya has conceived, developed and produced the Autonom Cab, the very first autonomous, personalized and shared mobility solution. The cab was designed from the outset to be autonomous, just like all the vehicles in the Autonom range, meaning that there is no cockpit, steering wheel nor pedals.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

At the heart of the smart city, Autonom Cab provides an intelligent transport service for individual trips in urban centers. Able to carry 1 to 6 passengers, The driverless taxi is a fluid, continuous and effective solution that answers user expectations in terms of service before, during and after their trip. Available as either a private or shared service, Autonom Cab places an emphasis on conviviality and comfort. On board, passengers can for example choose to work, benefiting from fully connected technology, or partake in an interactive cultural visit of the city. They can also choose a playlist, or buy their cinema or museum tickets.

As well,  the american company Waymo says that their self-driving car service will begin operations by the end of the year in Phoenix, Arizona. Waymo is a subsidiary of Alphabet, the parent company of Google, and the CEO John Krafcik said engineers at both companies were hard at work on the AI backing their self-driving cars.

People will be able to download a Waymo app and secure rides on autonomous vehicles through it, with no driver present, Krafcik said. Waymo has been operating autonomous vehicles on the roads of Phoenix since October, and is one of the first companies to do so in the US. Originally, Waymo was a part of Google before it was spun off into its own company under the Alphabet umbrella. Despite the separation, members of Google‘s Brain team have helped Waymo engineers by beefing up the neural networks underpinning the AI operating the vehicles.

Source: http://navya.tech/
AND
https://www.techrepublic.com/

Electric Car For MegaCities

Uniti Swedish startup is building Uniti One, an electric car for crammed cities. There have been 3,000 pre-orders for its first model. Uniti One will have “75% lessenvironmental impact than standard electric vehicles. Uniti aims for its first cars hit European roads in 2019.

Uniti is betting on a small and affordable electric car to meet an explosion of interest in the coming decade. And if Swedish car fans are anything to go by, it may work. Just a couple of months after making its first model available for pre-order through Swedish electronics retailer Mediamarkt, more than 3,000 people have queued up for the company’s sleek two-seater. The total value of the pre-orders, which are fully refundable, now correspond to some 500 million krona (€50 million). “This is an important milestone for our new company,” says Robin Eriksson, Chief Marketing Officer at Uniti in a press release, adding: “We are now working intensively with our development and production partners to finalise supply potential so we can scale accordingly.

Uniti One was unveiled in December and will retail for around 150k SEK ($17,000) a piece. After releasing the vehicle for pre orders this winter, interest has exploded in Sweden. Uniti’s two-seater has been designed with megacities in mind. Initially developed out of Lund University in Southern Sweden, Uniti’s dream of a small-scale electric urban vehicle became a freestanding project in 2016, when the new startup took in just over SEK 12 million ($1,35M) to create a production-ready prototype.

Uniti‘s vehicle is expected to have a range of 150 to 300 kilometers, and will be tailored for urban environments on account of its small size. Uniti claims its car emits 75 percent less carbon-dioxide over a lifecycle than many of today’s electric vehicles.

We see our vehicle as a complement to the bigger cars and will be a second car for many customers. A small two-seater is easier sell,” Eriksson said.

Source: https://www.uniti.earth/
AND
https://www.technologybreakingnews.com/

Electrified Roads Slash Cost Of Electric Vehicles

An electrified road in Sweden that is the first in the world to charge vehicles as they drive along is showing promise and could potentially help cut the high cost of electric cars, project backers Vattenfall [VATN.UL] and Elways saidThe state-funded project, named eRoadArlanda and costing about 50 million crowns ($5.82 million), uses a modified electric truck that moves cargo from Stockholm’s Arlanda airport to Postnord’s nearby logistics hub to test the technology.

A electrified rail embedded in the tarmac of the 2-km-long (1.24 miles) road charges the truck automatically as it travels above it. A movable arm attached to the truck detects the rail’s location in the road, and charging stops when the vehicle is overtaking or coming to a halt. The system also calculates the vehicle’s energy consumption, which enables electricity costs to be debited per vehicle and user. 

Elways’ chief executive Gunnar Asplund said the charging while driving would mean electric cars no longer need big batteries — which can be half the cost of an electric car — to ensure they have enough power to travel a useful distance.

The technology offers infinite range — range anxiety disappears” he said. “Electrified roads will allow smaller batteries and can make electric cars even cheaper than fossil fuel ones.”

Asplund reports the Swedish state, which is funding the project, was happy with the results so far, with the only issue — now resolved — having been dirt accumulating on the rail. Elways has patented the electric rail technology and is part of a Swedish consortium backing the eRoadArlanda project that also includes infrastructure company NCC and utility Vattenfall, which provides power from the national grid to the rail.

Such roads will allow (electric vehicles) to move long distances without big, costly and heavy batteries,” said Markus Fischer, a Vattenfall spokesman, adding that installing the arm in new cars would be cheaper than retrofitting current models.

Source: https://eroadarlanda.com/
AND
https://www.reuters.com/

New Combination To Eradicate Staph Aureus

CF-301 is a bacteriophage-derived lysin with potent activity against Staphylococcus aureus (“Staph aureus”) bloodstream infections. CF-301 is the first and only lysin to enter human clinical trials in the US and has recently completed a Phase 1 trial in healthy volunteers. This compound is being developed for the treatment of Staph aureus bloodstream infections (BSI; bacteremia), including endocarditis, caused by methicillin-resistant and susceptible Staphaureus (MRSA and MSSA) strains.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

New drug-resistant strains of Staph aureus have been identified which demonstrate resistance against vancomycin and daptomycin, the only two standard-of-care (SOC) antibiotics indicated for the treatment of MRSA BSI in the US. CF-301 has the potential to be a first-in-class, new treatment for Staph aureus bacteremia. CF-301 has specific and rapid bactericidal activity against Staph aureus. Combinations of CF-301 with vancomycin or daptomycin increased survival significantly in animal models of disease when compared to treatment with SOC antibiotics or CF-301 alone. CF-301 targets a highly conserved region of the cell wall that is vital to bacteria, thus making resistance less likely to develop. When used in combination with SOC antibiotics, the result is a novel combination therapy that has the potential to combat the high unmet clinical need of Staph aureus infections.

Advantages are important:

  • Combination with antibiotics offers a superior treatment approach based on animal models
  • Act at least 12x faster than current antibiotics
  • Specifically kills Staph aureus and spares good bacteria
  • Clears biofilm

Source: https://www.contrafect.com/

Genes Behind Humankind’s Big Brain

Scientists have pinpointed three genes that may have played a pivotal role in an important milestone in human evolution: the striking increase in brain size that facilitated cognitive advances that helped define what it means to be human. These genes, found only in people, appeared between 3 and 4 million years ago, just prior to a period when the fossil record demonstrates a dramatic brain enlargement in ancestral species in the human lineage, researchers said. The three nearly identical genes, as well as a fourth nonfunctional one, are called NOTCH2NL genes, arising from a gene family dating back hundreds of millions of years and heavily involved in embryonic development. 

The NOTCH2NL genes are particularly active in the reservoir of neural stem cells of the cerebral cortex, the brain’s outer layer responsible for the highest mental functions such as cognition, language, memory, reasoning and consciousness. The genes were found to delay development of cortical stem cells into neurons in the embryo, leading to the production of a higher number of mature nerve cells in this brain region.

The cerebral cortex defines to a large extent what we are as a species and who we are as individuals. Understanding how it emerged in evolution is a fascinating question, touching at the basic origins of mankind,” said developmental neurobiologist Pierre Vanderhaeghen of Université Libre de Bruxelles and VIB/KULeuven in Belgium.

It is the ultimate evolutionary question and it is thrilling to work in this area of research,” added biomolecular engineer David Haussler, scientific director of the University of California, Santa Cruz Genomics Institute and a Howard Hughes Medical Institute investigator.

Source: https://www.reuters.com/

 

Nanorobots Clear Bacteria From Blood

Engineers at the University of California San Diego have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria along with the toxins they produce. These proof-of-concept nanorobots could one day offer a safe and efficient way to detoxify and decontaminate biological fluids.

Researchers built the nanorobots by coating gold nanowires with a hybrid of platelet and red blood cell membranes. This hybrid cell membrane coating allows the nanorobots to perform the tasks of two different cells at once—platelets, which bind pathogens like MRSA bacteria (an antibiotic-resistant strain of Staphylococcus aureus), and red blood cells, which absorb and neutralize the toxins produced by these bacteria. The gold body of the nanorobots responds to ultrasound, which gives them the ability to swim around rapidly without chemical fuel. This mobility helps the nanorobots efficiently mix with their targets (bacteria and toxins) in blood and speed up detoxification.

The work, published May 30 in Science Robotics, combines technologies pioneered by Joseph Wang and Liangfang Zhang, professors in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. Wang’s team developed the ultrasound-powered nanorobots, and Zhang’s team invented the technology to coat nanoparticles in natural cell membranes.

SEM image of a MRSA bacterium attached to a hybrid cell membrane coated nanorobot

By integrating natural cell coatings onto synthetic nanomachines, we can impart new capabilities on tiny robots such as removal of pathogens and toxins from the body and from other matrices,” said Wang. “This is a proof-of-concept platform for diverse therapeutic and biodetoxification applications.”

The idea is to create multifunctional nanorobots that can perform as many different tasks at once,” adds co-first author Berta Esteban-Fernández de Ávila, a postdoctoral scholar in Wang’s research group at UC San Diego. “Combining platelet and red blood cell membranes into each nanorobot coating is synergistic—platelets target bacteria, while red blood cells target and neutralize the toxins those bacteria produce.

Source: http://jacobsschool.ucsd.edu/

Orthodontic Surgery Without Incision

Researchers at the Technion-Israel Institute of Technology have developed a nanotechnology that replaces the surgical scalpel with an “enzymatic blade.” In an article published recently in ACS Nano, the researchers describe the application of this technology in a surgical procedure in the oral cavity. The application spares the pain associated with orthodontic surgeries and significantly reduces tissue recovery time.

The study was led by Dr. Assaf Zinger, within the framework of his doctoral research, mentored by Assistant Professor Avi Schroeder, the director of the Laboratory of Targeted Drug Delivery and Personalized Medicine at the Wolfson Faculty of Chemical Engineering. The novel technology is based on rational use of enzymesbiological molecules the body uses to repair itself, as well as on use of nanoparticles for achieving a targeted therapeutic profile.

In the United States alone, approximately five million people undergo orthodontic treatment each year. To speed up treatment, which typically lasts about two years, many undergo invasive surgery, in which collagen fibers that connect the tooth to the underlying bone tissue are cut.

The technology developed at the Technion softens the collagen fibers via the targeted release of collagenase – an enzyme that specifically breaks down collagen. Using techniques developed in Schroeder’s lab, the collagenase is packaged into liposomesnanometric vesicles. As long as the collagenase particles are packaged in the liposome, they are inactive. But with this special nanotechnology, an ointment is applied on the target site, so that the enzyme begins to gradually leak from the liposome and soften the collagen fibers. The researchers performed a series of tests to determine the collagenase concentration optimal for the procedure and to accelerate tissue repair thereafter.

Source: http://t3news.trdf.co.il/

Electric Vehicle: BMW Launches A Wireless Charging Car

Wireless charging is finally making its way to market as an energy source for electric vehicles, with BMW readying to start production in July for release by the end of summer. BMW’s existing 530e plug-in hybrid sedan will be the first EV coming from a major automaker with an inductive pad capable of charging the electric car. The German automaker first announced the launch in September of last year, explaining how the 530e can be charged on the floor of the garage or parking space once the electric car is parked close enough to the inductive charging pad to work correctly.

The company will roll out wireless charging to other BMW models, but the 530e will introduce the technology to interested consumers. It uses a 3.2 kW current that allows the wireless unit to fully charge the EV within three-and-a-half hours. The charging pad uses an alternating magnetic field that carries power between a coil inside the pad itself and a coil built into the electric car to wirelessly charge the battery.

Wireless charging has been years in the making with major companies getting behind the technology but support from automakers taking a long time. Years from now, wireless charging is expected to play a vital role in mass adoption of EVs and alleviating resistance to charging the cars. Tests are being conducted by university researchers that could one day set up wireless charging points on highways. EV owners will be able to drive from cities such as San Francisco to Los Angeles without stopping for a charge.

Transferring power wirelessly goes back more than a century ago when electricity pioneer Nikola Tesla worked tirelessly but failed to bring wireless transmission beyond the Wardenclyffe Tower in Shoreham, New York. It was said to have eventually ruined his reputation and career as Tesla became obsessed over making the technology work the way radio waves had been sending communications over the airwaves.

Source: https://oilprice.com/

Gravity, An Alternative Energy

A Dutch architect has developed a new technique to generate free energy in a sustainable way at home, whereby energy is released by perpetually unbalancing a weight — offering an alternative to solar and wind technology.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Gravity, an inexhaustible and always present source of power for harvesting energy from falling or tilting objects. 

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Intuitively, I thought that gravity must have something to offer, given that everything is drawn to earth,” co-creator Janjaap Ruijssenaars of Universe Architecture said. “By unbalancing a weight at the top that is only just stable, using little force, a large force is created at the bottom at a single point. The idea was that this should yield something.”

Scientists are calling the patent-pending technique a breakthrough.

Thanks to clever use of gravity, the energy yield from the so-called Piezomethod, which converts mechanical pressure into electrical energy, is increased from 20 to 80 percent,” said Theo de Vries, system architect and senior lecturer of the group Robotics and Mechatronics, associated with the University of Twente. “Ruijssenaars literally turned the method on its head, as a result of which we, as scientists, have started to look at this method in a new light. Everything that is currently offered as mechanical energy will actually be useful, thanks to the invention.

In situations where we cannot work sustainably with solar modules, we may well be able to use this new technique,” said Professor Beatriz Noheda, faculty of Mathematics and Natural Science at the Rijksuniversiteit Groningen who believes piezoelectric energy harvesting is a real part of the future.

Practical applications are being sought for the technique, such as the manufacture of a sustainable and, therefore, “cleanphone charger, or a generator for lighting in homes, among endless other possibilities.

Source: https://www.reuters.com/
AND
http://www.uco.es/

Nanoparticles Cross The Blood-Brain Barrier, Shrink Glioblastoma Tumors

Glioblastoma multiforme, a type of brain tumor, is one of the most difficult-to-treat cancers. Only a handful of drugs are approved to treat glioblastoma, and the median life expectancy for patients diagnosed with the disease is less than 15 months.

MIT researchers have now devised a new drug-delivering nanoparticle that could offer a better way to treat glioblastoma. The particles, which carry two different drugs, are designed so that they can easily cross the blood-brain barrier and bind directly to tumor cells. One drug damages tumor cells’ DNA, while the other interferes with the systems cells normally use to repair such damage.

In a study of mice, the researchers showed that the particles could shrink tumors and prevent them from growing back.

What is unique here is we are not only able to use this mechanism to get across the blood-brain barrier and target tumors very effectively, we are using it to deliver this unique drug combination,” says Paula Hammond, a David H. Koch Professor in Engineering, the head of MIT’s Department of Chemical Engineering, and a member of MIT’s Koch Institute for Integrative Cancer Research.

Source: http://news.mit.edu/

3D Printed House Built In 24 Hours For $4000

US construction technologies firm Icon has demonstrated a method for 3D printing a single storey house in less than 24 hours.

The small company – which is hoping to pioneer the use of 3D printing for homebuilding – has unveiled a 650 square foot (61 m2)  home in Austin, Texas that was built using its Vulcan 3D printer, which builds structures by depositing layers of specially formulated cement.

CLICK ON THE IMAGE TO ENJOY THE VIDEO
The firm claims that it can print an entire home for $10,000 but that costs could ultimately be brought as low $4000.

It has now joined forces with housing charity New Story to further develop the technology and use it to build affordable homes in parts of the developing world. The two companies reportedly plan to work together to build around 100 3D printed homes in El Salvador.

Source: https://www.iconbuild.com/
AND
https://www.theengineer.co.uk/

Learning How To Create And Keep Memories

Drug manufacturers are looking at ways to alleviate memory loss, one of the most distressing symptoms of diseases such as Alzheimer’s. Professor George Kemenes from the Sussex University (UK) intends to show how such drugs could work.


CLICK ON THE IMAGE TO ENJOY THE VIDEO

The goal is to identify brain molecules that are crucial for the building up and maintenance of long-term memory,’ he says. ‘We aim to find ways to manipulate these molecules to enable us to control functions and improve the speed at which animals learn, or help them remember for longer periods of time. This would then link into drug development for humans.’

Pond snails are ideal for this kind of study because they share important characteristics with humans. These include the basic molecular mechanisms that control long-term memory and learning. These mechanisms involve the activation or suppression of a protein, CREB, which is key to the formation of long-term memory. CREB is present in species ranging from molluscs and flies to rats and humans.

Memory responses can be tested with classic Pavlovian experiments. Snails exposed to the smell of pear drops followed by food still respond weeks later to the smell by moving their mouth parts in anticipation of food. This ‘flashbulbmemory is created by just one exposure to the two stimuli. The snails have a memory associating the smell of pear drops with the arrival of food – a learned and remembered response.

In a similar test, a snail is exposed to a mildly unpleasant stimulus by touching its head with a paintbrush (snails don’t like being tickled) before food is introduced. It takes much longer for the snail to associate an unpleasant stimulus with the arrival of food. Recently, George has succeeded in inhibiting the quickly learned memory and improving the weaker, more slowly-acquired memory at molecular level.

Working in collaboration with colleagues at the University, key findings include the discovery that amyloid peptides, substances that are thought to underlie Alzheimer’s disease in humans, also cause memory loss in snails. Another finding is that age-related memory loss in snails can be prevented by treatment with a small peptide known as PACAP.

Source: http://www.sussex.ac.uk/

Project To Map Ocean Floor By 2030

Set to map the entirety of the global ocean floor by 2030, the Nippon Foundation-GEBCO Seabed 2030 Project has started operations, based on a seed money pledge of US$2 million-per-year from the Japan-based Nippon Foundation.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Officially launched during the United Nations Ocean Conference (5-9 June 2017) in New York, the project draws on the experience of international organizations and mapping experts under the coordination of UNESCO’s Intergovernmental Oceanographic Commission (IOC) and the International Hydrographic Organization (IHO).

Having a comprehensive map of the ocean floor could assist global efforts to combat pollution, aid marine conservation, forecast tsunami wave propagation, and help inform the study of tides and wave action. It could also help in search and rescue operations, as in the disappearance of the MH370 Malaysian Airlines flight in March 2014.

Despite its obvious useful applications, detailed bathymetric data – the topography of the ocean floor – is still missing for much of the global ocean. More than 85% of the world ocean floor remains unmapped with modern mapping methods, and by any technological standards we know more about Mars than we do about the depths of the ocean.

Source: http://www.unesco.org/

Nanoparticles Fom Tea Leaves Destroy 80% Of Lung Cancer Cells

Nanoparticles derived from tea leaves inhibit the growth of lung cancer cells, destroying up to 80% of them, new research by a joint Swansea University (UK) and Indian team has shown. The team made the discovery while they were testing out a new method of producing a type of nanoparticle called quantum dots.  These are tiny particles which measure less than 10 nanometres.  A human hair is 40,000 nanometres thick.

Although nanoparticles are already used in healthcare, quantum dots have only recently attracted researchers’ attention.  Already they are showing promise for use in different applications, from computers and solar cells to tumour imaging and treating cancerQuantum dots can be made chemically, but this is complicated and expensive and has toxic side effects.  The Swansea-led research team were therefore exploring a non-toxic plant-based alternative method of producing the dots, using tea leaf extract.

Tea leaves contain a wide variety of compounds, including polyphenols, amino acids, vitamins and antioxidants.   The researchers mixed tea leaf extract with cadmium sulphate (CdSO4) and sodium sulphide (Na2S) and allowed the solution to incubate, a process which causes quantum dots to form.   They then applied the dots to lung cancer cells. Tea leaves are a simpler, cheaper and less toxic method of producing quantum dots, compared with using chemicals, confirming the results of other research in the field. Quantum dots produced from tea leaves inhibit the growth of lung cancer cells.  They penetrated into the nanopores of the cancer cells and destroyed up to 80% of them.  This was a brand new finding, and came as a surprise to the team.

The research, published in “Applied Nano Materials”, is a collaborative venture between Swansea University experts and colleagues from two Indian universities.

Source: http://www.swansea.ac.uk/

Sea Bubbles, The Flying Taxi Tested In Paris

Paris trips Sea Bubbles up. These flying taxis, that are said to be tested on the Seine river by late September, will finally be tested in Paris in May-June 2018 and aim at making the Seine river a common means of transport so that you can cross the city of lights in less than 15 minutes!

Bertrand Lambert, Sea Bubbles inventor, announces to be able to navigate the Seine in May-June this year. The famous flying taxis have already been successfully tested last June.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

For the record, initially planned for late September, Sea Bubbles testing have been postponed because of technical and regulatory constraints. On the one hand to improve the system enabling to make the driving available to everyone and on the other hand for speed issues. Actually, these machines can “fly” at a maximum speed of 32mph and cannot reduce it. Yet, the Seine limited speed is set at 7.5mph in the city center and 11.2mph outside. According to Voies Navigables de France (Navigable Waterways of France), a steadfast speed promises a great deal of discussions.

Finally, after months of negotiations, Alain Thébault, helped by Paris Authorities and the Ministry of Transport, is finally being authorized to navigate or “fly” at a speed of 15.53 mph.This new testing will be open to the public this time and last 2 months. Let’s fly over the Seine!

Called “Sea Bubbles”, these flying boats seem to come straight from sci-fi movies. Able to accommodate up to 4 passengers and one pilot, this new means of circulating is electric and rather simple to use.

In concrete terms, how does it work? Under each machine, there are wings propelled by two electric motors. When started up, they take off and lift but they still touch the water. Notwithstanding, the rubbing is reduced by 40% in comparison with a boat hull.

source: https://www.sortiraparis.com/

With The Artificial Arm Luke, You Easily Peel A Banana

You have lost completely your arm. Now imagine…
Reaching up to pluck an apple from a tree. Confidently manipulating chopsticks to pick up small bites of food. Picking up and operating a heavy piece of equipment with ease, or Peeling a banana without bruising the fruit. All this is possible as the LUKE prosthetic arm can read nerve signals from muscle left after an amputation

You will be able to do some of these things the very first time you put the arm on, all with a level of comfort and integration never realized before due to the sophisticated compression and release design of the High-Fidelity interface.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Are you a good candidate for the LUKE Arm? Currently, the LUKE Arm is available for three levels of amputationlower arm or trans-radialmid-arm or trans-humeral, and shoulder disarticulation (this level does not use the High-Fidelity Interface). The company which sells the product, Next Step Bionics & Prosthetics is the country’s premier bionic and prosthetic provider for amputees, blending technology and expertise with a personal approach to healthcare.

If you are a veteran, the LUKE Arm is covered in many cases by the VA. Other candidates may have access to funding depending on their particular circumstances. As a preferred provider of the LUKE Arm, the Next Step company answer any questions you may have on the arm and whether it is a good fit for your particular needs.

As one of the original development partners, Next Step has unique expertise in the fitting and use of the LUKE Arm. The goal is in helping patients get their lives back. To support the overall patient experience, an experienced, patient-centered team will ensure the strongest, most supportive patient experience. Customized physical and occupational therapy offered to the patients is offered in partnership with Catholic Medical Center.

Source: http://nextstepbionicsandprosthetics.com/

How To Charge In Seconds 3D Batteries

The world is a big place, but it’s gotten smaller with the advent of technologies that put people from across the globe in the palm of one’s hand. And as the world has shrunk, it has also demanded that things happen ever faster – including the time it takes to charge an electronic device.

A cross-campus collaboration led by Ulrich Wiesner, Professor of Engineering in the Department of Materials Science at Cornell University, addresses this demand with a novel energy storage device architecture that has the potential for lightning-quick charges.

The group’s idea: Instead of having the batteries’ anode and cathode on either side of a nonconducting separator, intertwine the components in a self-assembling, 3D gyroidal structure, with thousands of nanoscale pores filled with the components necessary for energy storage and delivery.

A rendering of the 3D battery architecture (top; not to scale) with interpenetrating anode (grey, with minus sign), separator (green), and cathode (blue, plus sign), each about 20 nanometers in size. Below are their respective molecular structures

This is truly a revolutionary battery architecture,” said Wiesner, whose group’s paper, “Block Copolymer Derived 3-D Interpenetrating Multifunctional Gyroidal Nanohybrid for Electrical Energy Storage,” was published in Energy and Environmental Science, a publication of the Royal Society of Chemistry.

This three-dimensional architecture basically eliminates all losses from dead volume in your device,” Wiesner said. “More importantly, shrinking the dimensions of these interpenetrated domains down to the nanoscale, as we did, gives you orders of magnitude higher power density. In other words, you can access the energy in much shorter times than what’s usually done with conventional battery architectures.”

How fast is that? Wiesner said that, due to the dimensions of the battery’s elements being shrunk down to the nanoscale, “by the time you put your cable into the socket, in seconds, perhaps even faster, the battery would be charged.”

The architecture for this concept is based on block copolymer self-assembly, which the Wiesner group has employed for years in other devices, including a gyroidal solar cell and a gyroidal superconductor. Joerg Werner, Ph.D. ’15, lead author on this work, had experimented with self-assembling filtration membranes, and wondered if the same principles could be applied to carbon materials for energy storage.

Source: http://news.cornell.edu/

Bio-material Stronger Than Steel

At DESY‘s X-ray light source PETRA III, a team led by Swedish researchers has produced the strongest bio-material that has ever been made. The artifical, but bio-degradable cellulose fibres are stronger than steel and even than dragline spider silk, which is usually considered the strongest bio-based material. The team headed by Daniel Söderberg from the KTH Royal Institute of Technology in Stockholm reports the work in the journal ACS Nano of the American Chemical Society. The ultrastrong material is made of cellulose nanofibres (CNF), the essential building blocks of wood and other plant life. Using a novel production method, the researchers have successfully transferred the unique mechanical properties of these nanofibres to a macroscopic, lightweight material that could be used as an eco-friendly alternative for plastic in airplanes, cars, furniture and other products.

 

The resulting fibre seen with a scanning electron microscope (SEM)

Our new material even has potential for biomedicine since cellulose is not rejected by your body”, explains Söderberg.

The scientists started with commercially available cellulose nanofibres that are just 2 to 5 nanometres in diameter and up to 700 nanometres long. A nanometre (nm) is a millionth of a millimetre. The nanofibres were suspended in water and fed into a small channel, just one millimetre wide and milled in steel. Through two pairs of perpendicular inflows additional deionized water and water with a low pH-value entered the channel from the sides, squeezing the stream of nanofibres together and accelerating it.

This process, called hydrodynamic focussing, helped to align the nanofibres in the right direction as well as their self-organisation into a well-packed macroscopic thread. No glue or any other component is needed, the nanofibres assemble into a tight thread held together by supramolecular forces between the nanofibres, for example electrostatic and Van der Waals forces.

Source: http://www.desy.de/

Electric Powered Flight Ten Times Less Expensive

Consumer passenger flight could be the next industry that’s transformed by electric powertrains, and Seattle’s Zunum Aero wants to be at the forefront of that change. The Seattle-based company, which is backed by Boeing’s HorizonX fund and Jet Blue’s Technology Ventures, has a plan to change the fundamental economics of regional flight, and shift the economics of air travel on a path towards eventual fully electric flight.

The first Zunum aircraft is designed for regional service, with seating for 12 passengers and a delivery window starting in 2022. The economics are potentially game-changing, with operating expenses of around $260 per hour for the aircraft. With a max cruise stepped of 340 miles per hour (547 km/h) in the air, a take-off distance of 2,200 feet (671 meters), a total hybrid-electric range of 700 miles (1127 km), which it hopes to scale to over 1,000 (1610 km) )in time and 80 percent lower noise and emissions vs. traditional regional planes, Zunum is position its airplane as the perfect way to light up under-utilized regional airports across the U.S., providing affordable and efficient commuter flights where economic realities have made running regular service impractical.

In the past, very intentionally, we were quiet about operating costs, because it’s just shockingly low what you can get with an electric. So that you can get an aircraft of a size that could never compete with an airliner that can get you below commercial fares,” Zunum Aero CEO Ashish Kumar told in an interview. He put the cost per seat operating expenses at around 8 cents per mile. “That’s about one-tenth the operating cost of a business jet per hour,” he said.

Source: zunun.aero
AND
https://techcrunch.com/

A Pinch Of Salt Improves Drastically Battery Performance

Researchers at Queen Mary University of London, University of Cambridge and Max Planck Institute for Solid State Research have discovered how a pinch of salt can be used to drastically improve the performance of batteries. Surprisingly, the salt reacted with the sponge in special ways and turned it from a homogeneous mass to an intricate structure with fibres, struts, pillars and webs. This kind of 3D hierarchically organised carbon structure has proven very difficult to grow in a laboratory but is crucial in providing unimpeded ion transport to active sites in a battery. In the study, published in JACS (Journal of the American Chemical Society), the researchers demonstrate that the use of these materials in Lithium-ion batteries not only enables the batteries to be charged-up rapidly, but also at one of the highest capacities.

Due to their intricate architecture the researchers have termed these structures ‘nano-diatoms’, and believe they could also be used in energy storage and conversion, for example as electrocatalysts for hydrogen production.

This metamorphosis only happens when we heat the compounds to 800 degrees centigrade and was as unexpected as hatching fire-born dragons instead of getting baked eggs in the Game of Thrones. It is very satisfying that after the initial surprise, we have also discovered how to control the transformations with chemical composition,” said lead author Dr Stoyan Smoukov, from Queen Mary’s School of Engineering and Materials Science.

Source: https://www.qmul.ac.uk/

Orgasmic Fruit Flies

Male fruit flies enjoy orgasms more than alcohol – and Israeli researchers who tested the insects’ addiction to pleasure hope to apply their discovery to controlling human substance abuse. Scientists from Bar-Ilan University near Tel Aviv exposed the flies to a red light that activated a protein, corazonim (CRZ), in the abdomen that triggers ejaculation 

Galit Shohat-Ophir, who headed the team, said they then tested how repeated ejaculation affected the flies’ desires for other pleasures, such as alcohol-spiked liquid. Flies that orgasmed, as opposed to a control group that had not been stimulated, shunned the alcohol, preferring to congregate in the “red light district” because “it feels good” there, said Shir Zer Krispil, who led the study.

The scientists, whose research was published in the journal Current Biology, surmised that substance abuse in humans could be moderated by other rewardsnot necessarily of a sexual nature – that are naturally available, such as social interaction or sports.

In experiences where there is high reward level by natural reward – alcohol as a drug reward is not valuable,” Shohat-Ophir said.

Strain Improves Performance of Atomically Thin Semiconductor

Researchers in UConn’s Institute of Materials Science significantly improved the performance of an atomically thin semiconductor material by stretching it, an accomplishment that could prove beneficial to engineers designing the next generation of flexible electronics, nano devices, and optical sensors.

In a study appearing in the research journal Nano Letters, Michael Pettes, assistant professor of mechanical engineering, reports that a six-atom thick bilayer of tungsten diselenide exhibited a 100-fold increase in photoluminescence when it was subjected to strain. The material had never exhibited such photoluminescence before.

The findings mark the first time scientists have been able to conclusively show that the properties of atomically thin materials can be mechanically manipulated to enhance their performance, Pettes says. Such capabilities could lead to faster computer processors and more efficient sensors.

The process the researchers used to achieve the outcome is also significant in that it offers a reliable new methodology for measuring the impact of strain on ultrathin materials, something that has been difficult to do and a hindrance to innovation.

Experiments involving strain are often criticized since the strain experienced by these atomically thin materials is difficult to determine and often speculated as being incorrect,” says Pettes. “Our study provides a new methodology for conducting strain-dependent measurements of ultrathin materials, and this is important because strain is predicted to offer orders of magnitude changes in the properties of these materials across many different scientific fields.”

Source: https://today.uconn.edu/

Israeli Startup To Grow Meat In The Lab

 Tyson Foods (TSN.N), the largest U.S. meat processor, has invested in an Israeli biotech company developing a way to grow affordable meat in a laboratory that takes live animals out of the equation.

Future Meat Technologies focuses on producing fat and muscle cells that are the core building blocks of meat, and is one of several firms working on technology to match rising demand for meat without adding more pressure on land from livestock. The firm’s founder and chief scientist, Yaakov Nahmias, said cultured meat typically had a production price of about $10,000 per kg but so far his company had reduced that to $800/kg and had “a clear roadmap to $5$10/kg by 2020.” Tyson’s venture capital arm has supported the Jerusalem-based startup by co-leading $2.2 million in seed investment.

We continue to invest significantly in our traditional meat business but also believe in exploring additional opportunities for growth that give consumers more choices,” said Justin Whitmore, Tyson’s executive vice president for corporate strategy. In December, Tyson raised its stake in plant-based protein maker Beyond MeatDemand for meat is expected to double between 2000 and 2050, when the earth’s population is set to surpass 9 billion, and proponents of growing meat in the lab say it is the only way to meet such demand without destroying the environment.

Source: https://www.reuters.com/

Laser Shoes to Fight Parkinson’s

Freezing of gait, an absence of forward progression of the feet despite the intention to walk, is a debilitating symptom of Parkinson’s disease. Laser shoes that project a line on the floor to the rhythm of the footsteps help trigger the person to walk. The shoes benefit the wearer significantly, according to research by the University of Twente and Radboud university medical center (Netherlands), which has been published in Neurology, the scientific journal of the American Academy of Neurology.


CLICK ON THE IMAGE TO ENJOY THE VIDEO

Walking problems are common and very disabling in Parkinson’s disease. In particular, freezing of gait is a severe symptom which generally develops in more advanced stages. It can last seconds to minutes and is generally triggered by the stress of an unfamiliar environment or when medication wears off. Because the foot remains glued to the floor but the upper body continues moving forward, it can cause the person to lose her balance and fall.
Parkinson patient experience a unique phenomenon. By consciously looking at objects on the floor, such as the lines from a zebra crossing (‘visual cues’), and stepping over them, they are able to overcome their blockages during walking. This activates other circuits in the brain, hereby releasing the blockages and allowing the person to continue walking. This is why patients often make use of floor tiles at home. With the laser shoes, these useful cues can be continuously applied in everyday life, to walk better and safer. The principle behind the laser shoes is simple: upon foot contact, the left shoe projects a line on the floor in front of the right foot. The patient steps over or towards the line, which activates the laser on the right shoe, and so on.

The present research study shows a beneficial effect in a large group of patients. The number of ‘freezingepisodes was reduced by 46% with the use of the shoes. The duration of these episodes was also divided by two. Both effects were strongest in patients while they had not taken their medication yet. This is typically when patients experience the most problems with walking. But an improvement was also seen after the patients had been taking their medication.

Source: https://www.utwente.nl/

Harvesting Clean Hydrogen Fuel Through Artificial Photosynthesis

A new, stable artificial photosynthesis device doubles the efficiency of harnessing sunlight to break apart both fresh and salt water, generating hydrogen that can then be used in fuel cells.

The device could also be reconfigured to turn carbon dioxide back into fuel.

Hydrogen is the cleanest-burning fuel, with water as its only emission. But hydrogen production is not always environmentally friendly. Conventional methods require natural gas or electrical power. The method advanced by the new device, called direct solar water splitting, only uses water and light from the sun.

If we can directly store solar energy as a chemical fuel, like what nature does with photosynthesis, we could solve a fundamental challenge of renewable energy,” said Zetian Mi, a professor of electrical and computer engineering at the University of Michigan who led the research while at McGill University in Montreal.

Faqrul Alam Chowdhury, a doctoral student in electrical and computer engineering at McGill, said the problem with solar cells is that they cannot store electricity without batteries, which have a high overall cost and limited life.

The device is made from the same widely used materials as solar cells and other electronics, including silicon and gallium nitride (often found in LEDs). With an industry-ready design that operates with just sunlight and seawater, the device paves the way for large-scale production of clean hydrogen fuel.

Previous direct solar water splitters have achieved a little more than 1 percent stable solar-to-hydrogen efficiency in fresh or saltwater. Other approaches suffer from the use of costly, inefficient or unstable materials, such as titanium dioxide, that also might involve adding highly acidic solutions to reach higher efficiencies. Mi and his team, however, achieved more than 3 percent solar-to-hydrogen efficiency.

Source: https://news.umich.edu/

A stamp-sized nanofilm stores more data than 200 DVDs

Ninety percent of the world’s data has been created in the last two years, with a massive 2.5 quintillion bytes generated every single day. As you might suspect, this causes some challenges when it comes to storage. While one option is to gradually turn every square inch of free land into giant data centers, researchers from the  Center for Advanced Optoelectronic Functional Material Research, Northeast Normal University (China) may have come up with a more elegant solution. In a potential breakthrough, they have developed a new nanofilm80 times thinner than a human hair — that is able to store large amounts of data holographically. A single 10-by-10 cm piece of this film could archive more than 1,000 times the amount of data found on a DVD. By our count, that means around 8.5 TB of data. This data can also be retrieved incredibly quickly, at speeds of up to 1GB per second: The equivalent of 20 times the reading speed of modern flash memory.

In the journal Optical Materials Express, the researchers detail the fabrication process of the new film. This involves using a laser to write information onto silver nanoparticles on a titanium dioxide (titania) semiconductor film. This stores the data in the form of 3D holograms, thereby allowing it to be compressed into smaller spaces than regular optical systems.

That’s exciting enough, but what really makes the work promising is the fact that the data is stored in a way that is stable. Previous attempts at creating films for holographic data storage have proven less resilient than alternate storage methods since they can be wiped by exposure to ultraviolet light. That makes them less-than-viable options for long-term information storage. The creators of this new film, however, have shown that it has a high stability even in the presence of such light. This environmental stability means that the device could be used outside — or even conceivably in harsher radiation conditions like outer space.

Going forward, the researchers aim to test their new film by putting it through its paces outdoors. Should all go according to plan, it won’t be too long before this is available on the market. We might be willing to throw down a few bucks on Kickstarter for a piece!

Source: https://www.osapublishing.org
AND
https://www.digitaltrends.com/

Non-toxic Virus Quickly Dissipate Heat From Electronic Devices

The researcher team of Tokyo Tech discovered that the film constructed by assembling a nontoxic filamentous virus functions as a heat dissipation material, and that can be simply prepared by drying the virus aqueous solution at room temperature. This discovery is expected to elucidate the mechanism of new heat transport in electronics.

Organic polymeric materials generally have low thermal conductivity and are not suitable for rapid heat dissipation of electric and electronic equipment in the past. In order to improve its thermal conductivity, it has been considered effective to heat transfer through a covalent bond by “orientation processing” in which molecules are aligned in the same direction, or to composite with an inorganic material.

A research team led by Assistant Professor Toshiki Sawada and Professor Takeshi Serizawa is focusing on the capability to form regularly assembled structures in a wide scale from nano to macro (so called hierarchical assembly) observed in the natural systems and the hierarchically assembled structures prepared in this way, the phenomenon where molecules accumulate around the perimeter as an aqueous solution in which molecules are dissolved evaporates (coffee ring effect) was utilized to assemble a filamentous virus for the film preparation. As a result, it was found that the thermal diffusivity at the edge of the film drastically enhanced to a value comparable to that of inorganic glass, and that facilitates the utilization of the hierarchically assembled biomacromolecule. This helps future development of electric and electronic devices composed of not only viruses but also various naturally derived molecules.

(a) Phage and (b) hexagonally assembled structures of the phages in the film.

Until now, orientation processing and compositing with inorganic materials have been considered effective for the high thermal conductivity of organic polymeric materials. However, since this virus film can be prepared by evaporating an aqueous solution of a filamentous virus at room temperature, it is expected to lead to the establishment of a method for easily constructing heat dissipation materials under mild conditions that do not require special operations.

Source: https://www.titech.ac.jp/

How To Hear Art

Are you aware of the fact that some of us can hear colors? Synesthesia, which is a neurological condition causing the stimulation of one sense to produce experiences in a different one, affects around 4% of the population. Thanks to the work of scientists from the Lodz University of Technology (Poland), soon there will be a way for the rest of us to experience a similar sensation too.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The “Hearing Art” project is an innovative system which enables its users to read digital images through the use of sound. Using motion sensor technology to map out the placement of each color in the chosen image, the app generates a sound suitable for each color. In order to do so, the system analyses the hue, saturation, and value of a color and uses its placement on the color wheel to emit an appropriate sound.

While the system could serve as an additional auditory sensation for just about any art lover, the researchers point towards the revolutionary potential of the technology for visually impaired people. Once implemented, the innovation could make art galleries much more accessible by enabling blind people to experience visual art in a completely different way. The project’s developers admit that the technology would not work for people who were completely blind from birth – it is however suitable for people whose visual impairment is partial, or acquired later in life.

So how does it work in practice? “The user aims at a specific point of a painting. As they start moving their arm in its vicinity, they begin hearing a melody, as each color, and each pixel of the image is assigned a different tone” – explains one of the system’s creators, Damian Jóźwiak.

While the project takes advantage of the fact that visually impaired people often experience a heightened sense of hearing, and are thus more sensitive to sound stimuli, the technology has been adapted for sighted participants as well. The motion sensor is marked with a red dot on the system’s display, which shows its placement on the original painting. By tracking the placement of the sensor on the image, users are able to associate each color with a sound.

As for its accuracy, preliminary tests conducted in the Lodz chapter of the Polish Association of the Blind have revealed an 80% success rate in “reading” colors with the use of the technology.The biggest shock came when one of the participants has attempted calling one of their visually impaired friends – the recipient was able to recognize 100% of the sounds and identify each color assigned to it – adds Jóźwiak.

So what’s in store for the project in the near future? The creators of the “Hearing Art” see its future in museums, where it could be experience by visually impaired and sighted patrons alike. If you feel like hearing colors could be an interesting experience, feel free to plan a trip to the Museum of Lodz in the near future, as the application will find its first home there.

Source: https://impactcee.com/

Perovskite Solar Cells One Giant Step Closer To The Market

Harnessing energy from the sun, which emits immensely powerful energy from the center of the solar system, is one of the key targets for achieving a sustainable energy supplyLight energy can be converted directly into electricity using electrical devices called solar cells. To date, most solar cells are made of silicon, a material that is very good at absorbing light. But silicon panels are expensive to produce.

Scientists have been working on an alternative, made from perovskite structures. True perovskite, a mineral found in the earth, is composed of calcium, titanium and oxygen in a specific molecular arrangement. Materials with that same crystal structure are called perovskite structuresPerovskite structures work well as the light-harvesting active layer of a solar cell because they absorb light efficiently but are much cheaper than silicon. They can also be integrated into devices using relatively simple equipment. For instance, they can be dissolved in solvent and spray coated directly onto the substrate.

Materials made from perovskite structures could potentially revolutionize solar cell devices, but they have a severe drawback: they are often very unstable, deteriorating on exposure to heat. This has hindered their commercial potential. The Energy Materials and Surface Sciences Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), led by Prof. Yabing Qi, has developed devices using a new perovskite material that is stable, efficient and relatively cheap to produce, paving the way for their use in the solar cells of tomorrow. This material has several key features:

  • First, it is completely inorganic – an important shift, because organic components are usually not thermostable and degrade under heat. Since solar cells can get very hot in the sun, heat stability is crucial. By replacing the organic parts with inorganic materials, the researchers made the perovskite solar cells much more stable..  “The solar cells are almost unchanged after exposure to light for 300 hours,” says Dr. Zonghao Liu, an author on the paper.
  • Second feature: Inorganic perovskite solar cells tend to have lower light absorption than organic-inorganic hybrids, however, but the OIST researchers doped their new cells with manganese in order to improve their performance. Manganese changes the crystal structure of the material, boosting its light harvesting capacity.  “Just like when you add salt to a dish to change its flavor, when we add manganese, it changes the properties of the solar cell,” says Liu.
  • Thirdly, in these solar cells, the electrodes that transport current between the solar cells and external wires are made of carbon, rather than of the usual gold. Such electrodes are significantly cheaper and easier to produce, in part because they can be printed directly onto the solar cells. Fabricating gold electrodes, on the other hand, requires high temperatures and specialist equipment such as a vacuum chamber.

The findings are published in Advanced Energy Materials. Postdoctoral scholars Dr. Jia Liang and Dr. Zonghao Liu made major contributions to this work.

Source: https://www.oist.jp/

How To Deliver Drug Deep In The Brain

By learning how rabies virus travels in the brain, Anti-Parkinson’s drug can be delivered deep in the brain where currently the drugs are not able to reachRabies virus has the capability to trick the nervous system and cross the blood brain barrier. This trick could be used for drug design. Glycoprotein 29 present on the rabies virus is attached to a nanoparticle stuffed full of deferoxamine ( Anti-Parkinson’s medication) and injected into the brain to trick the brain.

Rabies virus may have some tricks to bypass the blood brain barrier, this trick can be used to treat disease that require drugs to effectively cross the blood brain barrier, finds a new study.

The researchers can now exploit rabies viruses machinery to deliver a Parkinson’s disease medication directly to the brain. Upon injection the nanoparticles grab excess iron and relieve symptoms. While the common cause of Parkinson’s disease is unknown, it has been proved that accumulation of iron in neurons is one of the commonest features of Parkinson’s disease.

Deferoxamine is a metal-grabbing compound and sop up the excess iron in patients. But a large quantity of this drug needs to reach the brain in order for them work.
To usher deferoxamine into the brain, the researchers Yan-Zhong Chang, Xin Lou, Guangjun Nie took advantage of a key part of the rabies virusGlycoprotein 29.
When they injected this iron-grabbing nanoparticles into mouse models of Parkinson’s disease, the iron levels dropped and this reduced brain damage caused by Parkinson’s disease.

The findings of this study is published in the ACS Nano journal.

Source: https://www.acs.org/

Squeeze And Get More Power Out Of Solar Cells

Physicists at the University of Warwick have published new research in the Journal Science  that could literally squeeze more power out of solar cells by physically deforming each of the crystals in the semiconductors used by photovoltaic cells. The paper entitled the “Flexo-Photovoltaic Effect” was written by Professor Marin Alexe, Ming-Min Yang, and Dong Jik Kim who are all based in the University of Warwick’s Department of Physics.

The Warwick researchers looked at the physical constraints on the current design of most commercial solar cells which place an absolute limit on their efficiency. Most commercial solar cells are formed of two layers creating at their boundary a junction between two kinds of semiconductors, p-type with positive charge carriers (holes which can be filled by electrons) and n-type with negative charge carriers (electrons). When light is absorbed, the junction of the two semiconductors sustains an internal field splitting the photo-excited carriers in opposite directions, generating a current and voltage across the junction. Without such junctions the energy cannot be harvested and the photo-exited carriers will simply quickly recombine eliminating any electrical charge. That junction between the two semiconductors is fundamental to getting power out of such a solar cell but it comes with an efficiency limit. This Shockley-Queisser Limit means that of all the power contained in sunlight falling on an ideal solar cell in ideal conditions only a maximum of 33.7% can ever be turned into electricity.

There is however another way that some materials can collect charges produced by the photons of the sun or from elsewhere. The bulk photovoltaic effect occurs in certain semiconductors and insulators where their lack of perfect symmetry around their central point (their non-centrosymmetric structure) allows generation of voltage that can be actually larger than the band gap of that material. Unfortunately the materials that are known to exhibit the anomalous photovoltaic effect have very low power generation efficiencies, and are never used in practical power-generation systems. The Warwick team wondered if it was possible to take the semiconductors that are effective in commercial solar cells and manipulate or push them in some way so that they too could be forced into a non-centrosymmetric structure and possibly therefore also benefit from the bulk photovoltaic effect.

Extending the range of materials that can benefit from the bulk photovoltaic effect has several advantages: it is not necessary to form any kind of junction; any semiconductor with better light absorption can be selected for solar cells, and finally, the ultimate thermodynamic limit of the power conversion efficiency, so-called Shockley-Queisser Limit, can be overcome“,  explains Professor Marin Alexe  (University of Warwick).

Source: https://warwick.ac.uk/

Nanoscale Transistor


Flexible televisions
, tablets and phones as well as ‘truly wearable’ smart tech are a step closer thanks to a nanoscale transistor created by researchers at The University of Manchester and Shandong University in China. The international team has developed an ultrafast, nanoscale transistor – known as a thin film transistor, or TFT, – made out of an oxide semiconductor. The TFT is the first oxide-semiconductor based transistor that is capable of operating at a benchmark speed of 1 GHz. This could make the next generation electronic gadgets even faster, brighter and more flexible than ever before. A TFT is a type of transistor usually used in a liquid crystal display (LCD). These can be found in most modern gadgets with LCD screens such as smart phones, tablets and high-definition televisions.

How do they work? LCD features a TFT behind each individual pixel and they act as individual switches that allow the pixels to change state rapidly, making them turn on and off much more quickly. But most current TFTs are silicon-based which are opaque, rigid and expensive in comparison to the oxide semiconductor family of transistors which the team from the UK and China are developing. Whilst oxide TFTs will improve picture on LCD displays, it is their flexibility that is even more impressive.

Aimin Song, Professor of Nanoelectronics in the School of Electrical & Electronic Engineering, The University of Manchester, explains:

TVs can already be made extremely thin and bright. Our work may help make TV more mechanically flexible and even cheaper to produce. “But, perhaps even more importantly, our GHz transistors may enable medium or even high performance flexible electronic circuits, such as truly wearable electronics. “Wearable electronics requires flexibility and in many cases transparency, too. This would be the perfect application for our research. “Plus, there is a trend in developing smart homes, smart hospitals and smart cities – in all of which oxide semiconductor TFTs will play a key role.

Oxide-based technology has seen rapid development when compared to its silicon counterpart which is increasingly close to some fundamental limitations. Prof Song says there has been fast progress in oxide-semiconductors in recent years and extensive efforts have been made in order to improve the speed of oxide-semiconductor-based TFTs. So much so some oxide-based technology has already started replacing amorphous silicon in some gadgets. Prof Song thinks these latest developments have brought commercialisation much closer.

Source: http://www.manchester.ac.uk/

How Solar Cells Absorb 20 % More Sunlight

Trapping light with an optical version of a whispering gallery, researchers at the National Institute of Standards and Technology (NIST) have developed a nanoscale coating for solar cells that enables them to absorb about 20 percent more sunlight than uncoated devices. The coating, applied with a technique that could be incorporated into manufacturing, opens a new path for developing low-cost, high-efficiency solar cells with abundant, renewable and environmentally friendly materials.

Illustration shows the nanoresonator coating, consisting of thousands of tiny glass beads, deposited on solar cells. The coating enhances both the absorption of sunlight and the amount of current produced by the solar cells

The coating consists of thousands of tiny glass beads, only about one-hundredth the width of a human hair. When sunlight hits the coating, the light waves are steered around the nanoscale bead, similar to the way sound waves travel around a curved wall such as the dome in St. Paul’s Cathedral in London. At such curved structures, known as acoustic whispering galleries, a person standing near one part of the wall easily hears a faint sound originating at any other part of the wall.

Using a laser as a light source to excite individual nanoresonators in the coating, the team found that the coated solar cells absorbed, on average, 20 percent more visible light than bare cells. The measurements also revealed that the coated cells produced about 20 percent more current.

Source: https://www.nist.gov/

How To Turn On Cancer-Killing Immune Cells

A remote command could one day send immune cells on a rampage against a malignant tumor. The ability to mobilize, from outside the body, targeted cancer immunotherapy inside the body has taken a step closer to becoming reality. Bioengineers at the Georgia Institute of Technology have installed a heat-sensitive switch into T-cells that can activate the T-cells when heat turns the switch on. The method, tested in mice and published in a new study, is locally targeted and could someday help turn immunotherapy into a precision instrument in the fight against cancer.

Immunotherapy has made headlines with startling high-profile successes like saving former U.S. President Jimmy Carter from brain cancer. But the treatment, which activates the body’s own immune system against cancer and other diseases, has also, unfortunately, proved to be hit-or-miss.

In patients where radiation and traditional chemotherapies have failed, this is where T-cell therapies have shined, but the therapy is still new,” said principal investigator Gabe Kwong. “This study is a step toward making it even more effective.”

Cancer is notoriously wily, and when T-cells crawl into a tumor, the tumor tends to switch off the T-cellscancer-killing abilities. Researchers have been working to switch them back on.

Kwong’s remote control has done this in the lab, while also boosting T-cell activity. In the study, Kwong’s team successfully put their remote-control method through initial tests in mice with implanted tumors (so-called tumor phantoms, specially designed for certain experiments).

Source: http://www.rh.gatech.edu/

Adaptive Materials

Engineers at the U.S. Army Research Laboratory (ARL) and the University of Maryland have developed a technique that causes a composite material to become stiffer and stronger on-demand when exposed to ultraviolet light. This on-demand control of composite behavior could enable a variety of new capabilities for future Army rotorcraft design, performance and maintenance.

ARL‘s Dr. Frank Gardea, a research engineer, said the focus of the research was on controlling how molecules interact with each other. He said the aim was to “have them interact in such a way that changes at a small size, or nanoscale, could lead to observed changes at a larger size, or macroscale.”

Dr. Bryan Glaz, chief scientist of ARL‘s Vehicle Technology Directorate said “an important motivation for this work is the desire to engineer new structures, starting from the nanoscale, to enable advanced rotorcraft concepts that have been proposed in the past, but were infeasible due to limitations in current composites. One of the most important capabilities envisioned by these concepts is a significantly reduced maintenance burden due to compromises we make to fly at high speeds”, he said. The reduced scheduled maintenance of future Army aviation platforms is an important technological driver for future operating concepts.

Army researchers imagine a rotorcraft concept, which represents reactive reinforcements that when exposed to ultraviolet light will increase the mechanical behavior on-demand. The engineers said control of mechanical behavior could potentially lead to increased aerodynamic stability in rotorcraft structures.

The enhanced mechanical properties with potentially low weight penalties, enabled by the new technique, could lead to nanocomposite based structures that would enable rotorcraft concepts that we cannot build today,” Glaz said.

The joint work, recently published in Advanced Materials Interfaces (DOI: 10.1002/admi.201800038), shows that these composite materials could become 93-percent stiffer and 35-percent stronger after a five minute exposure to ultraviolet light. The technique consists of attaching ultraviolet light reactive molecules to reinforcing agents like carbon nanotubes. These reactive reinforcing agents are then embedded in a polymer. Upon ultraviolet light exposure, a chemical reaction occurs such that the interaction between the reinforcing agents and the polymer increases, thus making the material stiffer and stronger.

ource: https://www.arl.army.mil/

How To End Malaria

Gene-editing technologies that alter mosquitoesDNA could prove critical in the fight against malaria, Bill Gates said on Wednesday, and ethical concerns should not block progress in such gene-modifying research.

Speaking at the Malaria Forum conference in London, the billionaire Microsoft co-founder and philanthropist said that while gene editing raises “legitimate questions”, that should not jeopardize exploration of tools such as CRISPR gene editing and so-called “gene drive” technologies.

I’m very energized about the potential of gene drive. (It’s) the kind of breakthrough we need to support,” Gates said. “It may prove critical here.” 

Gene drive technologies alter DNA and drive self-sustaining genetic changes through multiple generations by overriding normal biological processes. CRISPR technology enables scientists to find and modify or replace virtually any gene. The techniques are being explored across science – from human medicine to livestock– and crop-breeding. In mosquitoes that transmit malaria, genetic alterations can be used to induce infertility to reduce populations, or alter the insects’ ability to carry and pass on the malaria parasite. 

The technologies can be extremely powerful, but they are also controversial, since such genetically engineered organisms released into the environment could have an unknown and irreversible impact on the ecosystem. Asked in a interview with Reuters about that controversy, Gates said there were understandable concerns about safety and efficacy that would need to be addressed in research and trials. But he countered: “Malaria itself is quite controversial – it kills about 400,000 kids a year. So we’re definitely not on the side of malaria.”

He also noted that at their summit in January, leaders of the African Union endorsed gene drive research as part of the fight against a disease that continues to kill their people.

Source: https://www.reuters.com/

Tool Speeds Up Manufacturing Of Powered Wearable

People could soon power items such as their mobile phones or personal health equipment by simply using their daily movements, thanks to a new research tool that could be used by manufacturers.

In a new paper published by Nano Energy, experts from the Advanced Technology Institute (ATI) at the University of Surrey (UK) detail a new  methodology that allows designers of smart-wearables to better understand and predict how their products would perform once manufactured and in use.

The technology is centred on materials that become electrically charged after they come into contact with each other, known as triboelectric materials – for example, a comb through hair can create an electrical charge. Triboelectric Nanogenerators (TENGs), use this static charge to harvest energy from movement through a process called electrostatic induction. Over the years, a variety of TENGs have been designed which can convert almost any type of movement into electricity. The University of Surrey’s tool gives manufacturers an accurate understanding of the output power their design would create once produced.

This follows the news earlier this year of the ATI announcing the creation of its £4million state-of-the-art Nano-Manufacturing Hub. The new facility will produce plastic nanoscale electronics for wearable sensors, electronic tags and other electronic devices.

Ishara Dharmasena, lead scientist on this project from the University of Surrey, said: “The future global energy mix will depend on renewable energy sources such as solar power, wind, motion, vibrations and tidal. TENGs are a leading technology to capture and convert motion energy into electricity, extremely useful in small scale energy harvesting applications. Our work will, for the first time, provide universal guidance to develop, compare and improve various TENG designs. We expect this technology in household and industrial electronic products, catering to a new generation of mobile and autonomous energy requirements.”

Source: https://www.surrey.ac.uk/

Plastic-Eating Enzyme

Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world’s biggest environmental problems. The discovery could result in a recycling solution for millions of tonnes of plastic bottles, made of polyethylene terephthalate, or PET, which currently persists for hundreds of years in the environment. The research was led by teams at the University of Portsmouth and the US Department of Energy’s National Renewable Energy Laboratory (NREL) and is published in Proceedings of the National Academy of Sciences (PNAS).

 Professor John McGeehan at the University of Portsmouth and Dr Gregg Beckham at NREL solved the crystal structure of PETase—a recently discovered enzyme that digests PET— and used this 3D information to understand how it works. During this study, they inadvertently engineered an enzyme that is even better at degrading the plastic than the one that evolved in nature. The researchers are now working on improving the enzyme further to allow it to be used industrially to break down plastics in a fraction of the time.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Few could have predicted that since plastics became popular in the 1960s huge plastic waste patches would be found floating in oceans, or washed up on once pristine beaches all over the world. “We can all play a significant part in dealing with the plastic problem, but the scientific community who ultimately created these ‘wonder-materials’, must now use all the technology at their disposal to develop real solutions,” said Professor McGeehan, Director of the Institute of Biological and Biomedical Sciences in the School of Biological Sciences at Portsmouth,

Source: http://uopnews.port.ac.uk/

The Zero Bills Home

The Zero Bills Home build at the BRE Innovation Park in UK represents the first show home for a new 96 home zero bills development in Newport Essex for the Sir Arthur Ellis family Trust. Newport is 8 miles from Stansted and 15 miles from Cambridge. The new zero bills village is 150 yards from a station on the Bishopsgate / Cambridge railway line.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Superinsulated concrete foundation slab with optional additional piles to match most ground conditions.Laser cut galv steelpowder coated structural ring beam with C16 UK timber studs. UK fabricated OSB structural boards enables one floor to be built every two days. Superinsulated cladding with heat recovery ventilation and triple glazing reduces heat demand to the point where a tiny heat pump can provide comfort and hot water. ZED Factory designed BIPV solar roofing system provides durable roof with electric generation and optional solar loft conservatory. Good daylight, water saving appliances and LED lighting reduces electric demand allowing surplus solar electricity to power an electric car. A smart LIPO4 Fitcraft battery system, positioned under the stair stores solar electricity, minimising grid imports and limiting grid export to 3kW maximum avoids the need to upgrade the existing mains grid infrastructure. The system enables simple, adaptable plans which create convenient internal layouts for any plot orientation.

The system build costs at scale are circa £1450- £1650/ m2 (around 1500 euros/m2) for a completed building which compares favourably with current costs of meeting building regulations. Combined with no net annual energy bills and the potential to achieve higher resale values based on the additional features of the building, the ZBH system offers a cost effective and sustainable alternative to traditional builder offerings. 

Source: https://www.zedfactory.com/

Human Internal Verbalizations Understood Instantly By Computers

MIT researchers have developed a computer interface that can transcribe words that the user verbalizes internally but does not actually speak aloud. The system consists of a wearable device and an associated computing system. Electrodes in the device pick up neuromuscular signals in the jaw and face that are triggered by internal verbalizations — saying wordsin your head” — but are undetectable to the human eye. The signals are fed to a machine-learning system that has been trained to correlate particular signals with particular words. The device also includes a pair of bone-conduction headphones, which transmit vibrations through the bones of the face to the inner ear. Because they don’t obstruct the ear canal, the headphones enable the system to convey information to the user without interrupting conversation or otherwise interfering with the user’s auditory experience.

The device is thus part of a complete silent-computing system that lets the user undetectably pose and receive answers to difficult computational problems. In one of the researchers’ experiments, for instance, subjects used the system to silently report opponents’ moves in a chess game and just as silently receive computer-recommended responses.

The motivation for this was to build an IA device — an intelligence-augmentation device,” says Arnav Kapur, a graduate student at the MIT Media Lab, who led the development of the new system. “Our idea was: Could we have a computing platform that’s more internal, that melds human and machine in some ways and that feels like an internal extension of our own cognition?” “We basically can’t live without our cellphones, our digital devices,” adds Pattie Maes, a professor of media arts and sciences and Kapur’s thesis advisor. “But at the moment, the use of those devices is very disruptive. If I want to look something up that’s relevant to a conversation I’m having, I have to find my phone and type in the passcode and open an app and type in some search keyword, and the whole thing requires that I completely shift attention from my environment and the people that I’m with to the phone itself. So, my students and I have for a very long time been experimenting with new form factors and new types of experience that enable people to still benefit from all the wonderful knowledge and services that these devices give us, but do it in a way that lets them remain in the present.”

Source: http://news.mit.edu/

Revolutionary NanoDrops Replace Glasses

Israeli scientists and clinicians appear to have come up with “revolutionary” eye-drops that can correct short– or long-sightedness and eliminate the need for glasses. The so-called ‘nano-drops’ have been developed by a team at Sha’are Zedek Medical Center and Bar-Ilan University’s Institute of Nanotechnology and Advanced Materials.

They have been shown to improve both short-sightedness (myopia) and long-sightedness (hyperopia) in tests on pigs, with plans to begin clinical testing on humans later this year.

If the drops are found to improve human vision then the nano-drops solution could eliminate the need for glasses and “revolutionise ophthalmological and optometry treatment”.

Prospective patients would use a smartphone app to scan their eyes, measure their refraction, create a laser pattern then apply a “laser corneal stamping” of an optical pattern onto the corneal surface of their eyes.

Source: http://jewishnews.timesofisrael.com/

Taiwanese Electric SuperCar Aims To Take On Tesla

Hailed as the world’s first electric supercar with onroad and offroad capabilities, the “Miss R” is the company’s electric vehicle (EV) designed for serious performance driving. Harnessing a four-wheel torque vectoring system capable of launching it at roughly 168 MPH (270 km/h), 4 independent electric motors rated at 350V each will give the Miss R the edge over Tesla’s future Roadster 2.0 (base version). The 0–60 MPH will be covered in 1.8 seconds and the 0–124 MPH (200 km/h) in a blistering 5.1 seconds.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

What makes the Electric Supercar XING Mobility Miss R different from other high-end performance EVs is that it is designed to reach that performance on almost any road surface. On-road, on-track, and off-road is the leitmotiv of the company that wants to offer a versatile driving experience no matter what the pavement.

According to XING Mobility’s Co-founder and CEO, Royce YC Hong: “Miss R is the embodiment of the paradigm shift of EVs surpassing traditional combustion-engine cars in both performance and capability. The core idea behind the prototype is to achieve game-changing performance levels and driving experiences that are otherwise impossible to achieve in a gasoline-powered vehicle.” Indeed, XING Mobility is out to prove once and for all that the electric drivetrain is far superior to its contemporary internal combustion engine (ICE) cousin.

Source: https://www.xingmobility.com/

Ultra-Powerful Batteries

From smartphones to electric vehicles, many of today’s technologies run on lithium ion batteries. That means that consumers have to keep their chargers handy. An iPhone X battery only lasts for 21 hours of talk time, and Tesla’s model S has a 335-mile range—which means you could expect to make it from Newark, Delaware to Providence, Rhode Island, but not all the way to Boston, on one charge. Scientists all over the world—including  even the inventor of lithium ion batteries himself, John Goodenough—are looking for ways to make rechargeable batteries safer, lighter, and more powerful.

Now, an international team of researchers led by Bingqing Wei, a professor of mechanical engineering at the University of Delaware and the director of the Center for Fuel Cells and Batteries, is doing work that could lay the foundation for more widespread use of lithium metal batteries, which have more capacity than the lithium ion batteries commonly used in consumer electronics today. The team developed a method to mitigate dendrite formation in lithium metal batteries, which they  have described in a paper published in Nano Letters.

In a lithium ion battery, the anode, or current-generating side, is made of a material, such as graphite, with lithium ions bound to it. The lithium ions flow to the cathode, or current-collecting side.

In a lithium metal battery, the anode is made of lithium metal. Electrons flow from the anode to the cathode to generate electricity. Rechargeable batteries made of lithium metal hold a lot of promise because lithium is the most electrically positive metal and has a very high capacity.

“Theoretically, lithium metal is one of the best choices for batteries, but it is hard to handle in practice,” Wei said.

Lithium metal batteries have been inefficient, unstable, and even a fire hazard thus far. Their performance is hampered by lithium dendrites, formations that look like tiny stalagmites made of lithium deposits. As a battery is being used, lithium ions collect on the anode. Over time, the lithium deposits become non-uniform, leading to the formations of these dendrites, which can cause the battery to short circuit.

Source: http://www.udel.edu/