This is default featured slide 1 title
This is default featured slide 2 title
This is default featured slide 3 title
This is default featured slide 4 title
This is default featured slide 5 title

How Huawei Is Dividing Western Nations

The relationship between the United Kingdom and Australia is not usually a flashpoint in international relations. After all, the two allies share a common language, ancestry, and monarch. So what caused a dustup recently that saw a senior Australian parliamentarian rebuke the British foreign secretary, and for a group of Australian MPs to then cancel a trip to London in protest?

The answer is fears over , the Chinese telecom giant at the center of the 5G next-generation wireless debate. Australian officials were miffed when the British government recommended that the company be allowed to play a limited role in the U.K.’s 5G deployment despite calling it a “high risk” supplier due to its close ties to the Chinese government (the company’s founder, Ren Zhengfei, served for many years as an engineer in the People’s Liberation Army). The Australian government, a fellow member of the Five Eyes intelligence alliance (which includes the two countries plus the United States, Canada, and New Zealand), disagreed back in 2017 when it barred Huawei on national security grounds.

Now, two close allies are at cross purposes about the very future of the internet. What’s at stake is not just who equips the future of telecom infrastructure, but the very values that the internet itself holds.

It’s not just Australia and Britain that find themselves separated by an ocean (or two). In America, Huawei has become the Trump Administration’s favorite company to hate. In a speech at this year’s Munich Security Conference, Defense Secretary Mark Esper called the company “today’s poster child” for “nefarious activity” while another White House official compared the company to “the Mafia.”  It should come as no surprise that the company is the target of trade restrictions, a criminal action against its CFO, and a concerted diplomatic campaign. 

America’s concerns are twofold. First, that critical infrastructure provided by a Chinese company with such close ties to the country’s central leadership is an unacceptable security risk. Second, that arresting Huawei’s increasing dominance risks surrendering any chance for American leadership in 5G technology.

National security considerations have predominantly driven policymakers in Australia. More alert by geography to the strategic risks posed by China, Canberra moved early and decisively to bar Huawei from participating in its 5G networks at all. “The fundamental issue is one of trust between nations in cyberspace,writes Simeon Gilding, until recently the head of the Australian Signals Directorate’s signals intelligence and offensive cyber missions.

That lack of trust between China and Australia is compounded by the difficult geopolitics of the Asia-Pacific. “It’s not hard to imagine a time when the U.S. and China end up in some sort of conflict,” says Tom Uren of the Australian Strategic Policy Institute (ASPI). “If there was a shooting war, it is almost inevitable that the U.S. would ask Australia for assistance and then we’d be in this uncomfortable situation if we had Huawei in our networks that our critical telecommunications networks would literally be run by an adversary we were at war with.

Source: https://techcrunch.com/

Can Plasma From Recovered Covid-19 Patients Cure Infected Others?

US Food and Drug Administration (FDA) officials announced today they have approved plans for nationwide trials of two treatments for Covid-19, the global pandemic disease caused by the new coronavirus—and for their simultaneous use in perhaps hundreds of hospitals.

The therapeutic agents—convalescent plasma and hyperimmune globulin—are both derived from the blood of people who have recovered from the disease, decoctions of the antibodies that the human immune system makes to fight off germs.

 

This is an important area of research—the use of products made from a recovered patient’s blood to potentially treat Covid-19,” said FDA commissioner Stephen Hahn in a release announcing the trials. “The FDA had played a key role in organizing a partnership between industry, academic institutions, and government agencies to facilitate expanded access to convalescent plasma. This is certainly a great example of how we can all come together to take swift action to help the American people during a crisis.”

Physicians are already using a somewhat haphazard collection of antiviral and other drugs for people critically ill with Covid-19, because they don’t have any other options. Nothing—no drug, no vaccine—is approved for use specifically against Covid-19 in the United States, so any new possibility is a hopeful one. Convalescent plasma and hyperimmune globulin join the rarified group of therapeutics that scientists are testing, including a trial of the Ebola drug remdesivir and the much-hyped antimalarial/immune suppressants chloroquine and hydroxychloroquine.

Using blood products from people who’ve already beaten a disease is a century-old approach, predating vaccines and antibiotics. Inspired by its use against polio, two physicians at a Naval hospital in Massachusetts tried it on people who had pneumonia as a result of influenza in 1918, with enough success to warrant more tests. The quality of actual studies of efficacy has varied over the decades, but health care workers used convalescent plasma against SARS, MERS, and Ebola. And a couple of studies—small and preliminary—have shown convalescent plasma having some promise against SARS-CoV-2 as well.

It was all promising enough that the FDA wanted to make sure current patients could have access to the plasma at the same time that researchers were starting a more rigorous investigation. “This seems like ancient history, but maybe it isn’t. There have been niche uses of it for a while,” says Michael Joyner, a physiologist at the Mayo Clinic who in March spearheaded the creation of an ad hoc coalition of researchers interested in pursuing the therapy. Joyner is facilitating the 40-center trial of the new therapies approved today by the FDA, with researchers at Johns Hopkins leading the science. (Joyner himself received gamma globulin, a variant of the treatment, as a preventative against hepatitis B in the 1980s, when he was a medical student.)

At Houston Methodist Hospital, James Musser, the chair of Pathology and Genome Medicine, is a friend of Arturo Casadevall, the Johns Hopkins University immunologist who proposed using convalescent serum early in the pandemic. Musser pushed to get his hospital involved, putting out a call for donors—people who had confirmed positive tests for the virus and had gone at least 14 days without symptoms. His hospital is already doing compassionate-use transfusions. “So far, as of yesterday, we’ve transfused four patients,” Musser said on Thursday. He expected a fifth to receive plasma today. And how’d it work?The truth is, it’s far too early,” Musser says. “We, nationally, need to do controlled trials and understand, first and foremost, is this a safe therapeutic? There’s lots of reasons to think it will be, but you never know.”

Source: https://www.wired.com/

90% of patients contaminated by COVID-19 Have Lost Their Sense Of Smell

An European study led by a French research team at Hopital Foch in Paris (Suresnes) has concluded that nearly 90% of  contaminated patients by coronavirus have lost their sense of smell.

Patients with laboratory-confirmed COVID-19 infection were recruited from 12 European hospitals. The following epidemiological and clinical outcomes have been studied: age, sex, ethnicity, comorbidities, general and otolaryngological symptoms. Patients completed olfactory and gustatory questionnaires based on the smell and taste component of the National Health and Nutrition Examination Survey, and the short version of the Questionnaire of Olfactory Disorders-Negative Statements (sQOD-NS).

A total of 417 mild-to-moderate COVID-19 patients completed the study (263 females). The most prevalent general symptoms consisted of cough, myalgia and loss of appetite. Face pain and nasal obstruction were the most specific otolaryngological symptoms85.6% and 88.0% of patients reported olfactory and gustatory dysfunctions, respectively.

There was a significant association between both disorders (p<0.001). Olfactory dysfunction (OD) appeared before the other symptoms in 11.8% of cases. The sQO-NS scores were significantly lower in patients with presumed anosmia compared with normosmic or presumed hyposmic individuals (p=0.001). Among the 18.2% of patients without nasal obstruction or rhinorrhea, 79.7% had olfactory dysfunction. The early olfactory recovery rate was 44.0%. Females were significantly more affected by olfactory and gustatory dysfunctions than males (p=0.001).
The researchers stated that
olfactory and gustatory disorders are prevalent symptoms in European COVID-19 patients, who may not have nasal symptoms. The sudden olfactory and gustatory dysfunctions need to be recognized by the international scientific community as important symptoms of the COVID-19 infection.

Source: https://www.entnet.org/

On Mars or Earth, biohybrid can turn CO2 into new products

If humans ever hope to colonize Mars, the settlers will need to manufacture on-planet a huge range of organic compounds, from fuels to drugs, that are too expensive to ship from Earth. University of California, Berkeley, and Lawrence Berkeley National Laboratory (Berkeley Lab) chemists have a plan for that.

For the past eight years, the researchers have been working on a hybrid system combining bacteria and nanowires that can capture the energy of sunlight to convert carbon dioxide and water into building blocks for organic molecules. Nanowires are thin silicon wires about one-hundredth the width of a human hair, used as electronic components, and also as sensors and solar cells.

A device to capture carbon dioxide from the air and convert it to useful organic products. On left is the chamber containing the nanowire/bacteria hybrid that reduces CO2 to form acetate. On the right is the chamber where oxygen is produced

On Mars, about 96% of the atmosphere is CO2. Basically, all you need is these silicon semiconductor nanowires to take in the solar energy and pass it on to these bugs to do the chemistry for you,” said project leader Peidong Yang, professor of chemistry and Energy at UC Berkeley. “For a deep space mission, you care about the payload weight, and biological systems have the advantage that they self-reproduce: You don’t need to send a lot. That’s why our biohybrid version is highly attractive.”

The only other requirement, besides sunlight, is water, which on Mars is relatively abundant in the polar ice caps and likely lies frozen underground over most of the planet, said Yang, who is a senior faculty scientist at Berkeley Lab and director of the Kavli Energy Nanoscience Institute.

The biohybrid can also pull carbon dioxide from the air on Earth to make organic compounds and simultaneously address climate change, which is caused by an excess of human-produced CO2 in the atmosphere.

In a new paper published in the journal Joule, the researchers report a milestone in packing these bacteria (Sporomusa ovata) into a “forest of nanowires” to achieve a record efficiency: 3.6% of the incoming solar energy is converted and stored in carbon bonds, in the form of a two-carbon molecule called acetate: essentially acetic acid, or vinegar.

Source: https://news.berkeley.edu/

Covid Voice Detector

Record your voice to help save lives!

Carnegie Mellon University, voca.ai, telling.ai, hat-ai.com and Incremental Healthcare LLC collaboratively bring you this experimental system designed to detect signatures of Covid-19 infections in your voice. This is a free service.​

The team of voice scientists and engineers are working on voice forensic technologies. The Covid-19 pandemic is spreading rapidly across the world. There is a growing shortage of medical testing facilities. Tens of thousands of potentially infected people who need to be tested do not have easy access to medical tests. The goal is to develop a voice-based testing system for Covid-19, that could potentially reach every person in the world.​

A website provides Covid-19 assessment from voice. You may try it out, but please see the disclaimer. To make this system accurate, the research team urgently need examples of voices from healthy and infected people. Please use this system to donate your voice. Please ask your friends family to also do so. Together we may help save lives.​

What this system currently provides: This is an AI-powered system that analyzes your voice and gives you a score. The score is a rating on a scale of 1-10 that tells you the likelihood that your voice carries signatures of Covid-19. The higher the returned rating, the greater the likelihood that you may be infected. In addition, the system provides an assessment of your lung capacity where possible. ​

Please remember that this system is still very much under development. It will improve as the scientists obtain more data from healthy and infected individuals. Everyone is urged to contribute data, particularly if you are or have been infected. Please act responsibly and provide accurate information. The accuracy of the data we obtain will dictate our ability to succeed.

Source; https://cvd.lti.cmu.edu/

Nanodevice 100 Times Faster Than The Usual Transistor

Researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland have developed a nanodevice that operates more than 10 times faster than today’s fastest transistors, and about 100 times faster than the transistors you have on your computers. This new device enables the generation of high-power terahertz waves. These waves, which are notoriously difficult to produce, are useful in a rich variety of applications ranging from imaging and sensing to high-speed wireless communications. The high-power picosecond operation of these device also hold immense promise to some advanced medical treatment techniques such as cancer therapy. The team’s pioneering compact source, described today in Nature, paves the way for untold new applications.

Terahertz (THz) waves fall between microwave and infrared radiation in the electromagnetic spectrum, oscillating at frequencies of between 100 billion and 30 trillion cycles per second. These waves are prized for their distinctive properties: they can penetrate paper, clothing, wood and walls, as well as detect air pollution. THz sources could revolutionize security and medical imaging systems.

What’s more, their ability to carry vast quantities of data could hold the key to faster wireless communications.

THz waves are a type of non-ionizing radiation, meaning they pose no risk to human health. The technology is already used in some airports to scan passengers and detect dangerous objects and substances.

Despite holding great promise, THz waves are not widely used because they are costly and cumbersome to generate. But new technology developed by researchers at EPFL could change all that. The team at the Power and Wide-band-gap Electronics Research Laboratory (POWERlab), led by Prof. Elison Matioli, built a nanodevice (1 nanometer = 1 millionth of a millimeter) that can generate extremely high-power signals in just a few picoseconds, or one trillionth of a second, – which produces high-power THz waves.

The technology, which can be mounted on a chip or a flexible medium, could one day be installed in smartphones and other hand-held devices. The work first-authored by Mohammad Samizadeh Nikoo, a PhD student at the POWERlab, has been published in the journal Nature.

Source: https://actu.epfl.ch/

A cure to combat the coronavirus is working

A French team in Marseille, led by the Professor Didier Raoult, has experimented a new method to save lives during the coronavirus outbreak. Anyone that presents himself at the hospital is tested to the COVID-19 and if positive, immediately get a cure during 5 days with a drug combo, hydroxychloriquine +/- azythromycine.

After a week, 1291 patients were cured and one died. The test is going on.  A website is updating the counting every new day with fresh results.

Source: https://www.mediterranee-infection.com/

The Number Of Coronavirus Silent Carriers Much Greater Than Previously Thought

Scientists are calling for urgent studies to determine the proportion of people with coronavirus who show no, or delayed, symptoms amid concern that the number of silent carriers may be greater than previously thought.

Iceland, which says it’s tested a higher proportion of inhabitants than any other country, found that about half those who tested positive have no symptoms of Covid-19, Thorolfur Gudnason, the nation’s chief epidemiologist, told BuzzFeed News. As many as a third of the people who test positive show delayed symptoms or none at all, the South China Morning Post reported Sunday, citing classified data from the Chinese government.

The high rate of asymptomatic cases can complicate efforts to stop the spread of the disease because many countries aren’t testing people unless they’re seriously ill. A report by a joint WHO-China mission last month described such infections as “relatively rare” and not appearing to be major drivers of transmission.

Source: https://www.bloomberg.com/

Simple finger-prick tests Coronavirus

Millions of finger-prick coronavirus home-tests could be ready to order on Amazon or pick up in Boots in a matter of days, according to Public Health England (PHE). Sharon Peacock, of PHE‘s National Infection Service, said 3.5million antibody tests the Government has bought will be available in the ‘near future‘.

Asked whether these could be within several days, she told the House of Commons Science and Technology Committeeabsolutely’. However, Professor Peacock did not explain if the test would be free on the NHS or if suspected patients would have to pay. Health chiefs say the tests – which scour a sample of blood for antibodies made by the body to fight the virus – will initially be available for frontline healthcare staff.

The Government’s aim is to get thousands of doctors, nurses and paramedics who have had to self isolate at home as a precaution back to workPHE has not revealed who is manufacturing the tests, which detect if someone has had the infection previously and is now immune.

Japan Begins Testing A DNA Coronavirus Vaccine

Japanese biopharmaceutical firm Anges Inc said on Tuesday that it and Osaka University had completed development of a DNA vaccine against the new coronavirus and that it would begin testing it in animals soonShares of Anges surged as much as 17% in morning trade in Tokyo, compared with a 5.3% gain in the broader market.

Anges, a drug-discovery company launched out of Osaka University, announced its collaboration with the school on a coronavirus vaccine on March 5. DNA vaccines are produced using an inactivated virus and can manufactured faster than protein based vaccines, according to the company statement. Takara Bio Co is in charge of production of the vaccine and Daicel Corp’s gene-transfer technology is also being utilized, the statement said.

Global pharma companies are racing to develop vaccines and treatments for coronavirus, which has reached 350,000 cases globally and resulted in over 15,000 deaths. In Japan, market leader Takeda Pharmaceutical Co is working on a plasma-derived therapy, while the active ingredient in Fujifilm Holdings Corp’s Avigan anti-flu drug is being tested as a treatment in China. [nL4N2BG4MK]

Source: https://www.reuters.com/

How To Catch Aggressive Prostate Cancer Early

Two newly published studies are presenting novel diagnostic techniques to help catch the most aggressive forms of prostate cancer at an early stage. A University of East Anglia study presents an innovative way to measure gene expression in tumor samples and predict disease severity, while an Australian study details a new kind of imaging technique promising to detect metastasized prostate cancer with greater accuracy than ever before.

Two new techniques are designed to detect aggressive forms of prostate cancer and catch it when it metastasizes

Prostate cancer is the most common cancer in men in the UK,” explains Colin Cooper, lead researcher on a new study from the University of East Anglia. “It usually develops slowly and the majority of cancers will not require treatment in a man’s lifetime. However, doctors struggle to predict which tumors will become aggressive, making it hard to decide on treatment for many men.”

In order to develop a way for doctors to better identify the most aggressive tumors the researchers examined different gene expression patterns in nearly 2,000 prostate tumor samples. Applying a mathematical model called Latent Process Decomposition, the study homed in on a particular pattern of gene expression associated with the most aggressive clinical cases.

The pattern relates to a subtype of cells the team has labeled DESNT, and suggest the more tumor cells in a sample that are of that DESNT subtype, the faster a patient will progress through the disease. The hope is that this can act as a biomarker to stratify prostate cancer patients, identifying those needing more urgent invasive treatments.

If you have a tumor that is majority DESNT you are more likely to get metastatic disease, in other words it is more likely to spread to other parts of your body,” says Daniel Brewer, co-lead researcher on the project. “This is a much better indication of aggressive disease.”

Identifying when prostate cancer has metastasized is obviously of vital importance in guiding treatment. A team of Australian researchers just published the results of a clinical trial evaluating the efficacy of a new imaging technique developed to provide detailed data on the spread of the disease.

Around one in three prostate cancer patients will experience a disease relapse after surgery or radiotherapy,” says Declan Murphy, senior author on the new imaging study. “This is partly because current medical imaging techniques often fail to detect when the cancer has spread, which means some men are not given the additional treatments they need.”

Source: https://newatlas.com/

France Experiments Anti-Malarial And Antibiotic Combo To Fight COVID-19

A new study whose results were published in the International Journal of Antimicrobial Agents has found early evidence that the combination of hydroxychloroquine, a popular anti-malaria drug known under the trade name Plaqenuil, and antibiotic azithromycin (aka Zithromax or Azithrocin) could be especially effective in treating the COVID-19 coronavirus and reducing the duration of the virus in patients.

The researchers performed a study on 30 confirmed COVID-19 patients, treating each with either hydroxychloroquine on its own, a combination of the medicine with the antibiotic, as well as a control group that received neither. The study was conducted after reports from treatment of Chinese patients indicated that this particular combo had efficacy in shortening the duration of infection in patients.

20 of the 30 participants in the study received treatment, and the results showed that while hydroxycholoroquine was effective on its own as a treatment, when combined with azithromycin it was even more effective, and by a significant margin.

Since yesterday, tests have been conducted on a large scale through Europe in the hope to validate the first results.

Source: https://techcrunch.com/

mRNA Are Super Potent Molecules, Fast And Efficient Against Coronavirus

CureVac AG, a clinical stage biopharmaceutical company pioneering mRNA-based drugs for vaccines and therapeutics, confirmed today that internal efforts are focused on the development of a coronavirus vaccine with the goal to reach, help and to protect people and patients worldwide. Based on its inherent mode of action, CureVac sees mRNA as one of the most potent molecules to provide fast and efficient solutions in outbreak scenarios, such like the Coronavirus. With inhouse expertise of over two decades and the company’s deep scientific understanding CureVac is leveraging its potent vaccine platform to focus on developing a potent, efficacious and safe and fast to produce vaccine against Covid-19.

CureVac recently announced successful vaccination results in its Rabies program fully protecting humans with two doses of only 1 microgram (1 millionth of a gram). These results are encouraging when thinking of supplying populations and people worldwide in a pandemic scenario. The company also has long and strong manufacturing expertise for mRNA-based vaccines and therapeutics since 2006. At this time, CureVac is working on expanding its manufacturing capacities to be able to provide up to billions of doses for outbreak situations like Covid-19.

Nature has invented mechanisms to activate our immune system against infectious diseases. With our unique messenger RNA technology we mimic nature and give our body the information how to fight against the virus. The combination of mRNA science, disease understanding, formulation and production expertise make CureVac a unique player to fight against any infectious disease, no matter whether they are seasonal or pandemic,” commented Mariola Fotin-Mleczek, Chief Technology Officer of CureVac.

Source: https://www.curevac.com/

Australian Researchers Map Immune Response To Coronavirus

Australian researchers said on Tuesday they have mapped the immune responses from one of country’s first coronavirus patients, findings the health minister said were an important step in developing a vaccine and treatment. The coronavirus has infected more than 168,000 people worldwide and killed at least 6,610, according to the World Health Organization (WHO). While the bulk of those infected experience only mild symptoms, it is severe or critical in 20% of patients. The virus mortality rate is about 3.4%, the WHO has estimated.

As scientists scramble to develop a vaccine, researchers at Australia’s Peter Doherty Institute for Infection and Immunity said they had taken an important step in understanding the virus. By examining the blood results from an unidentified woman in her 40s, they discovered that people’s immune systems respond to coronavirus in the same way it typically fights flu.

The findings help scientists understand why some patients recover while others develop more serious respiratory problems, the researchers said.

Source: https://www.reuters.com/

Two New Trials of Coronavirus Treatment

Drugs used for treating arthritis are being tested as treatments for COVID-19, the disease caused by a new coronavirus, as researchers rush to find ways of helping patients and slowing the number of infectionsSanofi and Regeneron Pharmaceuticals said on Monday they began a clinical trial of their rheumatoid arthritis drug Kevzara as a coronavirus treatment, while in Spain a separate trial is studying if a combination of two drugs can slow down the spread of coronavirus among people. Enrolments for the mid-to-late stage trial of Kevzara, an immune-system modifying drug known as a monoclonal antibody, will begin immediately and test up to 400 patients, Sanofi and Regeneron said in a joint statement. Regeneron in February announced a partnership with the U.S. Department of Health and Human Services to develop a treatment for the new coronavirus, called SARS-CoV2, and said it would focus on monoclonal antibodies.

The virus that emerged in central China in December has now infected more than 179,000 people worldwide, according to the Johns Hopkins University, which is tracking these figures. Doctors have seen that many of those who become critically ill from SARS-CoV2 are experiencing a so-called cytokine storm, which happens when the immune system overreacts and attacks the body’s organs. Some researchers think drugs that can suppress the immune system, including monoclonal antibodies, might be useful for limiting this autoimmune response.

Meanwhile, Barcelona-based researchers said on Monday they would administer a drug used to treat HIV – containing darunavir and cobicistat – to a coronavirusinfected person. The patient’s close contacts would be administered hydroxychloroquine, a drug for malaria and rheumatoid conditions because laboratory experiments suggest it prevents this strain of coronavirus from reproducing. “The goal of our study is to separate the transmission chains,” Oriol Mitja, researcher at Germans Trias i Pujol Research Institute, told a news briefing. Patients with coronavirus can infect between 5% and 15% of the people they come into contact with during the 14 days after starting to show symptoms, he said. The trial’s goal is to reduce that number below 14 days and also to reduce the percentage of contacts infected and researchers plan to analyze the results in 21 days. Around 200 patients with coronavirus and 3,000 of their close contacts will take part in the trial, which has private and public funding.

Source: https://www.reuters.com/

Nanostructured rubber-like material could replace human tissue

Researchers from Chalmers University of Technology, Sweden, have created a new, rubber-like material with a unique set of properties, which could act as a replacement for human tissue in medical procedures. The material has the potential to make a big difference to many people’s lives.

​In the development of medical technology products, there is a great demand for new naturalistic materials suitable for integration with the body. Introducing materials into the body comes with many risks, such as serious infections, among other things. Many of the substances used today, such as Botox, are very toxic. There is a need for new, more adaptable materials. In the new study, the Chalmers researchers developed a material consisting solely of components that have already been shown to work well in the body.

The foundation of the material is the same as plexiglass, a material which is common in medical technology applications. Through redesigning its makeup, and through a process called nanostructuring, they gave the newly patented material a unique combination of properties. The researchers’ initial intention was to produce a hard bone-like material, but they were met with surprising results.

Chalmers researchers have developed a new material that could be suitable for various medical applications. The 3D printed ‘nose’ above, for example, shows how the material could act as a possible replacement for cartilage.​
We were really surprised that the material turned to be very soft, flexible and extremely elastic. It would not work as a bone replacement material, we concluded. But the new and unexpected properties made our discovery just as exciting,” says Anand Kumar Rajasekharan, PhD in Materials Science and one of the researchers behind the study.
The results showed that the new rubber-like material may be appropriate for many applications which require an uncommon combination of properties high elasticity, easy processability, and suitability for medical uses.

The first application we are looking at now is urinary catheters. The material can be constructed in such a way that prevents bacteria from growing on the surface, meaning it is very well suited for medical uses,” says Martin Andersson, research leader for the study and Professor of Chemistry at Chalmers.

The structure of the new nano-rubber material allows its surface to be treated so that it becomes antibacterial, in a natural, non-toxic way. This is achieved by sticking antimicrobial peptides – small proteins which are part of our innate immune system – onto its surface. This can help reduce the need for antibiotics, an important contribution to the fight against growing antibiotic resistance.
Because the new material can be injected and inserted via keyhole surgery, it can also help reduce the need for drastic surgery and operations to rebuild parts of the body. The material can be injected via a standard cannula as a viscous fluid, so that it forms its own elastic structures within the body. Or, the material can also be 3D printed into specific structures as required.
There are many diseases where the cartilage breaks down and friction results between bones, causing great pain for the affected person. This material could potentially act as a replacement in those cases,” Martin Andersson continues.
A further advantage of the material is that it contains three-dimensionally ordered nanopores. This means it can be loaded with medicine, for various therapeutic purposes such as improving healing and reducing inflammation. This allows for localised treatment, avoiding, for example, having to treat the entire body with drugs, something that could help reduce problems associated with side effects. Since it is non-toxic, it also works well as a filler – the researchers see plastic surgery therefore as another very interesting potential area of application for the new material.

The research was recently published in the scientific journal ACS Nano.

Source: https://www.chalmers.se/

Arms Nerves Trained To Control Movements of Prosthetic Fingers

Today’s artificial limbs can look very natural, and now an innovative process makes prosthetic hands move more naturally as well. In an innovative experiment, scientists have shown that the nerves in patients’ arms can be trained to control the movements of prosthetic fingers and thumbs.

“This is the biggest advance in motor control for people with amputations in many years,” said Paul Cederna, a professor of plastic surgery and biomedical engineering at the University of Michigan.

A challenge to powering prosthetics has been the minute signals put out by an amputee’s nerves. Cederna’s team boosted the signal by wrapping tiny bits of muscle around nerve endings, according to their study published in Science Translational Medicine.

As the nerves grow into the muscle, the person’s thoughts can create a muscle twitch that produces a signal big enough to be picked up by tiny wires connected to a nearby computer, which tells the prosthetic hand to move.

Our ultimate goal is to have prosthetic limbs that the person views as a part of their body,” Cederna said. In an example of how well the system works, a woman who was nervously tapping her own fingers prompted the prosthetic to tap right along with it, Cederna said. “It was just doing what the other hand was doing, like it was a part of her,” he noted. “This worked the very first time we tried it. There’s no learning for the participants. All of the learning happens in our algorithms. That’s different from other approaches.

The procedure also worked for another amputee in the study who had lost not only his hand, but also part of his arm. “It’s the coolest part of what they’ve shown,” said Lee Fisher, an assistant professor in the University of Pittsburgh’s department of physical medicine and rehabilitation and bioengineering.

Source: https://www.reuters.com/

Corona Virus Contamination And Age

There are two sources that provide age, sex, and comorbidity statistics:

  • The Report of the WHO-China Joint Mission published on Feb. 28 by WHO, [2] which is based on55,924 laboratory confirmed cases. The report notes that “The Joint Mission acknowledges the known challenges and biases of reporting crude CFR early in an epidemic” (see also our discussion on: How to calculate the mortality rate during an outbreak)
  • A paper by the Chinese CCDC released on Feb. 17, which is based on 72,314 confirmed, suspected, and asymptomatic cases of COVID-19 in China as of Feb. 11, and was published in the Chinese Journal of Epidemiology [1]

We will list data from both, labeling them as “confirmed cases” and “all cases” respectively in the tables.

COVID-19 Fatality Rate by AGE:

*Death Rate = (number of deaths / number of cases) = probability of dying if infected by the virus (%). This probability differs depending on the age group. The percentages shown below do not have to add up to 100%, as they do NOT represent share of deaths by age group. Rather, it represents, for a person in a given age group, the risk of dying if infected with COVID-19.

AGE
DEATH RATE
confirmed cases
DEATH RATE
all cases
80+ years old
21.9%
14.8%
70-79 years old
8.0%
60-69 years old
3.6%
50-59 years old
1.3%
40-49 years old
0.4%
30-39 years old
0.2%
20-29 years old
0.2%
10-19 years old
0.2%
0-9 years old
no fatalities

Source: https://www.worldometers.info/

Electric Cars Soon Less Expensive Than Petrol Vehicles

An international research team has pioneered and about to patent a new filtration technique that could one day slash lithium extraction times and change the way the future is powered. The world-first study, published today in the journal Nature Materials, presents findings that demonstrate the way in which Metal-Organic Framework (MOF) channels can mimic the filtering function, or ‘ion selectivity’, of biological ion channels embedded within a cell membrane.

Inspired by the precise filtering capabilities of a living cell, the research team has developed a synthetic MOF-based ion channel membrane that is precisely tuned, in both size and chemistry, to filter lithium ions in an ultra-fast, one-directional and highly selective manner. This discovery, developed by researchers at Monash University, CSIRO, the University of Melbourne and the University of Texas at Austin, opens up the possibility to create a revolutionary filtering technology that could substantially change the way in which lithium-from-brine extraction is undertaken. This technology is the subject of a worldwide patent application filed in 2019. Energy Exploration Technologies, Inc. (EnergyX) has since executed a worldwide exclusive licence to commercialise the technology.

Based on this new research, we could one day have the capability to produce simple filters that will take hours to extract lithium from brine, rather than several months to years,” said Professor Huanting Wang, co-lead research author and Professor of Chemical Engineering at Monash University. “Preliminary studies have shown that this technology has a lithium recovery rate of approximately 90 percent – a substantial improvement on 30 percent recovery rate achieved through the current solar evaporation process.”

Professor Benny Freeman from the McKetta Department of Chemical Engineering at The University of Texas at Austin, commented: “Thanks to the international, interdisciplinary and collaborative team involved in this research, we are discovering new routes to very selective separation membranes. “We are both enthusiastic and hopeful that the strategy outlined in this paper will provide a clear roadmap for resource recovery and low energy water purification of many different molecular species.”

Associate Professor (Jefferson) Zhe Liu from The University of Melbourne explained: “The working mechanism of the new MOF-based filtration membrane is particularly interesting, and is a delicate competition between ion partial dehydration and ion affinitive interaction with the functional groups distributed along the MOF nanochannels. “There is significant potential of designing our MOF-based membrane systems for different types of filtration applications, including for use in lithium-from-brine extraction.”

Source: https://www.monash.edu/

VR game lets patients ‘shoot’ away their pain

The Frisian company Reducept (Netherlands) has developed VR glasses that allow patients to ‘shoot away’ pain in a game. Patients come into contact with their nervous system, where they have to fight the pain.

Reducept team has developed a virtual reality headset to combat chronic pain and has won the prestigious UN World Summit Award. Exactly how many people are suffering from chronic pain in the Netherlands is not known but their number runs into the thousands, medical experts say. Often the pain has no clear cause. The conventional treatment is painkillers but these are costly and don’t always work. The VR treatment tackles the pain by training the brain, said psychologist Louis Zantema, who founded Reducept.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

People with chronic pain are oversensitive to the pain signal sent by the body to the brain. The therapy helps the nervous system because the brain believes healing is taking place,’ he said. Shooting down the pain ‘When you put on the VR headset you travel into in your own nervous system. The painful spots show up as small red dots which you shoot at, as if you were playing a game,’ Zantema explained. After ‘shooting down’ the pain the next step is a mindfulness exercise focusing on the spinal cord. ‘There we are using a psychological trick which also works for people suffering from trauma. The patient does a complicated exercise which is alternated with an intensive focusing on the pain.’ Professor Harry van Goor tested the VR headset on 40 people all of whom experienced a reduction in pain symptoms. He says the treatment offers hope to many while saving money at the same time. ‘Chronic pain is causing depression and is putting a lot of pressure on the health system. The medication either doesn’t help or is addictive and waiting lists for the specialist pain clinics are very long,’ he added. The treatment is available at over 50 healthcare institutions but is not covered by health insurers. A session costs €15 apart from the cost of buying a VR headset.

Source: https://reducept.com/

A Promising Antiviral Is Being Tested for the Coronavirus

As the coronavirus outbreak continues to spread worldwide and more people become critically ill, scientists are racing to find a treatment that will help turn the tide. Dozens of medicines are in clinical trials in China—and now in the U.S.—to treat the disease, officially named COVID-19. Some are antiviral drugs that are already used to narrowly target other viruses. Experts say these medications are unlikely to do much against the novel coronavirus. Other drugs being tested—such as the broad-spectrum antiviral remdesivir, developed by Gilead Sciences—could prove quite effective, some evidence suggests. But only the rigorous, controlled clinical studies now underway will be able to confirm this possibility.

At the time of this writing, the COVID-19 outbreak has sickened more than 82,000 people globally and killed more than 2,800 of them. No vaccine or direct treatment currently exists. The more than 80 clinical trials being conducted in China involve drugs that were developed to treat illnesses such as HIV/AIDS, malaria and Ebola. These candidates include HIV antivirals called protease inhibitors, which work by blocking enzymes the virus needs to replicate, and a malaria drug called chloroquine, which is not an antiviral but has shown some efficacy against COVID-19 in a lab dish. Yet experts say drugs that specifically target other pathogens are unlikely to work well enough.

The mistake generally made these days is to think that [just] any antiviral would be effective against [the coronavirus]. This is, of course, not true,” says Erik De Clercq, an emeritus professor of medicine at KU Leuven in Belgium, who helped discover the HIV antiviral tenofovir. De Clercq believes scientists should focus on developing compounds tailored to the new virus.

Instead of being in a hurry [to test] all known compounds—what they now call ‘repurposing a compound,’—we really need new compounds that are specific for [the coronavirus] and would be the subject of clinical trials,” he says. But until such compounds can be developed and tested, De Clercq says he is hopeful that remdesivir—an experimental drug that was originally developed to treat Ebola and has also proved effective against the SARS and MERS viruses in vitro—could be effective. (Gilead, which manufactures remdesivir, developed tenofovir and other antiviral drugs based on compounds De Clercq co-discovered.)

Source: https://www.scientificamerican.com/

3-D printing of tissue-like vascular structures

An international team of scientists have discovered a new material that can be 3-D printed to create tissue-like vascular structures. In a new study published today in Nature Communications, led by Professor Alvaro Mata at the University of Nottingham and Queen Mary University London, researchers have developed a way to 3-D print graphene oxide with a protein which can organise into tubular structures that replicate some properties of vascular tissue.

Cross-section of a bioprinted tubular structure with endothelial cells (green) on and embedded within the wall

This work offers opportunities in biofabrication by enabling simulatenous top-down 3-D bioprinting and bottom-up of synthetic and biological components in an orderly manner from the nanoscale. Here, we are biofabricating micro-scale capillary-like fluidic structures that are compatible with cells, exhibit physiologically relevant properties, and have the capacity to withstand flow. This could enable the recreation of vasculature in the lab and have implications in the development of safer and more efficient drugs, meaning treatments could potentially reach patients much more quickly,”said Professor Mata.

Self-assembly is the process by which multiple components can organise into larger well-defined structures. Biological systems rely on this process to controllably assemble molecular building-blocks into complex and functional materials exhibiting remarkable properties such as the capacity to grow, replicate, and perform robust functions.

The new biomaterial is made by the self-assembly of a protein with graphene oxide. The mechanism of assembly enables the flexible (disordered) regions of the protein to order and conform to the graphene oxide, generating a strong interaction between them. By controlling the way in which the two components are mixed, it is possible to guide their assembly at multiple size scales in the presence of cells and into complex robust structures.

The material can then be used as a 3-D printing bioink to print structures with intricate geometries and resolutions down to 10 um. The research team have demonstrated the capacity to build vascular-like structures in the presence of cells and exhibiting biologically relevant chemical and .

 “There is a great interest to develop materials and fabrication processes that emulate those from nature. However, the ability to build robust functional materials and devices through the self-assembly of molecular components has until now been limited. This research introduces a new method to integrate proteins with  by self-assembly in a way that can be easily integrated with additive manufacturing to easily fabricate biofluidic devices that allow us replicate key parts of human tissues and organs in the lab,” explained  Dr. Yuanhao Wu, the lead researcher on the project.

Source: https://phys.org/
AND
https://www.nature.com/

New DNA-based Strategy To Fight Aggressive Cancers

Researchers from the University of Copenhagen have discovered that our cells replicate their DNA much more loosely than previously thought. The new knowledge might be useful for developing novel treatments against aggressive forms of cancers. This was found by inhibiting the essential gene DNA polymerase alpha, or POLA1, which initiates DNA replication during cell division. The discovery gives researchers new insights into DNA replication and may potentially be used for a new type of cancer treatment.

If we are visionaries, I would say that we might be at the birth of a whole new set of molecules that could be used in fighting cancer’, states  Research Leader and Associate Professor Luis Toledo of the Center for Chromosome Stability at the Department of Cellular and Molecular Medicine. ‘Basically, if we turn the finding on its head, this novel strategy aims at exploiting an in-built weakness in cancer cells and make them crash while they divide.

When a cell divides, the double DNA strand is opened lengthwise like a zipper that is unzipped. The new double strands are built at each of the separated strands, so that you gradually end up with two new “zippers”.

Before the new halfs of the zipper are made, a bit of DNA is temporally exposed in single stranded form. This process is required for the new zippers to form. Nevertheless, large amounts of single-stranded DNA have traditionally been considered by researchers to be a sign of pathological stress during cell proliferation. However, the researchers behind the new study discovered that DNA unzippers act more loosely than expected. This can generate large amounts of single-stranded DNA, which the researchers now show is no more than a form of natural stress that cells can actually tolerate in high quantities. Still, for this tolerance to exist, cells require a sufficient amount of the protective protein RPA to cover the single-stranded DNA parts.

We have seen that cells can duplicate their genome, even with large amounts of single stranded DNA. They can divide and go on living healthily because they have a large excess of RPA molecules that acts as a protective umbrella.’ says the study’s first author and former postdoc at the University of Copenhagen Amaia Ercilla, adding: ‘But there is a flip side of the coin. When we make the cells generate single strand DNA faster than what they can protect, chromosomes literally shatter in hundreds of pieces, a phenomenon we call replication catastrophe. We always thought that we could use this for instance to kill cancer cells“.

Source: https://news.ku.dk/

How To Dismantle Cancer’s Defences To Boost Immunotherapy

The team conducted experiments on mice with lung and colon cancers, observing how cancer cells can hijack a normal type of cell called a fibroblast, using it as a shield to hide from the lymphocyte attack. In these cases, they become known as cancer-associated fibroblasts (CAFs), and scientists believe they play a pivotal role in preventing immunotherapy from working, with many solid cancers exhibiting a high concentration of these corrupted cells.

Immunotherapy for cancer has been a very exciting development, but still doesn’t work in most patients,” says study author Professor Gareth Thomas. “Our results suggest that in many cases, treatment resistance is caused by CAF, and we think this can be overcome by targeting NOX4. GKT137831 hasn’t yet been tested on cancer patients, but we hope may give immunotherapy drugs a much better chance of fighting cancer cells effectively; this technique could hugely improve the success rate of cancer immunotherapy.”

The team says the next steps are to see if these results can be replicated in humans. The University of Southampton team has also received funding from Cancer Research UK to begin investigating how it might improve immunotherapy treatments for breast cancer patients.

The research was published in the journal Cancer Research.
Source: https://www.southampton.ac.uk/
AND
https://newatlas.com/

Commercial Nuclear Fusion Is Closer Than Ever

Nuclear fusion has been seen as the unattainable holy grail of clean energy for decades, but just in the last year it’s been seeming more and more within reach. As catastrophic climate change looms just over the horizon, the scientific community has galvanized to find more and better solutions to decarbonizing the global economy and replacing fossil fuels with a commercially viable, renewable, and green alternative. While much of the time and capital investment has flowed to more realistic options like solar and wind, some researchers have been dedicating their time and energy to capturing the energy of the sun here on earth–a silver bullet solution to global warming.

Conventional nuclear energy has also been hailed as a good, greenhouse gas emissions-free alternative to fossil fuels, but it has some major drawbacks, from the rare but catastrophic instance of nuclear meltdown to the industrial byproduct of nuclear waste. Nuclear fission, which is what nuclear energy plants currently use to create massive amounts of energy by splitting atoms, creates radioactive waste that remains hazardous for tens of thousands of years, if not longer.

The beauty of nuclear fusion is that, not only does it produce energy without creating radioactive waste since it can be achieved using only hydrogen or lithium, it’s also several times more powerful than fission. If we were ever able to harness it in a commercially viable way, it would mean the end of the oil-based economy as we know it. That’s why any news about nuclear fusion is major news. And in the past couple of years, there’s been a lot of new reports emerging about commercial nuclear fusion getting closer and closer to becoming a reality.

Last summer, reps from the International Thermonuclear Experimental Reactor (ITER), an intergovernmental project headquartered in the south of France, reported that they are a mere six and a half years away from achieving first plasma inside their tokamak–in other words: nuclear fusion by just 2025. Then, just a month later in August, 2019, Oak Ridge National Laboratory reported their own nuclear fusion breakthrough, which uses novel implementation of AI and supercomputing to successfully scale up nuclear fusion experiments and manage plasma.

Then, in October, the Los Alamos National Laboratory‘s Plasma Liner Experiment (PLX) unveiled a totally new approach to nuclear fusion, using the very science-fiction combination of plasma guns, magnets, and lasers. According to the American Physical Society, “the PLX machine combines aspects of both magnetic confinement fusion schemes (e.g. tokamaks) and inertial confinement machines like the National Ignition Facility (NIF). The hybrid approach, although less technologically mature than pure magnetic or inertial confinement concepts, may offer a cheaper and less complex fusion reactor development path.” That project is projected to be up and running by the end of this year.

And now, just this week, there are new and exciting claims about yet another novel fusion technology to vie for the best path toward commercial nuclear fusion. Startup HB11, which has its impetus at Australia’s University of New South Wales (UNSW), has pioneered a technology that uses lasers to encourage nuclear fusion between hydrogen and boron without the use of radioactive materials to facilitate the reaction. They’re so confident about the technology that they have already applied for and received patents in the United States, Japan, and China.

The secret,” reports Popular Mechanics, “is a cutting-edge laser and, well, an element of luck.” According to managing director Warren McKenzie, as quoted by New Atlas,You could say we’re using the hydrogen as a dart, and hoping to hit a boron, and if we hit one, we can start a fusion reaction.” While this may sound a little wishy-washy, McKenzie says that the approach is actually more precise than using extreme heat to facilitate fusion because the laser is directed, whereas heat-based reactors waste huge amounts of energy heating up the entire reactor and waiting for a collision to take place.

This means that this new technology–which is now four decades in the making–could make machines like the tokamak obsolete. UNSW emeritus professor Heinrich Hora’s design “seeks to not just compete with but replace entirely the extremely high-temperature current technologies to achieve fusion. These include fussy and volatile designs like the tokamak or stellarator, which can take months to get up to functionality and still spin out of working order in a matter of microseconds.”

Last but not least, two months ago, Newsweek reported that China is about to start operation on its “artificial sun“—a nuclear fusion device that produces energy by replicating the reactions that take place at the center of the sun. If successful, the device could edge scientists closer to achieving the ultimate goal of nuclear fusion: near limitless, cheap clean energy.

Source: https://www.newsweek.com/
AND
https://oilprice.com/

New Concrete Incorporates And Reduces Carbon Dioxide Emissions

Concrete surrounds us in our cities and stretches across the land in a vast network of highways. It’s so ubiquitous that most of us take it for granted, but many aren’t aware that concrete’s key ingredient, ordinary portland cement, is a major producer of greenhouse gases. Each year, manufacturers produce around 5 billion tons of portland cement — the gray powder that mixes with water to form the “glue” that holds concrete together. That’s nearly three-quarters of a ton for every person on Earth. For every ton of cement produced, the process creates approximately a ton of carbon dioxide, all of which accounts for roughly 7 percent of the world’s carbon dioxide emissions. And with demand increasing every year — especially in the developing world, which uses much more portland cement than the U.S. does — scientists are determined to lessen the growing environmental impact of portland cement production.

One of those scientists is Gaurav Sant of the California NanoSystems Institute at UCLA, who recently completed research that could eventually lead to methods of cement production that give off no carbon dioxide, the gas that composes 82 percent of greenhouse gases. Sant, an associate professor of civil and environmental engineering and UCLA’s Edward K. and Linda L. Rice professor of materials science, found that carbon dioxide released during cement manufacture could be captured and reused.

For every ton of cement produced, the process creates approximately a ton of carbon dioxide, all of which accounts for roughly 7 percent of the world’s carbon dioxide emissions.

The reason we have been able to sustain global development has been our ability to produce portland cement at the volumes we have, and we will need to continue to do so,” Sant said. “But the carbon dioxide released into the atmosphere creates significant environmental stress. So it raises the question of whether we can reuse that carbon dioxide to produce a building material.

During cement manufacturing, there are two steps responsible for carbon emissions. One is calcination, when limestone, the raw material most used to produce cement, is heated to about 750 degrees Celsius. That process separates limestone into a corrosive, unstable solidcalcium oxide, or lime — and carbon dioxide gas. When lime is combined with water, a process called slaking, it forms a more stable compound called calcium hydroxide.

And the major compound in portland cement is tricalcium silicate, which hardens like stone when it is combined with water. Tricalcium silicate is produced by combining lime with siliceous sand and heating the mixture to 1,500 degrees Celsius. Of the total carbon dioxide emitted in cement manufacturing, 65 percent is released when the limestone is calcined and 35 percent is given off by the fuel burned to heat the tricalcium silicate compound.

But Sant and his team showed that the carbon dioxide given off during calcination can be captured and recombined with calcium hydroxide to recreate limestone — creating a cycle in which no carbon dioxide is released into the air. In addition, about 50 percent less heat is needed throughout the production cycle, since no additional heat is required to ensure the formation of tricalcium silicate.

The study is published in the journal Industrial and Engineering Chemistry Research.

Source: https://newsroom.ucla.edu/

Genetic Test To Detect Earlier Alzheimer’s

A new study published in the journal Epigenetics in February 2020 reports that changes in the methylation status of the Presenilin 1 (PSEN1) gene could help diagnose Alzheimer’s disease (AD) earlier. This study shows for the first time that methylation of this gene is a common feature in AD.

AD is a widespread dementia disorder, involving the loss of cognitive skills such as thinking, making decisions, remembering things in connection, and learning. It affects almost 50 million people the world over, mostly over the age of 60 years but a significant percentage at ages below 50 years. Furthermore, this is only a fourth of all cases, because most patients go undiagnosed.

 

The progressive and incurable nature of this disorder makes it difficult to bear for both the patient and the caregivers. The disease inevitably progresses to the point where complete care is required. Currently, available medications must be given early to have the highest odds of successfully delaying the onset of severe cognitive loss.

The PSEN1 gene is part of a protease complex that catalyzes a process called regulated intramembrane proteolysis. It is important in AD because it is responsible for cleaving the beta-amyloid fragment from the parent AβPP molecule. It is one of several polymorphic genes that regulate normal embryonic regulation but also promote the risk of AD.

Epigenetic modification is an important way to regulate gene activity in the body and can be triggered by environmental factors, including specific lifestyle and nutritional factors. The addition of methyl groups to the DNA (mostly to the cytosine) outside the actual genetic code, called methylation, is a well-known epigenetic modification. Methylation is typically a method to silence or downregulate the associated gene.

Earlier animal studies have shown that the PSEN1 gene can be downregulated, causing a condition very like AD.  However, little research has been done epigenetic modification of the human PSEN1 gene. It is established that people with AD already show altered PSEN1 behavior. The current study is the first to record the frequent occurrence of DNA methylation at this gene in humans with AD.

Source: https://www.news-medical.net/

How To Early Detect Prostate Cancer

For the first time, a team of scientists at the University of Central Florida has created functional nanomaterials with hollow interiors that can be used to create highly sensitive biosensors for early cancer detection. Xiaohu Xia, an assistant professor of chemistry with a joint appointment in the NanoScience Technology Center, and his team developed the new method and recently published their work in the journal ACS Nano.

These advanced hollow nanomaterials hold great potential to enable high-performance technologies in various areas,” says Xia. “Potentially we could be talking about a better and less expensive diagnostic tool, sensitive enough to detect biomarkers at low concentrations, which could make it invaluable for early detection of cancers and infectious diseases.”

Because hollow nanomaterials made of gold and silver alloys display superior optical properties, they could be particularly good for developing better test strip technology, similar to over-the-counter pregnancy tests. Currently the technology used to indicate positive or negative symbols on the test stick is not sensitive enough to pick up markers that indicate certain types of cancer. But Xia’s new method of creating hollow nanomaterials could change that. More advance warning could help doctors save more lives.

In conventional test strips, solid gold nanoparticles are often used as labels, where they are connected with antibodies and specifically generate color signal due to an optical phenomenon called localized surface plasmon resonance. Under Xia’s technique, metallic nanomaterials can be crafted with hollow interiors. Compared to the solid counterparts, these hollow nanostructures possess much stronger LSPR activities and thus offer more intense color signal. Therefore, when the hollow nanomaterials are used as labels in test strips they can induce sensitive color change, enabling the strips to detect biomarkers at lower concentrations.

Test-strip technology gets upgraded by simply replacing solid gold nanoparticles with the unique hollow nanoparticles, while all other components of a test strip are kept unchanged,” says Xia. “Just like the pregnancy test, the new test strip can be performed by non-skilled persons, and the results can be determined with the naked eye without the need of any equipment. These features make the strip extremely suitable for use in challenging locations such as remote villages.”

The UCF study focused on prostate-specific antigen, a biomarker for prostate cancer. The new test strip based on hollow nanomaterials was able to detect PSA as low as 0.1 nanogram per milliliter (ng/mL), which is sufficiently sensitive for clinical diagnostics of prostate cancer. The published study includes electron microscope images of the metallic hollow nanomaterials.

“I hope that by providing a general and versatile platform to engineer functional hollow nanomaterials with desired properties, new research with the potential for other applications beyond biosensing can be launched,” Xia says.

Source: https://www.ucf.edu/

How To Uncloak Cancer Cells And Reveal Them To The Immune System

Scientists at Johns Hopkins report they have designed and successfully tested an experimental, super small package able to deliver molecular signals that tag implanted human cancer cells in mice and make them visible for destruction by the animals’ immune systems. The new method was developed, say the researchers, to deliver an immune system “uncloaking” device directly to cancer cells.

Conventional immune therapies generally focus on manipulating patients’ immune system cells to boost their cancer-killing properties or injecting drugs that do the same but often have toxic side effectsA hallmark of cancer biology is a tumor cell’s ability to essentially hide from the immune system cells whose job is to identify and destroy cancer cells. Current cellular immunotherapies, notably CAR-T, require scientists to chemically alter and enhance a patient’s own harvested immune system T-cells — an expensive and time-consuming process, say the researchers. Other weapons in the arsenal of immunotherapies are drugs, including so-called checkpoint inhibitors, which have broad effects and often lead to unwanted immune-system-associated side effects, including damage to normal tissue.

By contrast, the Johns Hopkins team sought an immune system therapy that can work like a drug but that also individually engineers a tumor and its surrounding environment to draw the immune system cells to it, says Jordan Green, Ph.D, professor of biomedical engineering at the Johns Hopkins University School of Medicine.

A microscopic image of the nanoparticles used in the study. The black scale bar is 100 nm in size
 And our process happens entirely within the body,” Green says, “requiring no external manipulation of a patient’s cells.

To develop the new system, Green and his team, including Stephany Tzeng, Ph.D., a research associate in the Department of Biomedical Engineering at Johns Hopkins, took advantage of a cancer cell’s tendency to internalize molecules from its surroundings. “Cancer cells may be easier to directly genetically manipulate because their DNA has gone haywire, they divide rapidly, and they don’t have the typical checks and balances of normal cells,” says Green.

The team created a polymer-based nanoparticle — a tiny case that slips inside cells. They guided the nanoparticles to cancer cells by injecting them directly into the animals’ tumors. “The nanoparticle method we developed is widely applicable to many solid tumors despite their variability on an individual and tumor type level,” says Green, also a member of the Johns Hopkins Kimmel Cancer Center. Once inside the cell, the water-soluble nanoparticle slowly degrades over a day. It contains a ring of DNA, called a plasmid, that does not integrate into the genome and is eventually degraded as the cancer cell divides, but it stays active long enough to alter protein production in the cell.

The additional genomic material from the plasmid makes the tumor cells produce surface proteins called 4-1BBL, which work like red flags to say, “I’m a cancer cell, activate defenses.” The plasmid also forces the cancer cells to secrete chemicals called interleukins into the space around the cells. The 4-1BBL tags and interleukins are like magnets to immune system cells, and they seek to kill the foreign-looking cancer cells.

Results of the proof-of-concept experiments were published online in the Proceedings of the National Academy of Sciences.

Source: https://www.hopkinsmedicine.org/

AI Detects Visual Signs Of Covid-19

Zhongnan Hospital of Wuhan University in Wuhan, China, is at the heart of the outbreak of Covid-19, the disease caused by the new coronavirus SARS-CoV-2 that has shut down cities in China, South Korea, Iran, and Italy. That’s forced the hospital to become a testbed for how quickly a modern medical center can adapt to a new infectious disease epidemic.

One experiment is underway in Zhongnan’s radiology department, where staff are using artificial intelligence software to detect visual signs of the pneumonia associated with Covid-19 on lung CT scan images. Haibo Xu, professor and chair of radiology at Zhongnan Hospital, says the software helps overworked staff screen patients and prioritize those most likely to have Covid-19 for further examination and testing 

Detecting pneumonia on a scan doesn’t alone confirm a person has the disease, but Xu says doing so helps staff diagnose, isolate, and treat patients more quickly. The software “can identify typical signs or partial signs of Covid-19 pneumonia,” he wrotel. Doctors can then follow up with other examinations and lab tests to confirm a diagnosis of the disease. Xu says his department was quickly overwhelmed as the virus spread through Wuhan in January.

The software in use at Zhongnan was created by Beijing startup Infervision, which says  its Covid-19 tool has been deployed at 34 hospitals in China and used to review more than 32,000 cases. The startup, founded in 2015 with funding from investors including early Google backer Sequoia Capital, is an example of how China has embraced applying artificial intelligence to medicine.

China’s government has urged development of AI tools for healthcare as part of sweeping national investments in artificial intelligence. China’s relatively lax rules on privacy allow companies such as Infervision to gather medical data to train machine learning algorithms in tasks like reading scans more easily than US or European rivals.

Infervision created its main product, software that flags possible lung problems on CT scans, using hundreds of thousands of lung images collected from major Chinese hospitals. The software is in use at hospitals in China, and being evaluated by clinics in Europe, and the US, primarily to detect potentially cancerous lung nodulesInfervision began work on its Covid-19 detector early in the outbreak after noticing a sudden shift in how existing customers were using its lung-scan-reading software. In mid-January, not long after the US Centers for Disease Control advised against travel to Wuhan due to the new disease, hospitals in Hubei Province began employing a previously little-used feature of Infervision’s software that looks for evidence of pneumonia, says CEO Kuan Chen. “We realized it was coming from the outbreak,” he says.

Source: https://www.wired.com/

How To Direct Nanoparticles Straight To Tumors

Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue. An interdisciplinary team of researchers at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and FU Berlin has made important progress in this area: the scientists have produced tiny nanoparticles that are designed to specifically target cancer cells. They can navigate directly to the tumor cells and visualize those using advanced imaging techniques. Both in petri dishes and animal models, the scientists were able to effectively guide the nanoparticles to the cancer cells. The next step is to combine the new technique with therapeutic approaches.The HZDR researchers start out with tiny, biocompatible nanoparticles made of so-called dendritic polyglycerols that serve as carrier molecules.

Radiologic technician and Patient being scanned and diagnosed on CT (computed tomography) scanner in hospital

An interdisciplinary team has modified biocompatible nanoparticles with an antibody fragment, which binds specifically to a protein overexpressed by certain types of cancer cells. By combining the tiny particles with a diagnostic radionuclide, it is, thus, possible to detect and characterize tumor cells via PET.

We can modify these particles and introduce various functions,” explains Dr. Kristof Zarschler, research associate at HZDR’s Institute of Radiopharmaceutical Cancer Research. “For example, we can attach an antibody fragment to the particle that specifically binds to cancer cells. This antibody fragment is our targeting moiety that directs the nanoparticle to the tumor.”

The target of the modified nanoparticles is an antigen known as EGFR (epidermal growth factor receptor). In certain types of cancer, such as breast cancer or head and neck tumors, this protein is overexpressed on the surface of the cells. “We were able to show that our designed nanoparticles preferentially interact with the cancer cells via these receptors,” confirms Dr. Holger Stephan, leader of the Nanoscalic Systems Group at HZDR. “In control tests with similar nanoparticles that had been modified with an unspecific antibody, significantly fewer nanoparticles accumulated at the tumor cells.

The scientists intensively studied the nanoparticles’ behavior both in cell cultures and in an animal model. For this purpose, they provided the nanoparticles with additional reporter characteristics, as Kristof Zarschler explains: “We used two complementary possibilities. In addition to the antibodies, we attached dye molecules and radionuclides to the nanoparticles. The dye molecule emits in the near infrared spectrum that penetrates the tissue and can be visualized with an appropriate microscope. The dye thus reveals where exactly the nanoparticles are located.” The radionuclide, copper-64, fulfils a similar purpose. It emits radiation that is detected by a PET scanner (positron emission tomography). The signals can then be converted into a three-dimensional image that visualizes the distribution of the nanoparticles in the organism.

Using these imaging techniques, researchers have been able to show that nanoparticle accumulation in the tumor tissue reaches maximum two days after administration to mice. The labelled nanoparticles are subsequently eliminated via the kidneys without being a burden for the body. “They are apparently ideal in size and properties,” says Holger Stephan. “Smaller particles are filtered out of the blood in just a few hours and thus only have a short-term impact. If, on the other hand, the particles are too big, they accumulate in the spleen, liver or lungs and cannot be removed from the body via the kidneys and bladder.” The interplay between the nanoparticles with an exact size of three nanometers and the attached antibody fragments evidently has a positive influence on the distribution and retention of the antibody in the organism as well as on its excretion profile.

Source: https://www.hzdr.de/

Nano-Transistor From DNA-like Material

Computer chips use billions of tiny switches, called transistors, to process information. The more transistors on a chip, the faster the computer. A material shaped like a one-dimensional DNA helix might further push the limits on a transistor’s size. The material comes from a rare earth element called tellurium.

Researchers found that the material, encapsulated in a nanotube made of boron nitride, helps build a field-effect transistor with a diameter of two nanometers. Transistors on the market are made of bulkier silicon and range between 10 and 20 nanometers in scale.  Engineers at Purdue University performed the work in collaboration with Michigan Technological University, Washington University in St. Louis, and the University of Texas at Dallas.

Over the past few years, transistors have been built as small as a few nanometers in lab settings. The goal is to build transistors the size of atomsPeide Ye’s lab at Purdue is one of many research groups seeking to exploit materials much thinner than silicon to achieve both smaller and higher-performing transistors.

These silver, wiggling lines are strings of atoms in tellurium behaving like DNA. Researchers have not seen this behavior in any other material.

This tellurium material is really unique. It builds a functional transistor with the potential to be the smallest in the world,” said Ye, Purdue’s Richard J. and Mary Jo Schwartz Professor of Electrical and Computer Engineering.

The research is published in the journal Nature Electronics.

Source: https://www.purdue.edu/

Lifelong Antisocial Behaviour Linked To Brain Structure

People who engage in persistent antisocial behaviour long after adolescence have characteristic differences in brain structure, finds a new UCL-led study.

The study, published in The Lancet Psychiatry, identified brain differences between people who engage in antisocial behaviour – such as theft, aggression, violence, bullying, lying, or repeated failure to take care of work or school responsibilities – only during adolescence and those who persist throughout adulthood.

Our findings support the idea that, for the small proportion of individuals with life-course-persistent antisocial behaviour, there may be differences in their brain structure that make it difficult for them to develop social skills that prevent them from engaging in antisocial behaviour. These people could benefit from more support throughout their lives,” said lead author Dr Christina Carlisi (UCL Psychology & Language Sciences).

Most people who exhibit antisocial behaviour primarily do so only in adolescence, likely as a result of navigating socially difficult years, and these individuals do not display structural brain differences. It is also these individuals who are generally capable of reform and go on to become valuable members of society.”

Previous studies have found that antisocial behaviour is most prevalent in adolescence, before people mature into adulthood, while a smaller number of people will continue with antisocial behaviour over multiple decades.

Source: https://www.ucl.ac.uk/

Why Are HIV Drugs Being Used to Treat the Coronavirus?

On Tuesday, the Japanese government announced it will begin clinical trials to test treatments for the deadly new coronavirus that’s engulfed China and spread to over two dozen countries. Rather than new drugs, they’ll be studying existing medications already used to treat HIV and other viral diseases. But why exactly are researchers hopeful that these drugs can be repurposed for the new coronavirus, and how likely are they to work?

The new coronavirus, recently named SARS-CoV-2 due to its close genetic ties to the SARS coronavirus, is made out of RNA. Other RNA viruses include the ones that cause Ebola, hepatitis C, and yes, HIV/AIDS.

RNA viruses come in all shapes and sizes, and those that infect humans can do so in different ways. But many of the drugs that go after HIV and the hepatitis C virus broadly target weaknesses found in all sorts of viruses. The approved hepatitis C drug ribavirin, for instance, interferes with something called the RNA-dependent RNA polymerase, an enzyme essential for many virusesincluding coronaviruses—to produce more of themselves inside a cell. HIV drugs like lopinavir inhibit other enzymes that allow viruses to break down certain proteins, which cripples their ability to infect cells and replicate.

Broad antiviral drugs like lopinavir should be able to work against SARS-CoV-2scientists theorize. And there’s already some circumstantial evidence they do. Some of these drugs have been successfully tested out for SARS and MERS, for instance, two other nasty coronaviruses that have emerged in recent years.

In January, the Chinese government announced a trial of 41 patients in Wuhan that would use a combination therapy of lopinavir and another HIV drug, ritonavir. In February, the Chinese government also began a trial using an experimental drug that’s been tested out for Ebola, called remdesivir.

Remdesivir has already been deployed during this outbreak, with seemingly impressive results so far. Last month, the first documented U.S. patient with the virus was treated with remdesivir, following a week of worsening symptoms that had developed into full-blown pneumonia. Within a day of receiving the drug through an IV, though, the man’s symptoms started to improve, and he was eventually released from the hospital.

But one case does not a surefire treatment make. And even if remdesivir or other drugs do prove effective against SARS-CoV-2, they’ll only play a small part in stopping this current outbreak from getting worse. Most cases of COVID-19 (the official name of the disease caused by SARS-COV-2) are still mild and won’t be helped much by antiviral drugs. In terms of preventing the next pandemic, it’s more important to keep people from getting the virus at all, rather than finding drugs to treat them once they do.

Source: https://gizmodo.com/

How To Recycle Greenhouse Gases into Fuel and Hydrogen

Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals. The results could be revolutionary in the effort to reverse global warming, according to the researchers. The study was published in Science.

Newly developed catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas and other chemicals

We set out to develop an effective catalyst that can convert large amounts of the greenhouse gases carbon dioxide and methane without failure,” said Cafer T. Yavuz, paper author and associate professor of chemical and biomolecular engineering and of chemistry at KAIST (Korea).

The catalyst, made from inexpensive and abundant nickel, magnesium, and molybdenum, initiates and speeds up the rate of reaction that converts carbon dioxide and methane into hydrogen gas. It can work efficiently for more than a month.

This conversion is called ‘dry reforming’, where harmful gases, such as carbon dioxide, are processed to produce more useful chemicals that could be refined for use in fuel, plastics, or even pharmaceuticals. It is an effective process, but it previously required rare and expensive metals such as platinum and rhodium to induce a brief and inefficient chemical reaction.

Other researchers had previously proposed nickel as a more economical solution, but carbon byproducts would build up and the surface nanoparticles would bind together on the cheaper metal, fundamentally changing the composition and geometry of the catalyst and rendering it useless.

The difficulty arises from the lack of control on scores of active sites over the bulky catalysts surfaces because any refinement procedures attempted also change the nature of the catalyst itself,” Yavuz said.

The researchers produced nickel-molybdenum nanoparticles under a reductive environment in the presence of a single crystalline magnesium oxide. As the ingredients were heated under reactive gas, the nanoparticles moved on the pristine crystal surface seeking anchoring points. The resulting activated catalyst sealed its own high-energy active sites and permanently fixed the location of the nanoparticles — meaning that the nickel-based catalyst will not have a carbon build up, nor will the surface particles bind to one another.

It took us almost a year to understand the underlying mechanism,” said first author Youngdong Song, a graduate student in the Department of Chemical and Biomolecular Engineering at KAIST. “Once we studied all the chemical events in detail, we were shocked.”

The researchers dubbed the catalyst Nanocatalysts on Single Crystal Edges (NOSCE). The magnesium-oxide nanopowder comes from a finely structured form of magnesium oxide, where the molecules bind continuously to the edge. There are no breaks or defects in the surface, allowing for uniform and predictable reactions.

Our study solves a number of challenges the catalyst community faces,” Yavuz said. “We believe the NOSCE mechanism will improve other inefficient catalytic reactions and provide even further savings of greenhouse gas emissions.

Source: https://news.kaist.ac.kr/

Nanoscale Device Acts Like The Brain’s Visual Cortex To Directly See Things

In a new study published in February 2020 in the journal Science Advances, researchers report the development of a nanoscale device that acts like the brain’s visual cortex to directly see things in its path. The scientists created a new superstructure through the use of two nanomaterials in tandem that could help to make a machine that uses AI to simulate a human mind‘s function.

This is a baby step toward developing neuromorphic computers, that can simultaneously process and memorize information. At some time in the future, this invention may help to make robots that can think like humans,” researcher Jayan Thomas says,  The big advantage of the current approach is in its saving of energy for processing as well as the time required for computation.

 

Another researcher, Tania Roy, predicted that the new technology might be applied to drones that can fly unaided to remote locations to find people in various dangerous situations. The problem with current drones is, she says, because “These drones need connectivity to remote servers to identify what they scan with their camera eye. Our device makes this drone truly autonomous because it can see just like a human.

With earlier research, scientists succeeded in making a camera that can create an image of what is observed, and then upload it for processing and image recognition to a server. The current device, she says, not only sees the image but also instantly recognizes it.

According to the researchers, this could also be extremely valuable for defense applications, such as helping soldiers see better on a battlefield. Another potential advantage is that, according to the co-first author Sonali Das, “Our device can sense, detect and reconstruct an image along with extremely low power consumption, which makes it capable for long-term deployment in field applications.”

The scientists tested out the device in face recognition experiments. These were only meant to be tests to check out how well the neuromorphic computing helped the machine to see objects. Describing these as preliminary, Thomas says they wanted to assess the optoelectronic device. “Since our device mimics vision-related brain cells, facial recognition is one of the most important tests for our neuromorphic building block.”

Source: https://www.news-medical.net/

AI Predicts Heart Attacks

In a study published Feb. 14 in Circulation, researchers in the U.K. and the U.S. report that an AI program can reliably predict heart attacks and strokes. Kristopher Knott, a research fellow at the British Heart Foundation, and his team conducted the largest study yet involving cardiovascular magnetic resonance imaging (CMR) and AI. CMR is a scan that measures blood flow to the heart by detecting how much of a special contrast agent heart muscle picks up; the stronger the blood flow, the less likely there will be blockages in the heart vessels. Reading the scans, however, is time consuming and laborious; and it’s also more qualitative than quantitative, says Knott, subject to the vagaries of the human eyes and brain. To try to develop a more qualitative tool, Knott and his colleagues trained an AI model to read scans and learn to detect signs of compromised blood flow.

When they tested the technology on the scans of more than 1,000 people who needed CMR because they either at risk of developing heart disease or had already been diagnosed, they found the AI model worked pretty well at selecting out which people were more likely to go on to have a heart attack or stroke, or die from one. The study compared the AI-based analyses to health outcomes from the patients, who were followed for about 20 months on average. The researchers discovered that for every 1 ml/g/min decrease in blood flow to the heart, the risk of dying from a heart event nearly doubled, and the risk of having a heart attack, stroke or other event more than doubled.

Rather than a qualitative view of blood flow to the heart muscle, we get a quantitative number,” he says. “And from that number, we’ve shown that we can predict which people are at higher risk of adverse events.”

The study confirmed that CMR is a strong marker for risk of heart problems, but did not prove that the scans could actually be used to guide doctors’ decisions about which people are at higher risk. For that, more studies need to be done that document whether treating poor blood flow—with available medication or procedures—in people with decreased flow as predicted by the AI model, can reduce or eliminate heart attacks and strokes.

Source: https://time.com/

How To Bring Fresh Water To Remote Communities

Researchers at the University of Bath (UK) have developed a revolutionary desalination process that has the potential to be operated in mobile, solar-powered units. The process is low cost, low energy and low maintenance, and has the potential to provide safe water to communities in remote and disaster-struck areas where fresh water is in short supply.

Developed by the university’s Water Innovation and Research Centre in partnership with Indonesia’s Bogor Agricultural University and the University of Johannesburg, the prototype desalination unit is a 3D-printed system with two internal chambers designed to extract and/or accumulate salt. When power is applied, salt cations (positively charged ions) and salt anions (negatively charged ions) flow between chambers through arrays of micro-holes in a thin synthetic membrane. The flow can only happen in one direction thanks to a mechanism that has parallels in mobile-phone technology. As a result of this one-way flow, salt is pumped out of seawater. This contrasts with the classical desalination process, where water rather than salt is pumped through a membrane.

Desalination, which turns seawater into fresh water, has become an essential process for providing drinking and irrigation water where freshwater is scarce. Traditionally, it has been an energy-intensive process carried out in large industrial plants.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

There are times when it would be enormously beneficial to install small, solar-powered desalination units to service a small number of households. Large industrial water plants are essential to 21st Century living, but they are of no help when you’re living in a remote location where drinking water is scarce, or where there is a coastal catastrophe that wipes out the fresh water supply,” said Professor Frank Marken from the Department of Chemistry

The Bath desalination system is based on ‘ionics’, where a cationic diode (a negatively charged, semi-permeable membrane studded with microscopic pores) is combined with an anionic resistor (a device that only allows the flow of negative ions when power is applied).

This amounts to a whole new process for removing salt from water,”explained Prof Marken. “We are the first people to use tiny micron-sized diodes in a desalination prototype.

He added: “This is a low-energy system with no moving parts. Other systems use enormous pressures to push the water through nano-pores, but we only remove the salts. Most intriguingly, the external pumps and switches can be replaced by microscopic processes inside the membrane – a little bit like biological membranes work.”

Source: https://www.bath.ac.uk/

Blended Wing Aircraft Cuts Fuel Consumtion Up To 20%

Following a series of secret tests, Airbus has revealed a futuristic “blended wing” commercial aircraft design that promises to cut fuel consumption up to 20%.
The French aircraft maker rolled out a model of the small-scale, remote-controlled aircraft demonstrator it’s been using to test the design at the Singapore Air Show 2020 on Tuesday.

This “blended wing body” demonstrator is called MAVERIC — which stands for Model Aircraft for Validation and Experimentation of Robust Innovative Controls — and is two meters long and 3.2 meters wide.

Testing has reportedly been underway since June 2019 but the project, which launched in 2017, was kept under wraps until this month.
According to Airbus, MAVERIC helps accelerate understanding of new aircraft configurations and matures the technology necessary to fly such a radically different aircraft.
What’s so special about this aerodynamicblended wing body“? In addition to the environmental benefit — approximately 20% less fuel burn compared to current single-aisle models with the same engine — Airbus says the plane’s unusual and spacious configuration opens up new possibilities for cabin design.
To prove this point, it also released a series of design renderings showing what passengers onboard a blended wing aircraft might be in for. Noise would likely be reduced too, due to the plane’s “shieldedengine, which is mounted above the central body.
CLICK ON THE IMAGE TO ENJOY THE VIDEO
Airbus is leveraging emerging technologies to pioneer the future of flight,” says Jean-Brice Dumont, executive vice president of engineering at Airbus, in a statement announcing the new design.
By testing disruptive aircraft configurations, Airbus is able to evaluate their potential as viable future products.”
AND

Personalized cancer vaccines

Therapeutic cancer vaccines were first developed 100 years ago and have remained broadly ineffective to date. Before tangible results can be achieved, two major obstacles must be overcome. Firstly, since tumor mutations are unique to each patient, cancer cell antigens must be targeted extremely precisely, which is very hard to achieve. Secondly, a safe system is needed to deliver the vaccine to the right location and achieve a strong and specific immune response.

Li Tang’s team at EPFL’s School of Engineering in Switzerland is coming up with a solution to the delivery problem. The researchers have used a polymerization technique called polycondensation to develop a prototype vaccine that can travel automatically to the desired location and activate immune cells there. The patented technique has been successfully tested in mice and is the topic of a paper appearing in ACS Central Science. Li Tang has also co-founded a startup called PepGene, with partners that are working on an algorithm for quickly and accurately predicting mutated tumor antigens. Together, the two techniques should result in a new and better cancer vaccine in the next several years.

Helping the body to defend itself

Most vaccines – against measles and tetanus for example – are preventive. Healthy individuals are inoculated with weakened or inactivated parts of a virus, which prompt their immune systems to produce antibodies. This prepares the body to defend itself against future infection.

However, the aim of a therapeutic cancer vaccine is not to prevent the disease, but to help the body defend itself against a disease that is already present. “There are various sorts of immunotherapies other than vaccines, but some patients don’t respond well to them. The vaccine could be combined with those immunotherapies to obtain the best possible immune response,” explains Li Tang. Another advantage is that vaccines should reduce the risk of relapse.

Delivering a cancer vaccine to the immune system involves various stages. First, the patient is inoculated with the vaccine subcutaneously. The vaccine will thus travel to the lymph nodes, where there are lots of immune cells. Once there, the vaccine is expected to penetrate dendritic cells, which act as a kind of alert mechanism. If the vaccine stimulates them correctly, the dendritic cells present specific antigens to cancer-fighting T-cells, a process that activates and trains the T-cells to attack them.

The procedure appears simple, but is extremely hard to put into practice. Because they are very small, the components of a vaccine tend to disperse or be absorbed in the blood stream before reaching the lymph nodes.

To overcome that obstacle, Li Tang has developed a system that chemically binds the vaccine’s parts together to form a larger entity. The new vaccine, named Polycondensate Neoepitope (PNE), consists of neoantigens (mutated antigens specific to the tumor to be attacked) and an adjuvant. When combined within a solvent, the components naturally bind together, forming an entity that is too large to be absorbed by blood vessels and that travels naturally to the lymph nodes.

Source: https://actu.epfl.ch/news/

One Trillion Trees

The World Economic Forum has launched a global initiative to grow, restore and conserve 1 trillion trees around the world – in a bid to restore biodiversity and help fight climate changeThe 1t.org project aims to unite governments, non-governmental organisations, businesses and individuals in a “mass-scale nature restoration“. The initiative received the support of US President Donald Trump. While a sceptic on climate change, Trump said he wanted to show “strong leadership in restoring, growing and better managing our trees and our forests“.

Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, said: “The next decade must see unprecedented levels of collaboration if we are to meet global climate, biodiversity and Sustainable Development Goals. 1t.org presents an important example of how stakeholders from all walks of life and all ages can work together to achieve a single, globally significant goal.”

Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions. The Crowther Lab of ETH Zurich has published a study in the journal Science that shows this would be the most effective method to combat climate changeThe Crowther Lab at ETH Zurich investigates nature-based solutions to climate change. In their latest study the researchers showed for the first time where in the world new trees could grow and how much carbon they would store.

Reforestation would be the most effective method to combat climate change

One aspect was of particular importance to us as we did the calculations: we excluded cities or agricultural areas from the total restoration potential as these areas are needed for human life,” explains study lead author and postdoc at the Crowther Lab Jean-François Bastin.

The researchers calculated that under the current climate conditions, Earth’s land could support 4.4 billion hectares of continuous tree cover. That is 1.6 billion more than the currently existing 2.8 billion hectares. Of these 1.6 billion hectares, 0.9 billion hectares fulfill the criterion of not being used by humans. This means that there is currently an area of the size of the US available for tree restoration. Once mature, these new forests could store 205 billion tonnes of carbon: about two thirds of the 300 billion tonnes of carbon that has been released into the atmosphere as a result of human activity since the Industrial Revolution.

According to Prof. Thomas Crowther, co-author of the study and founder of the Crowther Lab at ETH Zurich: “We all knew that restoring forests could play a part in tackling climate change, but we didn’t really know how big the impact would be. Our study shows clearly that forest restoration is the best climate change solution available today. But we must act quickly, as new forests will take decades to mature and achieve their full potential as a source of natural carbon storage.”

The study also shows which parts of the world are most suited to forest restoration. The greatest potential can be found in just six countries: Russia (151 million hectares); the US (103 million hectares); Canada (78.4 million hectares); Australia (58 million hectares); Brazil (49.7 million hectares); and China (40.2 million hectares).

Many current climate models are wrong in expecting climate change to increase global tree cover, the study warns. It finds that there is likely to be an increase in the area of northern boreal forests in regions such as Siberia, but tree cover there averages only 30 to 40 percent. These gains would be outweighed by the losses suffered in dense tropical forests, which typically have 90 to 100 percent tree cover.

A tool on the Crowther Lab website< enables users to look at any point on the globe, and find out how many trees could grow there and how much carbon they would store. It also offers lists of forest restoration organisations. The Crowther Lab will also be present at this year’s Scientifica to show the new tool to visitors.

The Crowther Lab uses nature as a solution to:

1) better allocate resources – identifying those regions which, if restored appropriately, could have the biggest climate impact;

2) set realistic goals – with measurable targets to maximise the impact of restoration projects;

3) monitor progress – to evaluate whether targets are being achieved over time, and take corrective action if necessary.

Source: https://www.weforum.org/
AND
https://ethz.ch/

Molecular ‘Switch’ Reverses Chronic Inflammation And Aging

Chronic inflammation, which results when old age, stress or environmental toxins keep the body’s immune system in overdrive, can contribute to a variety of devastating diseases, from Alzheimer’s and Parkinson’s to diabetes and cancer.

Now, scientists at the University of California, Berkeley, have identified a molecularswitch” that controls the immune machinery responsible for chronic inflammation in the body. The finding, which appears online  in the journal Cell Metabolism, could lead to new ways to halt or even reverse many of these age-related conditions.

My lab is very interested in understanding the reversibility of aging,” said senior author Danica Chen, associate professor of metabolic biology, nutritional sciences and toxicology at UC Berkeley. “In the past, we showed that aged stem cells can be rejuvenated. Now, we are asking: to what extent can aging be reversed? And we are doing that by looking at physiological conditions, like inflammation and insulin resistance, that have been associated with aging-related degeneration and diseases.”

In the study, Chen and her team show that a bulky collection of immune proteins called the NLRP3 inflammasome — responsible for sensing potential threats to the body and launching an inflammation response — can be essentially switched off by removing a small bit of molecular matter in a process called deacetylation.

Overactivation of the NLRP3 inflammasome has been linked to a variety of chronic conditions, including multiple sclerosis, cancer, diabetes and dementia. Chen’s results suggest that drugs targeted toward deacetylating, or switching off, this NLRP3 inflammasome might help prevent or treat these conditions and possibly age-related degeneration in general.

This acetylation can serve as a switch,” Chen said. “So, when it is acetylated, this inflammasome is on. When it is deacetylated, the inflammasome is off.”

Source: https://news.berkeley.edu/

Bionic Jellyfish

It may sound more like science fiction than science fact, but researchers have created bionic jellyfish by embedding microelectronics into these ubiquitous marine invertebrates with hopes to deploy them to monitor and explore the world’s oceans.

A small prosthetic enabled the jellyfish to swim three times faster and more efficiently without causing any apparent stress to the animals, which have no brain, central nervous system or pain receptors, the researchers said.

The next steps will be to test ways to control where the jellyfish go and develop tiny sensors that could perform long-term measurements of ocean conditions such as temperature, salinity, acidity, oxygen levels, nutrients and microbial communities. They even envision installing miniscule cameras.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

It’s very sci-fi futuristic,” said Stanford University bioengineer Nicole Xu, co-author of the research published this week in the journal Science Advances. “We could send these bionic jellyfish to different areas of the ocean to monitor signs of climate change or observe natural phenomena.

An initial goal will be deep dives because measurements at great depths are a major gap in our understanding of the oceans, added California Institute of Technology mechanical engineering professor John Dabiri, the study’s other co-author.

Basically, we’d release the bionic jellyfish at the surface, have it swim down to increasing depths, and see just how far we can get it to go down into the ocean and still make it back to the surface with data,” Dabiri added.

Source: https://www.caltech.edu/
AND
https://www.reuters.com/

Ultrasound Can Selectively Kill Cancer Cells

A new technique could offer a targeted approach to fighting cancer: low-intensity pulses of ultrasound have been shown to selectively kill cancer cells while leaving normal cells unharmed.

Ultrasound wavessound waves with frequencies higher than humans can hear—have been used as a cancer treatment before, albeit in a broad-brush approach: high-intensity bursts of ultrasound can heat up tissue, killing cancer and normal cells in a target area. Now, scientists and engineers are exploring the use of low-intensity pulsed ultrasound (LIPUS) in an effort to create a more selective treatment.

A study describing the effectiveness of the new approach in cell models was published in Applied Physics Letters. The researchers behind the work caution that it is still preliminary—it still has not been tested in a live animal let alone in a human, and there remain several key challenges to address—but the results so far are promising.

The research began five years ago when Caltech‘s Michael Ortiz, Frank and Ora Lee Marble Professor of Aeronautics and Mechanical Engineering, found himself pondering whether the physical differences between cancer cells and healthy cells—things like size, cell-wall thickness, and size of the organelles within them—might affect how they vibrate when bombarded with sound waves and how the vibrations might trigger cancer cell death.

I have my moments of inspiration,” Ortiz says wryly.

And so Ortiz built a mathematical model to see how cells would react to different frequencies and pulses of sound waves. Together with then-graduate student Stefanie Heyden (PhD ’14), who is now at ETH Zurich, Ortiz published a paper in 2016 in the Journal of the Mechanics and Physics of Solids showing that there was a gap in the so-called resonant growth rates of cancerous and healthy cells. That gap meant that a carefully tuned sound wave could, in theory, cause the cell membranes of cancerous cells to vibrate to the point that they ruptured while leaving healthy cells unharmed. Ortiz dubbed the process “oncotripsy” from the Greek oncos (for tumor) and tripsy (for breaking).

Source: https://www.caltech.edu/

How To Etch A ‘Perfect’ Solar Energy Absorber

The University of Rochester research lab that recently used lasers to create unsinkable metallic structures has now demonstrated how the same technology could be used to create highly efficient solar power generators.

In a paper in Light: Science & Applications, the lab of Chunlei Guo, professor of optics also affiliated with the Department of Physics and Astronomy and the Material Sciences Program, describes using powerful femto-second laser pulses to etch metal surfaces with nanoscale structures that selectively absorb light only at the solar wavelengths, but not elsewhere.

A regular metal surface is shiny and highly reflective. Years ago, the Guo lab developed a black metal technology that turned shiny metals pitch black.

 

But to make a perfect solar absorber,” Guo says, “We need more than a black metal and the result is this selective absorber.”

This surface not only enhances the energy absorption from sunlight, but also reduces heat dissipation at other wavelengths, in effect, “making a perfect metallic solar absorber for the first time,” Guo says. “We also demonstrate solar energy harnessing with a thermal electric generator device.

This will be useful for any thermal solar energy absorber or harvesting device,” particularly in  places with abundant sunlight, he adds.

The researchers experimented with aluminum, copper, steel, and tungsten, and found that tungsten, commonly used as a thermal solar absorber, had the highest solar absorption efficiency when treated with the new nanoscale structures. This improved the efficiency of thermal electrical generation by 130 percent compared to untreated tungsten.

Co-authors include Sohail Jalil, Bo Lai, Mohamed Elkabbash, Jihua Zhang, Erik M. Garcell, and Subhash Singh of the Guo lab.

Source: https://www.rochester.edu/

Nanoparticles Act As Immunotherapy Agents

University of Wisconsin–Madison researchers have developed nanoparticles that, in the lab, can activate immune responses to cancer cells. If they are shown to work as well in the body as they do in the lab, the nanoparticles might provide an effective and more affordable way to fight cancer.

They are cheaper to produce and easier to engineer than the antibodies that underlie current immunotherapies, which as drugs cost tens of thousands of dollars a month.

The nanoparticles were made of sections of the T cell protein PD-1 (in blue) attached to a branched core called a dendrimer (in gray). The branches in the core of the nanoparticle allowed many chunks of the PD-1 protein to bind to the nanoparticle, increasing its effectiveness.

Immunotherapy basically boosts the patient’s own immune system to fight against cancer cells better,” says Seungpyo Hong, a professor in the UW–Madison School of Pharmacy. “The antibodies that are used right now are large, they’re expensive, they’re hard to engineer, and they don’t always show the highest level of efficacy either. So we wanted to explore other ways to activate the immune system.

Hong and postdoctoral associate Woo-jin Jeong led the study, published online Jan. 2 in the Journal of the American Chemical Society, with collaborators at the University of Illinois at Chicago. It’s the first demonstration that nanoparticles can act as immunotherapy agents.

More research is needed to understand their effectiveness in the body, but Hong has applied for a patent on the new nanoparticles and is now testing them in animal models.

In tests against lab-grown strains of cancer, the nanoparticles boosted production of the immune stimulating protein interleukin-2 by T cells, one kind of immune cell in the body, by about 50 percent compared to no treatment. They were just as effective as antibodies. The nanoparticles were also able to improve the effectiveness of the chemotherapy drug doxorubicin in similar tests.

Normally, T cells produce a protein named PD-1 that acts like an off switch for immune responses. This “checkpoint” helps keep T cells from improperly attacking healthy cells.

Source: https://news.wisc.edu/

How To Replace Artificial Chemicals With Natural Silk Protein In Skin Care

Most consumers are unaware of the potentially harmful chemicals that can be found in skin care products and on clothingArtificial ingredients such at parabens, which are used to prolong the shelf-life of a skin care product, have been linked to hormone and fertility damage. Formaldehyde, also used as a preservative in skin care products, is a known carcinogen. Formaldehyde is also an additive used on some clothing to prevent wrinkles and stains.
Now a small company outside of Boston aims to lead to effort to replace artificial chemicals with natural silk protein in both skin care products and textiles.
Evolved By Nature, based in Medford, Massachusetts, is applying modern biotechnology to centuries-old silk to create activated silk.

Activated silk is really us taking silk all the way back to the natural state that silk is found in in the silkworm,” described Evolved By Nature Co-founder and President Beck Lacouture.
“We are taking silk protein and unlocking its potential, using the different regions of the silk to our benefit,” she said.
The process of activating the silk requires nothing more than salt, water and heat, no added chemicals.
We remove all contaminants, so we’re left with just the protein and fiber form,” said Evolved By Nature Co-founder and CEO Greg Altman.syrupy mi
Inside the laboratory, the cocoons spun from silkworms are washed to remove its natural sticky outer coating, dried, and dissolved in salt water. The brown, syrupy mix is then purified by the removal of salt. And what’s left is pure, liquid, silk protein or activated silk. It can be used in a variety of skin care and clothing products.

Source: https://www.itnnews.lk/

Metallic Hydrogen

Scientists have long speculated that at the heart of a gas giant, the laws of material physics undergo some radical changes. In these kinds of extreme pressure environments, hydrogen gas is compressed to the point that it actually becomes a metal. For years, scientists have been looking for a way to create metallic hydrogen synthetically because of the endless applications it would offer. At present, the only known way to do this is to compress hydrogen atoms using a diamond anvil until they change their state. And after decades of attempts (and 80 years since it was first theorized), a team of French scientists may have finally created metallic hydrogen in a laboratory setting. While there is plenty of skepticism, there are many in scientific community who believe this latest claim could be true. The study which described their experiment, titled Observation of a first order phase transition to metal hydrogen near 425 GPa, recently appeared on the arXiv preprint server.

The team consisted of Paul Dumas, Paul Loubeyre, and Florent Occelli, three researchers from the Division of Military applications (DAM) at the French Alternative Energies and Atomic Energy Commission and the Synchrotron SOLEIL research facility.

As they indicate in their study, it is indisputable that “metal hydrogen should exist” thanks to the rules of quantum confinement. Specifically, they indicate that if the electrons of any material are restricted enough in their motion, what is known as the “band gap closure” will eventually take place.

In short, any insulator material (like oxygen) should be able to make become a conductive metal if it is pressurized enough. They also explain how two advances made their experiment possible. The first has to do with the diamond anvil setup they used, where the diamond tips were toroid-shaped – a torus with a hole in the middle (like a donut) – instead of flat. This allowed the team to be able to push past the previous pressure limit established by other diamond anvils (400 GPa) and get as high as 600 Gpa.

The second involved a new type of infrared spectrometer the research team designed themselves at the Synchrotron SOLEIL facility, which allowed them to measure the sample. Once their hydrogen sample had reached pressures of 425 GPa and temperatures of 80 K (-193 °C; -316 °F), they reported that it began absorbing all the infrared radiation, thereby indicated that they had “closed the band gap“.

In addition, this latest study has yet to be peer-reviewed and their experiment validated by other physicists. However, the French team and their experimental results have some powerful allies. One person is Maddury Somayazulu, an associate research professor at the Argonne National Laboratory who was not involved in this study. As he said in an interview with Gizmodo:

I think this is really a Nobel-prize worthy discovery. It always was, but this probably represents one of the cleanest and most comprehensive pieces of work on pure hydrogen.” Somayazulu also expressed that he knows the study’s lead author Paul Dumas “very well“, and that Dumas is an “incredibly careful and systematic scientist.”

Another physicist who spoke positively of this latest experiment is Alexander Goncharov, a staff scientist from the Carnegie Institute for Science’s Geophysical Laboratory.

Source: https://www.nature.com/
AND
https://www.sciencealert.com/

Nano Flexible Touchscreens Printed Like Newspaper

Researchers have developed an ultra-thin and ultra-flexible electronic material that could be printed and rolled out like newspaper, for the touchscreens of the future. The touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube.

To create the new conductive sheet, an RMIT University-led team used a thin film common in mobile phone touchscreens and shrunk it from 3D to 2D, using liquid metal chemistry. The nano-thin sheets are readily compatible with existing electronic technologies and because of their incredible flexibility, could potentially be manufactured through roll-to-roll (R2R) processing just like a newspaper. Lead researcher Dr Torben Daeneke said most mobile phone touchscreens were made of a transparent material, indium-tin oxide, that was very conductive but also very brittle.

We’ve taken an old material and transformed it from the inside to create a new version that’s supremely thin and flexible,” said Daeneke, an Australian Research Council DECRA Fellow at RMIT. “You can bend it, you can twist it, and you could make it far more cheaply and efficiently than the slow and expensive way that we currently manufacture touchscreens. “Turning it two-dimensional also makes it more transparent, so it lets through more light. “This means a mobile phone with a touchscreen made of our material would use less power, extending the battery life by roughly 10%.

The research, with collaborators from UNSW, Monash University and the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), is published in the journal Nature Electronics.

Source: https://www.rmit.edu.au/

Hologram operates in forward and backward directions

Hologram techniques are already used in our everyday life. A hologram sticker to prevent from counterfeiting money, Augmented Reality navigation projected in front mirror of a car to guide directions, and Virtual Reality game that allows a user to play in a virtual world with a feeling of live are just a few examples to mention. Recently, thinner and lighter meta-hologram operating in forward and backward directions has been developed. As seen in the movie, Black Panther, people from Wakanda Kingdom communicate to each other through the hologram and, this specific movie scene seems to become reality soon that we can exchange different information with people from different locations.

Junsuk Rho, professor of POSTECH Mechanical Engineering and Chemical Engineering Department in Korea, with his student, Inki Kim developed a multifunctional meta-hologram from a monolayer meta-holographic optical device that can create different hologram images depending on a direction of light incident on the device. Their research accomplishment has been introduced as a cover story in the January 2020 issue of Nanoscale Horizons.

Televisions and beam projectors can only transmit intensity of lights but holographic techniques can save light intensity and its phase information to play movies in three-dimensional spaces. At this time, if metamaterials are used, a user can change nano structures, size, and shapes as desired and can control light intensity and phase at the same time. Meta-hologram has pixel sizes as small as 300 to 400 nanometers but can display very high resolution of holographic images with larger field of view compared to existing hologram projector such as spatial light modulator.

However, the conventional meta-holograms can display images when incident light is in one direction and cannot when light is in the other direction.

To solve such a problem, the research team used two different types of metasurfaces.* One metasurface was designed to have phase information when incident light was in the forward direction and the other one to operate when light was in backward direction. As a result, they confirmed that these could display different images in real-time depending on the directions of light.

In addition, the team applied dual magnetic resonances*2 and antiferromagnetic resonances*3, which are phenomena occurring in silicon nanopillars, to nanostructure design to overcome low efficiency of the conventional meta-hologram. This newly made meta-hologram demonstrated diffraction efficiency higher than 60% (over 70% in simulation) and high-quality and clear images were observed. Furthermore, the new meta-hologram uses silicon and it can be easily produced by following through the conventional semiconductor manufacturing process. The meta-hologram operating in both directions, forward and backward, is expected to set a new hologram platform that can transmit various information to multiple users from different locations, overcoming the limits of the conventional ones which could only transmit one image to a limited location.

Microscopic, ultrathin, ultralightweight flat optical devices based on a metasurface is an impressive technique with great potentials as it can not only perform the functions of the conventional optical devices but also demonstrate multiple functions depending on how its metasurface is designed. Especially, we developed a meta-hologram optical device that operated in forward and backward directions and it could transmit various visual information to multiple users from different locations simultaneously. We anticipate that this new development can be employed in multiple applications such as holograms for performances, entertainment, exhibitions,  automobiles and more,”, said Junsuk Rho who is leading research on metamaterials.

Source: http://postech.ac.kr/

Nanotherapy Reduces Plaque Buildup

A drug-coated nanoparticle reduces plaque buildup in mouse arteries without causing harmful side effects, researchers have found.

Atherosclerosis, the accumulation of plaque inside artery walls, can lead to heart attacks and strokes. It’s the world’s No. 1 killer. Available therapies treat risk factors such as high blood pressure and high cholesterol but fail to address the accumulation of diseased cells and inflammation within artery walls.

This is precision medicine,” said Nicholas Leeper, MD, professor of vascular surgery and cardiovascular medicine. “We used the nanotubes to deliver a payload like a Trojan horse.”

Leeper, who sees patients at Stanford Health Care’s vascular and endovascular care clinic, is a senior author of a paper about the research that was published Jan. 27 in Nature Nanotechnology. The other senior author is Bryan Smith, PhD, a former visiting associate professor at the School of Medicine. He is now an associate professor of biomedical engineering at Michigan State University.

Source: http://med.stanford.edu/

How To Reengineer Viruses To Cure Bacterial Infections

The world is in the midst of a global “superbug crisis. Antibiotic resistance has been found in numerous common bacterial infections, including tuberculosis, gonorrhoea and salmonellosis, making them difficult – if not impossibleto treat. We’re on the cusp of a post-antibiotic era, where there are fewer treatment options for such antibiotic-resistant strains. Given estimates that antibiotic resistance will cause 10 million deaths a year by 2050, finding new methods for treating harmful infections is essential.

Strange as it might sound, viruses might be one possible alternative to antibiotics for treating bacterial infections. Bacteriophages (also known as phages) are viruses that infect bacteria.

They’re estimated to be the most abundant organisms on Earth, with probably more than 1031 bacteriophages on the planet. They can survive in many environments, including deep sea trenches and the human gut. While phages are efficient killers of bacteria, they don’t infect human cells and are harmless to humans.

Although phage therapy was used in the 1930s, it has since become a forgotten cure in the west. Although the treatment became commonplace in the former Soviet Union, it wasn’t adopted by western countries largely because of the discovery of antibiotics, which became widespread after World War II.

Bacteriophages are effective against bacteria because they’re able to attach themselves to the cell if they recognise specific molecules called receptors. This is the first step in the “infection” process. After attaching to the bacterial cell, the phage then injects its DNA inside the bacteria.

This causes one of two things to happen. After being injected with the phage’s DNA, the virus will take over the bacterial cell’s replication mechanism and start producing more phages. This process is known as a “lytic infection”. This disintegrates the cell, allowing the newly produced viruses to leave the host cell to infect other bacterial cells.

But sometimes, the phage DNA gets incorporated into the bacterial host’s chromosome instead, becoming a “prophage. It usually remains dormant but environmental factors, such as UV radiation or the presence of certain chemicals such as those found in sunscreen, can cause the phage to “wake up”, start a lytic infection, take over the host cell and destroy it.

Lytic bacteriophages are preferred for treatment because they don’t integrate into the bacterial host’s chromosome. But it’s not always possible to develop lytic bacteriophages that can be used against all types of bacteria. As each type of phage is only able to infect specific types of bacteria, they can’t infect a bacterial cell unless the bacteriophage can find specific receptors on the bacterial cell surface.

However, engineering techniques can remove the bacteriophage’s ability to integrate into the host’s genome, making them useful for treatment. Engineered phages have even successfully treated a drug-resistant Mycobacterium abscessus infection in a 15-year-old girl.

Source: https://www.realclearscience.com/

The First Driverless Bullet Train In Operation Is Chinese

A new driverless bullet train connecting the Chinese cities of Beijing and Zhangjiakou is capable of reaching a top speed of up to 217mph (350km/h), making it the world’s fastest autonomous train in operation.

The new service, launched in the build-up to the Beijing 2022 Winter Olympic and Paralympic games, will reduce travel time between the capital and Zhangjiakou, which will stage most of the skiing events, from three hours to less than one. Some trains will complete the 108-mile route in 45 minutes. The original Beijing-Zhangjiakou line opened in 1909, when the same journey took around eight hours. The trains will start and stop at stations automatically to a precise timetable, and change speed depending on limits between stations. However, a monitoring attendant will still be on board in case of emergencies.

The line, also known as the Jingzhang intercity railway, took four years to complete and has 10 stations, including Badaling Changcheng, for access to the Great Wall of China. The first train began operating on 30 December, running from Beijing to Taizicheng, which will also hold some Olympic skiing events and is the closet station to the Olympic village.

Cabins on the “smartautonomous trains have large storage areas for winter sports equipment, seats with 5G touchscreen control panels, intelligent lighting, thousands of real-time safety sensors and removable seats for passengers in wheelchairs. Facial-recognition technology and robots will be used in stations to assist with directions, luggage and paperless check-in.

Source: https://www.theguardian.com/

Super Body Armor

According to ancient lore, Genghis Khan instructed his horsemen to wear silk vests underneath their armor to better protect themselves against an onslaught of arrows during battle. Since the time of Khan, body armor has significantly evolved — silk has given way to ultra-hard materials that act like impenetrable walls against most ammunition. However, even this armor can fail, particularly if it is hit by high-speed ammunition or other fast-moving objects.

Researchers at Texas A&M University have formulated a new recipe that can prevent weaknesses in modern-day armor. By adding a tiny amount of the element silicon to boron carbide, a material commonly used for making body armor, they discovered that bullet-resistant gear could be made substantially more resilient to high-speed impacts.

For the past 12 years, researchers have been looking for ways to reduce the damage caused by the impact of high-speed bullets on armor made with boron carbide,” said Kelvin Xie, assistant professor in the Department of Materials Science and Engineering. “Our work finally addresses this unmet need and is a step forward in designing superior body armor that will safeguard against even more powerful firearms during combat.”

Boron carbide, dubbed “black diamond,” is a man-made material, which ranks second below another synthetic material called cubic boron nitride for hardness. Unlike cubic boron nitride, however, boron carbide is easier to produce on a large scale. Also, boron carbide is harder and lighter than other armor materials like silicon carbide, making it an ideal choice for protective gear, particularly ballistic vests.

Despite boron carbide’s many desirable qualities, its main shortfall is that it can damage very quickly upon high-velocity impact.

Boron carbide is really good at stopping bullets traveling below 900 meters per second, and so it can block bullets from most handguns quite effectively,” Xie said. “But above this critical speed, boron carbide suddenly loses its ballistic performance and is not as effective.”

Scientists know high-speed jolts cause boron carbide to have phase transformations — a phenomenon where a material changes its internal structure such that it is in two or more physical states, like liquid and solid, at the same time. The bullet’s impact thus converts boron carbide from a crystalline state where atoms are systematically ordered to a glass-like state where atoms are haphazardly arranged. This glass-like state weakens the material’s integrity at the site of contact between the bullet and boron carbide.

When boron carbide undergoes phase transformation, the glassy phase creates a highway for cracks to propagate,” Xie said. “So, any local damage caused by the impact of a bullet easily travels throughout the material and causes progressively more damage.”

Previous work using computer simulations predicted that adding a small quantity of another element, such as silicon, had the potential to make boron carbide less brittle. Xie and his group investigated if adding a tiny quantity of silicon also reduced phase transformation.

Xie and his collaborators found that even with tiny quantities of silicon, the extent of phase transformation went down by 30%, noticeably reducing the damage from the indentation.

Source: https://today.tamu.edu/

How To Address Global Warming

Harvesting sunlight, researchers of the Center for Integrated Nanostructure Physics, within the Institute for Basic Science (IBS, South Korea) published in Materials Today a new strategy to transform carbon dioxide (CO2) into oxygen (O2) and pure carbon monoxide (CO) without side-products in water. This artificial photosynthesis method could bring new solutions to environmental pollution and global warming.

While, in green plants, photosynthesis fixes CO2 into sugars, the artificial photosynthesis reported in this study can convert CO2 into oxygen and pure CO as output. The latter can then be employed for a broad range of applications in electronics, semiconductor, pharmaceutical, and chemical industries. The key is to find the right high-performance photocatalyst to help the photosynthesis take place by absorbing light, convert CO2, and ensuring an efficient flow of electrons, which is essential for the entire system.

Titanium oxide (TiO2) is a well-known photocatalyst. It has already attracted significant attention in the fields of solar energy conversion and environmental protection due to its high reactivity, low toxicity, chemical stability, and low cost. While conventional TiO2 can absorb only UV light, the IBS research team reported previously two different types of blue-colored TiO2 (or “blue titania”) nanoparticles that could absorb visible light.

For the efficient artificial photosynthesis for the conversion of CO2 into oxygen and pure CO, IBS researchers aimed to improve the performance of these nanoparticles. The resulted  hybrid nanoparticles showed about 200 times higher performance than nanoparticles made of TiO2 alone and TiO2/WO3 without silver.

Source: https://www.ibs.re.kr/

Hydroponic Farm Beats Drought

In a backyard in Zimbabwe’s capital, a 50-year-old mother of two is using hydroponics to grow vegetables for some of Harare’s top restaurants, defying drought and an economic crisis that have left millions needing food aid.

Venensia Mukarati, whose day job is an accountant, always had a passion for farming, but no land on which to plant. Just over two years ago she did a web search on how to grow vegetables on the deck of her Harare house, importing a small hydroponics system from Cape Town for $900 that enables plants to draw soluble nutrients from water.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The good thing about hydroponics is that it saves water by 90%,” Mukarati said in a 46 square-meter greenhouse where water flowed in a maze of pipes decked with plants. “I buy water because I don’t have a borehole so I cannot do conventional farming,” she told Reuters.

Her immediate desire was for fresh vegetables for the family as the country’s economic fortunes deteriorated and grocery store prices spiraled. But she quickly realized her pastime could be a profitable venture. It now makes $1,100 a month – in a country where some government workers get just $76. In hydroponic farming water is conserved because it is reused multiple times. Hydroponically grown plants also require no pesticides because there are no soil-borne diseases.

Much of southern Africa is in its worst drought in more than a century, with crops failing and some 45 million people in need of food aid. The region’s temperatures are rising at twice the global average, says the International Panel on Climate Change, spurring the need for innovative ideas to get food on tables.

Source: https://www.reuters.com/

How To Turn Tumors Into Cancer Vaccine Factories

Researchers at Mount Sinai have developed last year a novel approach to cancer immunotherapy, injecting immune stimulants directly into a tumor to teach the immune system to destroy it and other tumor cells throughout the body.
The “in situ vaccination” worked so well in patients with advanced-stage lymphoma that it is also undergoing trials in breast and head and neck cancer patients, according to a study published in Nature Medicine in April.
The treatment consists of administering a series of immune stimulants directly into one tumor site. The first stimulant recruits important immune cells called dendritic cells that act like generals of the immune army. The second stimulant activates the dendritic cells, which then instruct T cells, the immune system’s soldiers, to kill cancer cells and spare non-cancer cells. This immune army learns to recognize features of the tumor cells so it can seek them out and destroy them throughout the body, essentially turning the tumor into a cancer vaccine factory.

The in situ vaccine approach has broad implications for multiple types of cancer,” said lead author Joshua Brody, MD, Director of the Lymphoma Immunotherapy Program at The Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai. “This method could also increase the success of other immunotherapies such as checkpoint blockade.”

After testing the lymphoma vaccine in the lab, it was tested in 11 patients in a clinical trial. Some patients had full remission from months to years. In lab tests in mice, the vaccine drastically increased the success of checkpoint blockade immunotherapy, the type of immunotherapy responsible for the complete remission of former President Jimmy Carter’s cancer and the focus of the 2018 Nobel Prize in Medicine.

Source: https://www.mountsinai.org/

Aggressive cancers in ‘evolutionary arms race’ with the immune system

Aggressive and highly-mutated cancers are engaged in an “evolutionary arms race” with the immune system, new research suggests. Gullet and stomach cancers with faults in their systems for repairing DNA build up huge numbers of genetic mutations which make them resistant to treatments like chemotherapy. But these numerous mutations mean they appear foreign to the immune system, leaving them vulnerable to attack, and susceptible to new immunotherapies.

Scientists at the Institute of Cancer Research, London (ICR), found that these “hyper-mutant” tumours rapidly evolve strategies to disguise themselves from the immune system and evade attack. They hope that in the future, the findings could help optimise treatment with immunotherapy, and other drugs such as chemotherapy.

Dr Marco Gerlinger, team Leader in translational oncogenomics at the ICR, said: “Our new study has shown that in highly mutated tumours, cancer and the immune system are engaged in an evolutionary arms race in which they continually find new ways to outflank one another.

Watching hyper-mutated tumours and immune cells co-evolve in such detail has shown that the immune system can keep up with changes in cancer, where current cancer therapies can become resistant – and that we could use immunotherapies to shift the balance of this arms race, extending patients’ lives.

“Next, we plan to study the evolutionary link between hyper-mutant tumours and the immune system as part of a new clinical trial looking at the possible benefit of immunotherapy in bowel cancer.

The study has been published in Nature Communications.

Source: https://www.sciencefocus.com/

Real Gold, Almost As Light As Air

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible to tell the difference with the naked eye. There are many possible applications.

A nugget of real 20 carats gold, so light that it does not sink in a cappuccino, floating instead on the milk foam – what sounds unbelievable has actually been accomplished by researchers from ETH Zurich. Scientists led by Raffaele Mezzenga, Professor of Food and Soft Materials, have produced a new kind of foam out of gold, a three-​dimensional mesh of gold that consists mostly of pores. It is the lightest gold nugget ever created.

Even when it seems unbelievable: this is a genuine photograph, in which nothing has been faked. The 20 carats gold foam is lighter than milk foam

The so-​called aerogel is a thousand times lighter than conventional gold alloys. It is lighter than water and almost as light as air,” says Mezzenga.

The new gold form can hardly be differentiated from conventional gold with the naked eye – the aerogel even has a metallic shine. But in contrast to its conventional form, it is soft and malleable by hand. It consists of 98 parts air and only two parts of solid material. Of this solid material, more than four-​fifths are gold and less than one-​fifth is milk protein fibrils. This corresponds to around 20 carat gold.

The scientists created the porous material by first heating milk proteins to produce nanometre-​fine protein fibres, so-​called amyloid fibrils, which they then placed in a solution of gold salt. The protein fibres interlaced themselves into a basic structure along which the gold simultaneously crystallised into small particles. This resulted in a gel-​like gold fibre network.

One of the big challenges was how to dry this fine network without destroying it,” explains Gustav Nyström, postdoc in Mezzenga’s group and first author of the corresponding study in the journal Advanced Materials. As air drying could damage the fine gold structure, the scientists opted for a gentle and laborious drying process using carbon dioxide. They did so in an interdisciplinary effort assisted by researchers in the group of Marco Mazzotti, Professor of Process Engineering.

Source: https://ethz.ch/

Stem Cells Used To Create First Living Robots

Be warned. If the rise of the robots comes to pass, the apocalypse may be a more squelchy affair than science fiction writers have prepared us for. Researchers from the University of Vermont and Tufts University have created the first living machines by assembling cells from African clawed frogs into tiny robots that move around under their own steam.

One of the most successful creations has two stumpy legs that propel it along on its “chest”. Another has a hole in the middle that researchers turned into a pouch so it could shimmy around with miniature payloads.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

These are entirely new lifeforms. They have never before existed on Earth,” said Michael Levin, the director of the Allen Discovery Center at Tufts University in Medford, Massachusetts. “They are living, programmable organisms.”

Roboticists tend to favour metal and plastic for their strength and durability, but Levin and his colleagues see benefits in making robots from biological tissues. When damaged, living robots can heal their wounds, and once their task is done they fall apart, just as natural organisms decay when they die.

Source: https://www.uvm.edu/
AND
https://www.theguardian.com/

How To Make Airplane Parts With 99% Less Energy

A modern airplane’s fuselage is made from multiple sheets of different composite materials, like so many layers in a phyllo-dough pastry. Once these layers are stacked and molded into the shape of a fuselage, the structures are wheeled into warehouse-sized ovens and autoclaves, where the layers fuse together to form a resilient, aerodynamic shell. Now MIT engineers have developed a method to produce aerospace-grade composites without the enormous ovens and pressure vessels. The technique may help to speed up the manufacturing of airplanes and other large, high-performance composite structures, such as blades for wind turbines.

If you’re making a primary structure like a fuselage or wing, you need to build a pressure vessel, or autoclave, the size of a two- or three-story building, which itself requires time and money to pressurize,” says Brian Wardle, professor of aeronautics and astronautics at MIT. “These things are massive pieces of infrastructure. Now we can make primary structure materials without autoclave pressure, so we can get rid of all that infrastructure.”

Wardle’s co-authors on the paper are lead author and MIT postdoc Jeonyoon Lee, and Seth Kessler of Metis Design Corporation, an aerospace structural health monitoring company based in Boston. In 2015, Lee led the team, along with another member of Wardle’s lab, in creating a method to make aerospace-grade composites without requiring an oven to fuse the materials together. Instead of placing layers of material inside an oven to cure, the researchers essentially wrapped them in an ultrathin film of carbon nanotubes (CNTs). When they applied an electric current to the film, the CNTs, like a nanoscale electric blanket, quickly generated heat, causing the materials within to cure and fuse together.

With this out-of-oven, or OoO, technique, the team was able to produce composites as strong as the materials made in conventional airplane manufacturing ovens, using only 1 percent of the energy. The researchers next looked for ways to make high-performance composites without the use of large, high-pressure autoclaves — building-sized vessels that generate high enough pressures to press materials together, squeezing out any voids, or air pockets, at their interface. “There’s microscopic surface roughness on each ply of a material, and when you put two plys together, air gets trapped between the rough areas, which is the primary source of voids and weakness in a composite,” Wardle says. “An autoclave can push those voids to the edges and get rid of them.”

The researchers detail their new method in a paper published today in the journal Advanced Materials Interfaces.

Soource: http://news.mit.edu/

Copper-based Nanomaterials Kill Cancer Cells

An interdisciplinary team of scientists from KU Leuven (Belgium), the University of Bremen (Germany), the Leibniz Institute of Materials Engineering (Germany), and the University of Ioannina (Greece) has succeeded in killing tumour cells in mice using nano-sized copper compounds together with immunotherapy. After the therapy, the cancer did not return.

Recent advances in cancer therapy use one’s own immunity to fight the cancer. However, in some cases, immunotherapy has proven unsuccessful. The team of biomedical researchers, physicists, and chemical engineers found that tumours are sensitive to copper oxide nanoparticles – a compound composed of copper and oxygen. Once inside a living organism, these nanoparticles dissolve and become toxic. By creating the nanoparticles using iron oxide, the researchers were able to control this process to eliminate cancer cells, while healthy cells were not affected.

Any material that you create at a nanoscale has slightly different characteristics than its normal-sized counterpart,” explain Professor Stefaan Soenen and Dr Bella B. Manshian from the Department of Imaging and Pathology, who worked together on the study. “If we would ingest metal oxides in large quantities, they can be dangerous, but at a nanoscale and at controlled, safe, concentrations, they can actually be beneficial.

As the researchers expected, the cancer returned after treating with only the nanoparticles. Therefore, they combined the nanoparticles with immunotherapy. “We noticed that the copper compounds not only could kill the tumour cells directly, they also could assist those cells in the immune system that fight foreign substances, like tumours,” says Dr Manshian.

The combination of the nanoparticles and immunotherapy made the tumours disappear entirely and, as a result, works as a vaccine for lung and colon cancer – the two types that were investigated in the study. To confirm their finding, the researchers injected tumour cells back into the mice. These cells were immediately eliminated by the immune system, which was on the lookout for any new, similar, cells invading the body.

Source: https://nieuws.kuleuven.be/

Uber Electric Flying Taxi Available In 2023

U.S. ride-hailing company Uber Technologies Inc (UBER.N) and South Korean automaker Hyundai Motor (005380.KS) have teamed up to develop electric air taxis, joining the global race to make small self-flying cars to ease urban congestion. Global players like Germany’s Daimler (DAIGn.DE), China’s Geely Automobile (0175.HK) and Japan’s Toyota (7203.T) have all unveiled investments in startups that aim to deploy electric flying cars capable of vertical takeoff and landing. But there are big technological and regulatory hurdles to the plans.

Uber and Hyundai, for instance, gave widely different timelines for commercialization, underlining these challenges.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We’ve been making steady progress toward a goal of launching Uber Air by 2023,” Eric Allison, head of Uber Elevate, said at the Consumer Electronics Show (CES) in Las Vegas.

Euisun Chung, Executive Vice Chairman of Hyundai, expects commercialization of urban air mobility service in 2028, saying it takes time for laws and systems to be in place.

Hyundai is the first carmaker to join Uber’s air taxi project, which also counts Boeing (BA.N) subsidiary Aurora Flight Sciences among its partner firms.

Hyundai will produce and deploy the vehicles while Uber will provide aerial ride-share services.

Source: https://www.reuters.com/

How To Take Delivery Door To Door By Droid

As an automotive supplier specialized in developing electric, autonomous and connected vehicle technologies, Valeo is presenting its autonomous, electric delivery droid prototype, Valeo eDeliver4U, at CES 2020 in Las Vegas. Valeo developed the technology in partnership with Meituan Dianping, China’s leading e-commerce platform for services, which operates popular food delivery service Meituan Waimai. The two groups signed a strategic cooperation agreement at last year’s CES to develop a last-mile autonomous delivery solution.

At 2.80m long, 1.20m wide and 1.70m tall, the droid can deliver up to 17 meals per trip, autonomously negotiating dense and complex urban environments at about 12 km/h without generating any pollutant emissions. With a range of around 100km, this prototype gives us a glimpse of what home delivery could look like in the near future, especially in the ever‑growing number of zero-emissions zones that are being created around the world. Meituan Dianping’s connected delivery locker allows for safe delivery to the end customer, who can book through a smartphone application.

The droid’s autonomy and electric power are delivered by Valeo technologies that are already series produced and aligned with automotive industry standards, thereby guaranteeing a high-level of safety. The droid operates autonomously using perception systems including algorithms and sensors. It is equipped with four Valeo SCALA® laser scanners (the only automotive LiDAR already fitted to vehicles in series production), a front camera, four fisheye cameras, four radar devices and twelve ultrasonic sensors, coupled with software and artificial intelligence. The electrified chassis features a Valeo 48V motor and a Valeo 48V inverter, which acts as the system’s “brain” and controls the power, a speed reducer, a 48V battery, a DC/DC converter and a Valeo 48V battery charger, as well as electric power steering and braking systems.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

“This delivery droid illustrates Valeo’s ability to embrace new forms of mobility using its technological platforms. The modularity of the platforms means our technologies can just as easily be fitted to cars, autonomous shuttles, robotaxis and even droids,” said Jacques Aschenbroich, Chairman and Chief Executive Officer of Valeo. “These new markets will allow us to further consolidate our leadership around the world in vehicle electrification, driver assistance systems and autonomous driving.”

Source: https://www.valeo.com/

Toyota To Build A Smart City Powered By Hydrogen

 

Japanese carmaker Toyota has announced plans to create a 175-acre smart city in Japan where it will test driverless cars and artificial intelligence. The project, announced at the Consumer Electronics Show in Las Vegas, will break ground at the base of Mount Fuji in 2021. Woven City will initially be home to 2,000 people who will test technologies including robots and smart homesToyota said in a press release that only driverless and electric vehicles will be allowed on the main streets of Woven CityStreets will be split into three types of thoroughfare: roads for fast vehicles, lanes which are a mixture of personal vehicles and pedestrians, and pedestrian footpaths.

Danish architect Bjarke Ingels has been commissioned to design the new city. His business previously worked on projects including Google’s London and US headquartersToyota said the city will be powered by hydrogen fuel cells and solar panels fitted to the roofs of housesBuildings in Woven City will mostly be made of wood and assembled using “robotised production methods,” Toyota said. 

 “Building a complete city from the ground up, even on a small scale like this, is a unique opportunity to develop future technologies, including a digital operating system for the infrastructure.
“With people, buildings and vehicles all connected and communicating with each other through data and sensors, we will be able to test connected AI technology, in both the virtual and physical realms, maximising its potential,” said Akio Toyoda, Toyota’s president.

Google has also experimented with the creation of its own smart city through its Sidewalk Labs division. The company is hoping to transform a 12-acre plot in Toronto’s waterfront district into a smart city, with the first homes due to appear in 2023.

Source: https://www.telegraph.co.uk/

10 Artificial Intelligence Trends

While no prediction engine has yet been built that can plot the course of AI over the coming decade, we can be fairly certain about what might happen over the next year. Spending on research, development, and deployment continues to rise, and debate over the wider social implications rages on.

1. AI will increasingly be monitoring and refining business processes

While the first robots in the workplace were mainly involved with automating manual tasks such as manufacturing and production lines, today’s software-based robots will take on the repetitive but necessary work that we carry out on computers. Filling in forms, generating reports and diagrams and producing documentation and instructions are all tasks that can be automated by machines that watch what we do and learn to do it for us in a quicker and more streamlined manner. This automation – known as robotic process automation – will free us from the drudgery of time-consuming but essential administrative work, leaving us to spend more time on complex, strategic, creative and interpersonal tasks.

This trend is driven by the success of internet giants like Amazon, Alibaba, and Google, and their ability to deliver personalized experiences and recommendations. AI allows providers of goods and services to quickly and accurately project a 360-degree view of customers in real-time as they interact through online portals and mobile apps, quickly learning how their predictions can fit our wants and needs with ever-increasing accuracy. Just as pizza delivery companies like Dominos will learn when we are most likely to want pizza, and make sure theOrder Now button is in front of us at the right time, every other industry will roll out solutions aimed at offering personalized customer experiences at scale.

3. AI becomes increasingly useful as data becomes more accurate and available

The quality of information available is often a barrier to businesses and organizations wanting to move towards AI-driven automated decision-making. But as technology and methods of simulating real-world processes and mechanisms in the digital domain have improved over recent years, accurate data has become increasingly available. Simulations have advanced to the stage where car manufacturers and others working on the development of autonomous vehicles can gain thousands of hours of driving data without vehicles even leaving the lab, leading to huge reductions in cost as well as increases in the quality of data that can be gathered. Why risk the expense and danger of testing AI systems in the real world when computers are now powerful enough, and trained on accurate-enough data, to simulate it all in the digital world? 2020 will see an increase in the accuracy and availability of real-world simulations, which in turn will lead to more powerful and accurate AI.

4. More devices will run AI-powered technology

As the hardware and expertise needed to deploy AI become cheaper and more available, we will start to see it used in an increasing number of tools, gadgets, and devices. In 2019 we’re already used to running apps that give us AI-powered predictions on our computers, phones, and watches. As the next decade approaches and the cost of hardware and software continues to fall, AI tools will increasingly be embedded into our vehicles, household appliances, and workplace tools. Augmented by technology such as virtual and augmented reality displays, and paradigms like the cloud and Internet of Things, the next year will see more and more devices of every shape and size starting to think and learn for themselves.

5. Human and AI cooperation increases

More and more of us will get used to the idea of working alongside AI-powered tools and bots in our day-to-day working lives. Increasingly, tools will be built that allow us to make the most of our human skills – those which AI can’t quite manage yet – such as imaginative, design, strategy, and communication skills. While augmenting them with super-fast analytics abilities fed by vast datasets that are updated in real-time.

For many of us, this will mean learning new skills, or at least new ways to use our skills alongside these new robotic and software-based tools. The IDC predicts that by 2025, 75% of organizations will be investing in employee retraining in order to fill skill gaps caused by the need to adopt AI.

6. AI increasingly at the “edge”

Much of the AI we’re used to interacting with now in our day-to-day lives takes place “in the cloud” – when we search on Google or flick through recommendations on Netflix, the complex, data-driven algorithms run on high-powered processors inside remote data centers, with the devices in our hands or on our desktops simply acting as conduits for information to pass through.

Increasingly, however, as these algorithms become more efficient and capable of running on low-power devices, AI is taking place at the “edge,” close to the point where data is gathered and used. This paradigm will continue to become more popular in 2020 and beyond, making AI-powered insights a reality outside of the times and places where super-fast fiber optic and mobile networks are available. Custom processors designed to carry out real-time analytics on-the-fly will increasingly become part of the technology we interact with day-to-day

7. AI increasingly used to create films, music, and games

Some things, even in 2020, are probably still best left to humans. Anyone who has seen the current state-of-the-art in AI-generated music, poetry or storytelling is likely to agree that the most sophisticated machines still have some way to go until their output will be as enjoyable to us as the best that humans can produce. However, the influence of AI on entertainment media is likely to increase.

In videogames, AI will continue to be used to create challenging, human-like opponents for players to compete against, as well as to dynamically adjust gameplay and difficulty so that games can continue to offer a compelling challenge for gamers of all skill levels. And while completely AI-generated music may not be everyone’s cup of tea, where AI does excel is in creating dynamic soundscapes – think of smart playlists on services like Spotify or Google Music that match tunes and tempo to the mood and pace of our everyday lives.

8. AI will become ever more present in cybersecurity

As hacking, phishing and social engineering attacks become ever-more sophisticated, and themselves powered by AI and advanced prediction algorithms, smart technology will play an increasingly important role in protecting us from these attempted intrusions into our lives. AI can be used to spot giveaway signs that digital activity or transactions follow patterns that are likely to be indicators of nefarious activity, and raise alarms before defenses can be breached and sensitive data compromised.

The rollout of 5G and other super-fast wireless communications technology will bring huge opportunities for businesses to provide services in new and innovative ways, but they will also potentially open us up to more sophisticated cyber-attacks. Spending on cybersecurity will continue to increase, and those with relevant skills will be highly sought-after.

9. More of us will interact with AI, maybe without even knowing it

Let’s face it, despite the huge investment in recent years in natural-language powered chatbots in customer service, most of us can recognize whether we’re dealing with a robot or a human. However, as the datasets used to train natural language processing algorithms continue to grow, the line between humans and machines will become harder and harder to distinguish. With the advent of deep learning and semi-supervised models of machine learning such as reinforcement learning, the algorithms that attempt to match our speech patterns and infer meaning from our own human language will become more and more able to fool us into thinking there is a human on the other end of the conversation.

10. But AI will recognize us, even if we don’t recognize it

Perhaps even more unsettlingly, the rollout of facial recognition technology is only likely to intensify as we move into the next decade. Not just in China (where the government is looking at ways of making facial recognition compulsory for accessing services like communication networks and public transport) but around the world.

Source: https://www.forbes.com/

Self-driving Cars at up to 155 MPH (250 Km/h) Could Use City Tunnel

Elon Musk said that Las Vegas is “hopefully” getting a fully operational underground commercial tunnel in 2020His idea to bore tunnels underground to alleviate traffic in highly congested cities like Los Angeles and Las Vegas initially began as a joke in 2016 but has now become a full-fledged business aptly named the Boring Company with several nascent projects in major cities, including Chicago and Baltimore.

CLICK ON THE IMAGE TO ENJOY THE VIDEO
He tweeted Friday night that the Boring Company is completing its first commercial tunnel in Vegas from the Las Vegas Convention Center to the Strip, before it works on other projects and it hopes it to be operational this  year.
Musk and the Boring Company have been working to revolutionize the way people travel with high-speed Loop and Hyperloop transportation systems. Underground tunnels will transport people in cars or passenger “pods,” allowing commuters to bypass traffic and get around cities faster.

Source: https://edition.cnn.com

Artificial Intelligence Outperforms Humans In Prediction Of Breast Cancer

An artificial intelligence (AI) system can reduce false positives and false negatives in prediction of breast cancer and outperforms human readers, according to a study published online Jan. 1 in Nature.

Scott Mayer McKinney, from Google Health in Palo Alto, California, and colleagues examined the performance of an AI system for breast cancer prediction in a clinical setting. Data were curated from a large representative dataset from the United Kingdom and a large enriched dataset from the United States.

The researchers observed an absolute reduction of 5.7 and 1.2 percent in false positives in the U.S. and U.K. datasets, respectively, and 9.4 and 2.7 percent, respectively, in false negatives. The system was also able to generalize from the United Kingdom to the United States. The AI system outperformed six human readers in an independent study involving radiologists; the area under the receiver operating characteristic curve was greater for the AI system than the average radiologist (absolute margin, 11.5 percent). The AI system maintained noninferior performance in a simulation in which the AI system participated in the double-reading process that is used in the United Kingdom and reduced the workload of the second reader by 88 percent.

“These analyses highlight the potential of this technology to deliver screening results in a sustainable manner despite workforce shortages in countries such as the United Kingdom,” the authors write.

Several authors disclosed financial ties to technology companies, including Google, which funded the study.

Source: https://www.nature.com/
AND
https://www.physiciansweekly.com/

Alzheimer’s Breakthrough Likely Within Five Years

The head of the Trump administration’s medical research institution predicted the United States would be closer to slowing the progression of Alzheimer’s disease within the next five years.

Will we have a cure this year? Probably not,” National Institutes of Health Director Francis Collins said on New Year’s Eve in an interview with Newsmakers on C-SPAN. “Will we have a way to figure out how to slow the disease in the next five years? I believe we will, but it is going to take every bit of energy, creativity, determination, and resources possible to get there.

Collins, who has led the NIH for more than a decade, didn’t specify a figure for how much funding would be needed to make progress on Alzheimer’s, the sixth-leading cause of death in the U.S. Research on another leading killer, cancer, has surpassed $5 billion in funding for years, and researchers have been able to develop new ways to address certain types.

In its latest spending bill, Congress increased NIH funding for dementia research, including Alzheimer’s, by $350 million, bringing the total amount devoted to the cause to $2.8 billion. The budget is four times what it was six years ago. NIH conducts research in-house and provides grants to outside scientists. “We will put every dime of that to good use,” Collins said.

Despite some increases in funding several years in a row, there’s still no way to cure the disease or to slow it, leaving public health experts and policymakers concerned about how the U.S. will care for the 14 million adults who are predicted to have Alzheimer’s by 2050, as well as for their caregivers.

For years, scientists were primarily focused on the theory that if they could get rid of a protein buildup in the brain called “amyloid,” then they could get rid of Alzheimer’s disease. Their research, however, came up dry. Now, Collins noted in the interview, scientists are looking at a lot of different approaches to addressing Alzheimer’s. “We have hedged our bets at the NIH over the course of the last five or six years to look in every nook and cranny,” Collins said.

Source: https://www.washingtonexaminer.com/

Turning Light Energy Into Heat To Fight Disease

An emerging technology involving tiny particles that absorb light and turn it into localized heat sources shows great promise in several fields, including medicine. For example, photothermal therapy, a new type of cancer treatment, involves aiming infrared laser light onto nanoparticles near the treatment site. Localized heating in these systems must be carefully controlled since living tissue is delicate. Serious burns and tissue damage can result if unwanted heating occurs in the wrong place. The ability to monitor temperature increases is crucial in developing this technology. Several approaches have been tried, but all of them have drawbacks of various kinds, including the need to insert probes or inject additional materials.

In this week’s issue of APL Photonics,, scientists report the development of a new method to measure temperatures in these systems using a form of light known as terahertz radiation. The study involved suspensions of gold nanorods of various sizes in water in small cuvettes, which were illuminated by a laser focused on a small spot within the cuvette. The tiny gold rods absorbed the laser light and converted it to heat that spread through the water by convection.

 

We are able to map out the temperature distribution by scanning the cuvette with terahertz radiation, producing a thermal image,” co-author Junliang Dong said.

The study also looked at the way the temperature varied over time. “Using a mathematical model, we are able to calculate the efficiency by which the gold nanorod suspensions converted infrared light to heat,” said co-author Holger Breitenborn.

The smallest gold particles, which had a diameter of 10 nanometers, converted laser light to heat with the highest efficiency, approximately 90%. This value is similar to previous reports for these gold particles, indicating the measurements using terahertz radiation were accurate. Although the smaller gold rods had the highest light-to-heat conversion efficiency, the largest rods — those with a diameter of 50 nanometers — displayed the largest molar heating rate. This quantity has been recently introduced to help evaluate the use of nanoparticles in biomedical settings.

By combining measurements of temperature transients in time and thermal images in space at terahertz frequencies, we have developed a noncontact and noninvasive technique for characterizing these nanoparticles,” co-author Roberto Morandotti said. This work offers an appealing alternative to invasive methods and holds promise for biomedical applications.

Source:  https://aip.scitation.org/
A
ND
https://www.eurekalert.org/

Russian Nuclear Missiles That Travel 20 times The Speed Of Sound

Russia’s first regiment of Avangard hypersonic missiles has been put into service, the defence ministry says. The location was not given, although officials had earlier indicated they would be deployed in the Urals. President Vladimir Putin has said the nuclear-capable missiles can travel more than 20 times the speed of sound and put Russia ahead of other nations. They have a “glide system” that affords great manoeuvrability and could make them impossible to defend against.

Defence Minister Sergei Shoigu confirmed the “Avangard hypersonic glide vehicle entered service at 10:00 Moscow time on 27 December“, calling it a “landmark“. Mr Putin said on Tuesday the Avangard system could penetrate current and future missile defence systems, adding: “Not a single country possesses hypersonic weapons, let alone continental-range hypersonic weapons.”

The West and other nations were “playing catch-up with us“, he said. Mr Putin unveiled the Avangard and other weapons systems in his annual state-of-the-nation address in March 2018, likening it to a “meteorite” and a “fireball“. In December 2018, the weapon hit a practice target 6,000km (3,700 miles) away in a test launch at Dombarovskiy missile base in the southern Ural Mountains.

The Avangard is invulnerable to intercept by any existing and prospective missile defence means of the potential adversary,” Mr Putin said after the test.

Mounted on top of an intercontinental ballistic missile, the Avangard can carry a nuclear weapon of up to two megatons. Russia’s defence ministry has released video of the Avangard system, but weapons experts have expressed scepticism about its effectiveness.

In a statement, the Pentagon said it would “not characterise the Russian claims” about the Avangard‘s capabilities. The US has its own hypersonic missile programme, as does China, which in 2014 said it had conducted a test flight of such as weapon.

Source: https://www.bbc.com/

Simple Urine Test To Spot Cancer

A Japanese firm is poised to carry out what it hailed as the world’s first experiment to test for cancer using urine samples, which would greatly facilitate screening for the deadly disease. Engineering and IT conglomerate Hitachi developed the basic technology to detect breast or colon cancer from two years ago. It will now begin testing the method using some 250 urine samples, to see if samples at are suitable for analysis, Hitachi spokesman Chiharu Odaira told AFP.

If this method is put to practical use, it will be a lot easier for people to get a cancer test, as there will be no need to go to a medical organisation for a ,” he said. It is also intended to be used to detect paediatric cancers.

That will be especially beneficial in testing for ” who are often afraid of needles,” added Odaira. Research published earlier this year demonstrated that a new blood test has shown promise towards detecting eight different kinds of tumours before they spread elsewhere in the body.

Usual diagnostic methods for breast cancer consist of a mammogram followed by a biopsy if a risk is detected. For , screening is generally conducted via a stool test and a colonoscopy for patients at high risk. The Hitachi technology centres around detecting waste materials inside urine samples that act as a “biomarker“—a naturally occurring substance by which a particular disease can be identified, the company said in a statement.

The procedure aims to improve the early detection of cancer, saving lives and reducing the medical and social cost to the country, Odaira explained.

The experiment is now completed in cooperation with Nagoya University in central Japan. “We aim to put the technology in use in the 2020s, although this depends on various things such as getting approval from the authorities,” Odaira said.

Source: https://medicalxpress.com/

The DNA Drug Revolution

Doctors have been treating the symptoms of most diseases, and not the source, for centuries. They have cut out tumors, unclogged arteries, injected insulin and soothed fevers—and have been unable to touch the biological code within cells that tells them to grow malignantly, pass along abnormal nerve signals, take in too much or too little energy, and swell with inflammation. The code is the DNA molecule in each cell that tells it what to do and when, and it triggers dreaded diseases when it goes wrong. The molecule, and its messengers, had remained tucked away, beyond the reach of almost all drugs, unfixable when broken. But as this special report explains, that is no longer the case.

Things began to change after the DNA sequence for the entire human genome was laid out early in this century, and within the past several years the ability to synthesize and custom-design shorter sequences has shown scientists that the best substance for reaching DNA is, well, DNA. Fabricating new genes to replace badly working versions, or to “silence” them, has produced 14 approved DNA-related drugs. And the latest research indicates that such therapies can be even more effective if scientists depart from the basic linear strands and instead make DNA spheres, which have enhanced abilities to enter cells. DNA analysis has also yielded new targets, showing that although newborn babies in the U.S. are typically screened for between 30 and 60 genetic conditions right now, it is possible to and nearly 1,000 genes linked to childhood diseases that could be new treatment points.

But that same science has also created troubling issues: some of the gene tests for infants can raise false alarms, for instance, and not every child with a disease-associated gene ends up getting that disease. Research has also revealed unfair bias in DNA targets. Most of the data about those sequences comes from studies of white people and has missed gene variants that cause disease in nonwhitesinequality in research that will produce inequality in health if it isn’t fixed. Geneticists are starting projects designed to improve this diversity level. DNA in medicine has great power, and that power should be used for the many, not the few.

Source: https://www.scientificamerican.com/

Gene-Editing: From Pigs To Humans

If any swine is fit to be an organ donor for people, then the dozens of pigs snuffling around Qihan Bio’s facility in Hangzhou, China, may be the best candidates so far. The Chinese company and its U.S. collaborators reported today that they have used the genome editor CRISPR to create the most extensively genetically engineered pigs to date—animals whose tissues, the researchers say, finally combine all the features necessary for a safe and successful transplant into humans.

This is the first prototype,” says Luhan Yang, a geneticist at Qihan Bio. In a preprint published today on bioRxiv, Qihan researchers and collaborators, including Cambridge, Massachusetts–based eGenesis—which Yang co-founded with Harvard University geneticist George Church—described the new generation of animals and various tests on their cells; the researchers have already begun to transplant the pigs’ organs into nonhuman primates, a key step toward human trials.

Qihan and eGenesis aren’t alone in their quest. Several academic and commercial research groups are racing to make up a shortage of life-saving human organs with the comparably sized hearts, kidneys, and livers of pigs. For these cross-species transplants, also known as xenotransplants, the pig’s genome must be re-engineered so that its organs will get along with the new host body. Pigs produce species-specific molecules that set off the human immune system, prompting rejection. Their tissue can also cause abnormal clotting and bleeding when it interacts with human blood. And the pig genome is littered with DNA sequences from viruses that infected the animals long ago and slipped genes into their chromosomes. These sequences, known as porcine endogenous retroviruses (PERVs), have been shown to produce potentially infectious viral particles, though their risk to humans is unclear.

Source: https://www.sciencemag.org/

Absolutely Unbreakable Encryption Chip

The trouble with encryption is that everyone needs it, and every threat actor wants to break it. Thankfully, current cryptographic techniques are still at least one step ahead of the cracking curve. That could, scientists say, all change in the not too distant future as quantum computers enter the encryption battlefield. But what if there were a method of enabling data to be sent using an “absolutely unbreakable” one-time communication technique? What if that technique could achieve perfect secrecy cryptography via correlated mixing of chaotic waves in an irreversible time-varying silicon chip?

A team of scientists claims that’s exactly what it has done, developing a prototype silicon chip that uses the laws of nature, including chaos theory. With no software or code to manipulate, traditional methods of cracking computer encryption are irrelevant, the scientists claim. What’s more, it is also claimed to overcome the threat of quantum computers and can do so using existing communication networks.

An international collaboration of researchers from the School of Physics and Astronomy at University of St Andrews, King Abdullah University of Science and Technology (KAUST) and the Center for Unconventional Processes of Sciences (CUP Sciences) has today published a paper to demonstrate perfect secrecy cryptography in classical optical channels.

Image converted using ifftoany

With the advent of more powerful and quantum computers, all current encryptions will be broken in a very short time,” Dr. Andrea Fratalocchi, Associate Professor of Electrical Engineering at KAUST and leader of the study, said, “exposing the privacy of our present and, more importantly, past communications.”

The prototype chip the scientists have developed uses the classical laws of physics, including chaos theory and the second law of thermodynamics, to achieve “perfect secrecy.” The cryptographic keys generated by the chip, which are used to unlock each message, are never stored and are not communicated with the message. It exploits correlated chaotic wavepackets, mixed in inexpensive and CMOS compatible silicon chips. All of which start life as digital human fingerprint images that are transformed into a “chaotic microresonator.” It is claimed that even facing an attacker with “unlimited” technological power, even if they could access the system and copy the chips, would be unable to break the encryption because it is protected by the second law of thermodynamics and the “exponential sensitivity of chaos.

This system is the practical solution the cybersecurity sector has been waiting for since the perfect secrecy theoretical proof in 1917 by Gilbert Vernam,” Dr. Al Cruz, founder of the Center for Unconventional Processes of Sciences (CUP Sciences) in California, and co-author of the study said.

Source: https://news.st-andrews.ac.uk
AND
https://www.forbes.com/

Limitless, Cheap Clean Energy: China launches Its “Artificial Sun”

China is about to start operation on its “artificial sun“—a nuclear fusion device that produces energy by replicating the reactions that take place at the center of the sun. If successful, the device could edge scientists closer to achieving the ultimate goal of nuclear fusion: near limitless, cheap clean energy.

The device, called HL-2M Tokamak, is part of the nation’s Experimental Advanced Superconducting Tokamak project, which has been running since 2006. In March, an official from the China National Nuclear Corporation announced it would complete building HL-2M by the end of the year.

The coil system was installed in June and since then, work on HL-2M has gone “smoothly,” the Xinhua News Agency reported in November.

Duan Xuru, head of the Southwestern Institute of Physics, which is part of the corporation, announced the device will become operational in 2020 at the 2019 China Fusion Energy Conference, the state news agency said. He told attendees how the new device will achieve temperatures of over 200 million degrees Celsius. That’s about 13 times hotter than the center of the sun. Previous devices developed for the artificial sun experiment reached 100 million degrees Celsius, a breakthrough that was announced in November last year.

Nuclear fusion is the reaction that powers the sun. It involves fusing two lighter atomic nuclei to form a heavier nucleus—a reaction that releases a huge amount of energy. On the sun, where core temperatures reach about 15 million degrees Celsius, hydrogen nuclei combine to form helium.

To recreate this on Earth, scientists must heat the fuel—types of hydrogen—to temperatures over 100 million degrees Celsius. At this point, the fuel becomes a plasma. This extremely hot plasma must be confined and one method scientists have been developing is a donut shaped device called a tokamak. This uses magnetic fields to try to stabilize the plasma so reactions can take place and energy be released. However, plasma is prone to producing bursts. If these touch the reactor wall it can damage the device.

Source: https://www.newsweek.com/

3D Printed Mini Livers

Using human blood cells, Brazilian researchers have succeeded in obtaining hepatic organoids (“mini-livers”) that perform all of the liver’s typical functions, such as producing vital proteins, storing vitamins, and secreting bile, among many others. The innovation permits the production of hepatic tissue in the laboratory in only 90 days and may in the future become an alternative to organ transplantation.
The study was conducted at the Human Genome and Stem Cell Research Center (HUG-CELL). Hosted by the University of São Paulo (USP), HUG-CELL is one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP.

This study combined bioengineering techniques, such as cell reprogramming and the cultivation of pluripotent stem cells, with 3D bioprinting. Thanks to this strategy, the tissue produced by the bioprinter maintained hepatic functions for longer than reported by other groups in previous studies.

More stages have yet to be achieved until we obtain a complete organ, but we’re on the right track to highly promising results. In the very near future, instead of waiting for an organ transplant, it may be possible to take cells from the patient and reprogram them to make a new liver in the laboratory. Another important advantage is zero probability of rejection, given that the cells come from the patient,” said Mayana Zatz, director of HUG-CELL and last author of the article published in Biofabrication.

The innovative part of the study resided in how the cells were included in the bioink used to produce tissue in the 3D printer. “Instead of printing individualized cells, we developed a method of grouping them before printing. These ‘clumps’ of cells, or spheroids, are what constitute the tissue and maintain its functionality much longer,” said Ernesto Goulart, a postdoctoral fellow in USP’s Institute of Biosciences and first author of the article. The researchers thereby avoided a problem faced by most human tissue bioprinting techniques, namely, the gradual loss of contact among cells and hence loss of tissue functionality.

Spheroid formation in this study already occurred in the differentiation process, when pluripotent cells were transformed into hepatic tissue cells (hepatocytes, vascular cells, and mesenchymal cells). “We started the differentiation process with the cells already grouped together. They were cultured in agitation, and groups formed spontaneously,” Goulart told Agência FAPESP.

According to the researchers, the complete process from collection of the patient’s blood to functional tissue production takes approximately 90 days and can be divided into three stages: differentiation, printing, and maturation.

In this study, researchers developed mini-livers using blood cells from three volunteers as raw material and compared markers relating to functionality, such as the maintenance of cell contact and protein production and release. “Our spheroids worked much better than those obtained from single-cell dispersion. As expected, during maturation, the markers of hepatic function were not reduced,” Goulart said. Although the study was limited to producing miniature livers, the technique can be used in the future to produce complete organs suitable for transplantation, according to Goulart. “We did it on a small scale, but with investment and interest, it can easily be scaled up,” he said.

The article can be retrieved from iopscience.iop.org/.

Source: http://agencia.fapesp.br/

Self-Cleaning Surface Repels The Deadliest SuperBugs

Researchers at McMaster (Canada) have solved a vexing problem by engineering surface coatings that can repel everything, such as bacteria, viruses and living cells, but can be modified to permit beneficial exceptionsThe discovery holds significant promise for medical and other applications, making it possible for implants such as vascular grafts, replacement heart valves and artificial joints to bond to the body without risk of infection or blood clotting. The new nanotechnology has the potential to greatly reduce false positives and negatives in medical tests by eliminating interference from non-target elements in blood and urine.

The research adds significant utility to completely repellent surfaces that have existed since 2011. Those surface coatings are useful for waterproofing phones and windshields, and repelling bacteria from food-preparation areas, for example, but have offered limited utility in medical applications where specific beneficial binding is required

 

It was a huge achievement to have completely repellent surfaces, but to maximize the benefits of such surfaces, we needed to create a selective door that would allow beneficial elements to bond with those surfaces,” explains Tohid Didar of McMaster’s Department of Mechanical Engineering and School of Biomedical Engineering, the senior author of a paper that appears today in the journal ACS Nano.

In the case of a synthetic heart valve, for example, a repellent coating can prevent blood cells from sticking and forming clots, making it much safer.

A coating that repels blood cells could potentially eliminate the need for medicines such as warfarin that are used after implants to cut the risk of clots,” says co-author , a McMaster PhD student in Biomedical Engineering. Still, she explains, a completely repellent coating also prevents the body from integrating the new valve into the tissue of the heart itself.

By designing the surface to permit adhesion only with heart tissue cells, the researchers are making it possible for the body to integrate the new valve naturally, avoiding the complications of rejection. The same would be true for other implants, such as artificial joints and stents used to open blood vessels.

If you want a device to perform better and not be rejected by the body, this is what you need to do,” says co-author Maryam Badv, also a McMaster PhD student in Biomedical Engineering. “It is a huge problem in medicine.”

Source: https://brighterworld.mcmaster.ca/

Electric Plane Flies At 300 MPH (near 500 km/h)

By this time next year, Rolls-Royce expects to have conducted the inaugural flight of its 300-mile-per-hour, all-electric, zero-emissions plane. The project, dubbed ACCEL—short for Accelerating the Electrification of Flight—is being touted by the company as a major breakthrough for eco-friendly travel. While the process is still a ways from completion, Rolls-Royce hopes that the ACCEL plane can lay the groundwork for emissions-free aviation in the years to come.

Firmly in ACCEL’s sights is the current speed record for an all-electric plane, set at 210 miles per hour by a Siemens aircraft back in 2017. While far from the 500-600 MPH typical of today’s commercial jets, 300 miles an hour would be a significant improvement in the emissions-free space.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

This plane will be powered by a state-of-the-art electrical system and the most powerful battery ever built for flight,” said project head Matheu Parr. Parr emphasized that the team’s work is yielding new insights every day given the relatively unexplored set of challenges that accompany electric flight.

 

Rolls-Royce’s effort comes amid a broader push from the aviation industry to nullify its impact on the environment. Air travel was responsible for the release of 850 million tons of carbon dioxide last year—about 2 percent of the total emissions attributable to humans. To meet this challenge, a diverse set of players has pledged its support toward greener flying initiatives. ACCEL itself is partially funded with public money from the British government, along with various partners from the private sector.

Rolls-Royce hopes to establish itself as both a pioneer and a leader in green aviation with the ACCEL project, but initiatives from other manufacturing and engineering organizations will test that title in the coming years. To cite one particularly ambitious example, easyJet has partnered with Wright Electric with the aim of bringing regular electric aircraft to some of its routes by 2027. As governments and private players alike look to tackle the climate challenge, healthy competition in developing a viable emission-free plane can only be a good thing.

Source: https://www.rolls-royce.com/
A
ND
https://www.engineering.com/

Deadly ‘SuperBugs’ Destroyed by Molecular Drills

Molecular drills have gained the ability to target and destroy deadly bacteria that have evolved resistance to nearly all antibiotics. In some cases, the drills make the antibiotics effective once again.

Researchers at Rice University, Texas A&M University, Biola University and Durham (U.K.) University showed that motorized molecules developed in the Rice lab of chemist James Tour are effective at killing antibiotic-resistant microbes within minutes.

These superbugs could kill 10 million people a year by 2050, way overtaking cancer,” Tour said. “These are nightmare bacteria; they don’t respond to anything.”

The motors target the bacteria and, once activated with light, burrow through their exteriors.

While bacteria can evolve to resist antibiotics by locking the antibiotics out, the bacteria have no defense against molecular drills. Antibiotics able to get through openings made by the drills are once again lethal to the bacteria.

Tour and Robert Pal, a Royal Society University Research Fellow at Durham and co-author of the new paper, introduced the molecular drills for boring through cells in 2017. The drills are paddlelike molecules that can be prompted to spin at 3 million rotations per second when activated with light.

Tests by the Texas A&M lab of lead scientist Jeffrey Cirillo and former Rice researcher Richard Gunasekera, now at Biola, effectively killed Klebsiella pneumoniae within minutes. Microscopic images of targeted bacteria showed where motors had drilled through cell walls.

Bacteria don’t just have a lipid bilayer,” Tour said. “They have two bilayers and proteins with sugars that interlink them, so things don’t normally get through these very robust cell walls. That’s why these bacteria are so hard to kill. But they have no way to defend against a machine like these molecular drills, since this is a mechanical action and not a chemical effect.”

The motors also increased the susceptibility of K. pneumonia to meropenem, an antibacterial drug to which the bacteria had developed resistance. “Sometimes, when the bacteria figures out a drug, it doesn’t let it in,” Tour said. “Other times, bacteria defeat the drug by letting it in and deactivating it.

He said meropenem is an example of the former. “Now we can get it through the cell wall,” Tour said. “This can breathe new life into ineffective antibiotics by using them in combination with the molecular drills.”

The researchers reported their results in the American Chemical Society journal ACS Nano.

Source: https://news.rice.edu/

New Vaccine Brings Revolution In Preventing Chronic Inflammation Related To 60% Of Death

As we learn more and more about health, well-being, and all the factors that affect both, inflammation has become a major player in the conversation. Linked with symptoms ranging from bloating and acne to more serious things like depression and cancer, chronic inflammation, researchers believe, could continue to increase in prevalence. But a new vaccine offers hope for the future of preventing inflammatory diseases.

The vaccine, which is currently for animals, was developed by Institut Cochin in France. Researchers already knew about a connection between inflammation, gut health, and the protein flagellin: Flagellin essentially allows into the rest of the body, resulting in inflammation, and while antibodies exist within that intestinal barrier to help prevent leaky gut, it’s harder to keep all the bacteria contained if your microbiome is out of balance. Researchers hypothesized they could boost the flagellin antibodies within the gut, thereby keeping harmful bacteria from spreading into the body. They administered a flagellin vaccine to mice by injecting it directly into their intestinal lining, spurring the production of the flagellin-fighting antibodies. Chronic inflammation is thought to be related to 60% of deaths worldwide, due to its connection to stroke, diabetes, cancer, and more. This vaccine could be a game-changer if scientists are able to replicate the findings in a version for humans, which researcher Benoît Chassaing says they’re working on.

This vaccine strategy can be envisaged in humans, because such abnormalities of the microbiota have been observed in patients with inflammatory and metabolic diseases. With this in mind, we are currently working on a means of locally administering flagellin to the intestinal mucosa,” he says.

They’re also looking into testing the vaccine on animals that already have chronic inflammatory diseases, to see if it can be used for inflammatory treatment, as opposed to just prevention. But until such a vaccine for humans exists, there are lots of ways to combat inflammation naturally. If you’re still looking for more information, check out the Ultimate Guide to Inflammation class.. When inflammation was induced, the unvaccinated mice became obese, and the vaccinated mice did not. Immunization quelled intestinal inflammation by lowering levels of the flagellin-expressing bacteria in their microbiota, intestines, and intestinal lining.

Source: https://www.mindbodygreen.com/

AI-driven Robots Improve Solar Cells

In July 2018, Curtis Berlinguette, a materials scientist at the University of British Columbia in Vancouver, Canada, realized he was wasting his graduate student’s time and talent. He was asked to refine a key material in solar cells to boost its electrical conductivity. But the number of potential tweaks was overwhelming, from spiking the recipe with traces of metals and other additives to varying the heating and drying times.

 

Ada, an AI-driven robot, searches for new solar cell designs at the University of British Columbia

There are so many things you can go change, you can quickly go through 10 million [designs] you can test,” Berlinguette says.

So he and colleagues outsourced the effort to a single-armed robot overseen by an artificial intelligence (AI) algorithm. Dubbed Ada, the robot mixed different solutions, cast them in films, performed heat treatments and other processing steps, tested the films’ conductivity, evaluated their microstructure, and logged the results. The AI interpreted each experiment and determined what to synthesize next. At a meeting of the Materials Research Society (MRS) here last week, Berlinguette reported that the system quickly homed in on a recipe and heating conditions that created defect-free films ideal for solar cells. “What used to take us 9 months now takes us 5 days,” Berlinguette says.

Other material scientists also reported successes with such “closed loop” systems that combine the latest advances in automation with AI that directs how the experiments should proceed on the fly. Drug developers, geneticists, and investigators in other fields had already melded AIs and robots to design and do experiments, but materials scientists had lagged behind. DNA synthesizers can be programmed to assemble any combination of DNA letters, but there’s no single way to synthesize, process, or characterize materials, making it exponentially more complicated to develop an automated system that can be guided by an AI. Materials scientists are finally bringing such systems online. “It’s a superexciting area,” says Benji Maruyama, a materials scientist with the U.S. Air Force Research Laboratory east of Dayton, Ohio. “The closed loop is what is really going to make progress in materials research go orders of magnitude faster.”

With more than 100 elements in the periodic table and the ability to combine them in virtually limitless ways, the number of possible materials is daunting. “The good news is there are millions to billions of undiscovered materials out there,” says Apurva Mehta, a materials physicist at the Stanford Synchrotron Radiation Lightsource in Menlo Park, California. The bad news, he says, is that most are unremarkable, making the challenge of finding gems a needle-in-the-haystack problem. Robots have already helped. They are now commonly used to mix dozens of slightly different recipes for a material, deposit them on single wafers or other platforms, and then process and test them simultaneously. But simply plodding through recipe after recipe is a slow route to a breakthrough, Maruyama says. “High throughput is a way to do lots of experiments, but not a lot of innovation.”

To speed the process, many teams have added in computer modeling to predict the formula of likely gems. “We’re seeing an avalanche of exciting materials coming from prediction,” says Kristin Persson of Lawrence Berkeley National Laboratory (LBNL) in California, who runs a large-scale prediction enterprise known as the Materials Project. But those systems still typically rely on graduate students or experienced scientists to evaluate the results of experiments and determine how to proceed. Yet, “People still need to do things like sleep and eat,” says Keith Brown, a mechanical engineer at Boston University (BU). So, like Berlinguette, Brown and his colleagues built an AI-driven robotics system. Their goal was to find the toughest possible 3D-printed structures. Toughness comes from a blend of high strength and ductility, and it varies depending on the details of a structure, even if the material itself doesn’t change. Predicting which shape will be toughest isn’t feasible, Brown says. “You have to do the experiment.”

Source: https://www.sciencemag.org/

How To Detect Blocked Arteries Effectively

Heart disease and stroke are the world’s two most deadly diseases, causing over 15 million deaths in 2016 according to the World Health Organization. A key underlying factor in both of these global health crises is the common condition, atherosclerosis, or the build-up of fatty deposits, inflammation and plaque on the walls of blood vessels. By the age of 40, around half of us will have this condition, many without symptoms.

A new nanoparticle innovation from researchers in USC Viterbi’s Department of Biomedical Engineering may allow doctors to pinpoint when plaque becomes dangerous by detecting unstable calcifications that can trigger heart attacks and strokes. The research ­­— from Ph.D. student Deborah Chin under the supervision of Eun Ji Chung, the Dr. Karl Jacob Jr. and Karl Jacob III Early-Career Chair, in collaboration with Gregory Magee, assistant professor of clinical surgery from Keck School of Medicine of USC — was recently published in the Royal Society of Chemistry’s Journal of Materials Chemistry B on 25 September 2019.

When atherosclerosis occurs in coronary arteries, blockages due to plaque or calcification-induced ruptures can lead to a clot, cutting blood flow to the heart, which is the cause of most heart attacks. When the condition occurs in the vessels leading to the brain, it can cause a stroke.

A MICROSCOPIC VIEW OF ATHEROSCLEROSIS IN A PULMONARY ARTERY

An artery doesn’t need to be 80 percent blocked to be dangerous. An artery with 45% blockage by plaques could be more rupture-prone,” Chung said. “Just because it’s a big plaque doesn’t necessarily mean it’s an unstable plaque.

Chung said that when small calcium deposits, called microcalcifications, form within arterial plaques, the plaque can become rupture prone. However, identifying whether blood vessel calcification is unstable and likely to rupture is particularly difficult using traditional CT and MRI scanning methods, or angiography, which has other risks.

Angiography requires the use of catheters that are invasive and have inherent risks of tissue damage,” said Chin, the lead author. “CT scans on the other hand, involve ionizing radiation which can cause other detrimental effects to tissue.”

Source: https://viterbischool.usc.edu/

Human Genetic Enhancement Might Soon Be Possible

The first genetically edited children were born in China in late 2018.Twins Lulu and Nana had a particular gene – known as CCR5modified during embryonic development. The aim was to make them (and their descendants) resistant to HIV. By some definitions, this would be an example of human enhancement.

Although there is still a long way to go before the technology is safe, this example has shown it’s possible to edit genes that will continue being inherited by genetic offspring for generations. However, we don’t yet know what effect these genetic changes will have on the overall health of the twins throughout life. Potential unintended changes to other genes is a grave concern which is limiting our use of gene editing technology at the moment – but this limit won’t always be present.

As we increasingly become less limited by what is scientifically achievable in the realm of gene editing for enhancement, we rely more heavily on ethical – rather than practical – limits to our actions. In fact, the case of Lulu and Nana might never have happened if both scientific and ethical limits had been more firmly established and enforced.

But in order to decide these limits, the expert community needs one important contribution: public opinion. Without the voice of the people, regulations are unlikely to be followed. In a worst-case scenario, a lack of agreed-upon regulations could mean the emergence of dangerous black markets for genetic enhancements. These come with safety and equity issues. In the meantime, experts have called for a temporary international ban on the use of gene editing technologies until a broad societal consensus has been established.

What should this broad consensus be? Current guidance in the UK is theoretically in favour of gene editing for treatment purposes in the future – if certain requirements regarding safety and the intentions of editing are met. This includes eliminating unintentional changes to other genes as a result of genetic enhancements, and that edits serve the welfare of the individuals involved. But when it comes to enhancement, ethical limits are harder to determine as people have different views on what’s best for ourselves and society.

One thing to consider with a technology like gene editing is that it affects more people than just the individual whose genes have been edited – and in some cases, those with edited genes could be unfairly better off than those who haven’t had their genes enhanced.

For example, if it were possible to enhance genes to improve facial symmetry or make a person more confident, it might mean these people are more likely to find employment in a competitive market, compared to those who haven’t had their genes edited for these characteristics. Future generations will also inherit and carry these enhancements in their DNA. In these ethical dilemmas, in order for one person to win, many people must (often unwittingly) lose.

Source: https://theconversation.com/

53% Of Blood Cancer Treated With CAR-T Cell Immunotherapy Healed

Bristol-Myers Squibb Co on Saturday said that an experimental cancer therapy it acquired as part of its $74 billion deal for Celgene Corp produced positive results in a clinical trial. The company said it will apply for U.S. approval for the treatment for a type of advanced blood cancer by the end of the year.

The treatment, liso-cel, is a newer type of immunotherapy known as CAR-T cell therapy, that takes immune cells from a patient, engineers them to better recognize and attack cancer and infuses them back into the patient.

The study tested three dose levels of liso-cel in the 269 patients with relapsed or refractory large B-cell lymphoma. Nearly three quarters of the patients responded to the one-time treatment, with 53% experiencing a complete response, meaning no detectable sign of the cancer, according to data presented at American Society of Hematology Conference in Orlando.

The data marks a win for Bristol-Myers after its purchase of Celgene met resistance from some investors who thought that it was overpaying for the cancer-focused biotech. It is also a positive sign for Celgene investors, who are entitled to received a contingent value right, or CVR, payment of $9 a share if three treatments in development, including liso-cel, achieve timely approvals.

Source: https://www.reuters.com/

Rent For One Year a Green 3D Printed House Inspired By Mars NASA Projects.

AI SpaceFactory, a multi-planetary architectural and technology design agency, launched TERA, a high-tech and green eco-home designed for off-grid living on earth. Inspired by their NASA-award-winning Mars habitat MARSHA, the first TERA accepts limited pre-bookings on Indiegogo and will be available starting March 2020 for one year before it is recycled and reprinted elsewhere.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

TERA, the first space-tech eco-habitat by AI SpaceFactory, is built from recyclable, biodegradable materials that can be composted at the end of its lifecycle. Actually, the B&B will be 3D printed on-site and equipped with “the most advanced technological and eco-friendly products, emphasizing the beauty of its natural environment while promoting a new, sustainable way of living on this Plane”. The retreat will be located in the woods of Upstate New York with views of the Hudson River, on undisturbed natural lands, 1.5 hours by train from NYC. The project offers a futuristic and sustainable experience of life on and beyond our planet.

“We realized the materials and technology we developed for long-term missions on Mars had the potential to be leaps and bounds more sustainable than conventional construction on Earth, […] TERA will challenge everything we know about architecture and construction. It could transform the way we build on Earth – maybe even save our planet” said David Malott, CEO, and chief architect.  AI SpaceFactory, founded in 2017, developed TERA with the same design logic and 3D printing technologies as their NASA-award-winning Mars habitat MARSHA. In fact, the agency wants to revolutionize the conventional building practices, through the use of plant-based materials, found to be up to three times as strong as concrete. TERA, with a very low impact on its surroundings, can be dismantled, recycled and reprinted elsewhere.

Source: https://www.aispacefactory.com/
AND
https://www.archdaily.com/

The Rising Of Gene Therapy

After false starts, drugs that manipulate the code of life are finally changing lives. The idea for gene therapy—a type of DNA-based medicine that inserts a healthy gene into cells to replace a mutated, disease-causing variant—was first published in 1972. After decades of disputed results, treatment failures and some deaths in experimental trials, the first gene therapy drug, for a type of skin cancer, was approved in China in 2003. The rest of the world was not easily convinced of the benefits, however, and it was not until 2017 that the U.S. approved one of these medicines. Since then, the pace of approvals has accelerated quickly. At least nine gene therapies have been approved for certain kinds of cancer, some viral infections and a few inherited disorders. A related drug type interferes with faulty genes by using stretches of DNA or RNA to hinder their workings. After nearly half a century, the concept of genetic medicine has become a reality.

These treatments use a harmless virus to carry a good gene into cells, where the virus inserts it into the existing genome, canceling the effects of harmful mutations in another gene.

GENDICINE: China’s regulatory agency approved the world’s first commercially available gene therapy in 2003 to treat head and neck squamous cell carcinoma, a form of skin cancer. Gendicine is a virus engineered to carry a gene that has instructions for making a tumor-fighting protein. The virus introduces the gene into tumor cells, causing them to increase the expression of tumor-suppressing genes and immune response factors.The drug is still awaiting FDA approval.

GLYBERA: The first gene therapy to be approved in the European Union treated lipoprotein lipase deficiency (LPLD), a rare inherited disorder that can cause severe pancreatitis. The drug inserted the gene for lipoprotein lipase into muscle cells. But because LPLD occurs in so few patients, the drug was unprofitable. By 2017 its manufacturer declined to renew its marketing authorization; Glybera is no longer on the market.

IMLYGIC: The drug was approved in China, the U.S. and the E.U. to treat melanoma in patients who have recurring skin lesions following initial surgery. Imlygic is a modified genetic therapy inserted directly into tumors with a viral vector, where the gene replicates and produces a protein that stimulates an immune response to kill cancer cells.

KYMRIAH: Developed for patients with B cell lymphoblastic leukemia, a type of cancer that affects white blood cells in children and young adults, Kymriah was approved by the FDA in 2017 and the E.U. in 2018. It works by introducing a new gene into a patient’s own T cells that enables them to find and kill cancer cells.

LUXTURNA: The drug was approved by the FDA in 2017 and in the E.U. in 2018 to treat patients with a rare form of inherited blindness called biallelic RPE65 mutation-associated retinal dystrophy. The disease affects between 1,000 and 2,000 patients in the U.S. who have a mutation in both copies of a particular gene, RPE65. Luxturna delivers a normal copy of RPE65 to patients’ retinal cells, allowing them to make a protein necessary for converting light to electrical signals and restoring their vision.

STRIMVELIS: About 15 patients are diagnosed in Europe every year with severe immunodeficiency from a rare inherited condition called adenosine deaminase deficiency (ADA-SCID). These patients’ bodies cannot make the ADA enzyme, which is vital for healthy white blood cells. Strimvelis, approved in the E.U. in 2016, works by introducing the gene responsible for producing ADA into stem cells taken from the patient’s own marrow. The cells are then reintroduced into the patient’s bloodstream, where they are transported to the bone marrow and begin producing normal white blood cells that can produce ADA.

YESCARTA: Developed to treat a cancer called large B cell lymphoma, Yescarta was approved by the FDA in 2017 and in the E.U. in 2018. It is in clinical trials in China. Large B cell lymphoma affects white blood cells called lymphocytes. The treatment, part of an approach known as CAR-T cell therapy, uses a virus to insert a gene that codes for proteins called chimeric antigen receptors (CARs) into a patient’s T cells. When these cells are reintroduced into the patient’s body, the CARs allow them to attach to and kill cancer cells in the bloodstream.

ZOLGENSMA: In May 2019 the FDA approved Zolgensma for children younger than two years with spinal muscular atrophy, a neuromuscular disorder that affects about one in 10,000 people worldwide. It is one of the leading genetic

causes of infant mortality. Zolgensma delivers a healthy copy of the human SMN gene to a patient’s motor neurons in a single treatment.

ZYNTEGLO: Granted approval in the E.U. in May 2019, Zynteglo treats a blood disorder called beta thalassemia that reduces a patient’s ability to produce hemoglobin, the protein in red blood cells that contains iron, leading to life-threatening anemia. The therapy has been approved for individuals 12 years and older who require regular blood transfusions. It employs a virus to introduce healthy copies of the gene for making hemoglobin into stem cells taken from the patient.The cells are then reintroduced into the bloodstream and transported to the bone marrow, where they begin producing healthy red blood cells that can manufacture hemoglobin.

The approach called ‘Gene Interference‘ uses a synthetic strand of RNA or DNA (called an oligonucleotide) that, when introduced into a patient’s cell, can attach to a specific gene or its messenger molecules, effectively inactivating them. Some treatments use an antisense method, named for one DNA strand, and others rely on small interfering RNA strands, which stop instruction molecules that go from the gene to the cell’s protein factories.

Source: https://www.nature.com/

AI Classify Chest X-Rays With Human-Level Accuracy

Analyzing chest X-ray images with machine learning algorithms is easier said than done. That’s because typically, the clinical labels required to train those algorithms are obtained with rule-based natural language processing or human annotation, both of which tend to introduce inconsistencies and errors. Additionally, it’s challenging to assemble data sets that represent an adequately diverse spectrum of cases, and to establish clinically meaningful and consistent labels given only images.

In an effort to move forward the goalpost with respect to X-ray image classification, researchers at Google devised AI models to spot four findings on human chest X-rays: pneumothorax (collapsed lungs), nodules and masses, fractures, and airspace opacities (filling of the pulmonary tree with material). In a paper published in the journal Nature, the team claims the model family, which was evaluated using thousands of images across data sets with high-quality labels, demonstrated “radiologist-levelperformance in an independent review conducted by human experts.

The study’s publication comes months after Google AI and Northwestern Medicine scientists created a model capable of detecting lung cancer from screening tests better than human radiologists with an average of eight years experience, and roughly a year after New York University used Google’s Inception v3 machine learning model to detect lung cancer. AI also underpins the tech giant’s advances in diabetic retinopathy diagnosis through eye scans, as well as Alphabet subsidiary DeepMind’s AI that can recommend the proper line of treatment for 50 eye diseases with 94% accuracy.

This newer work tapped over 600,000 images sourced from two de-identified data sets, the first of which was developed in collaboration with Apollo Hospitals and which consists of X-rays collected over years from multiple locations. As for the second corpus, it’s the publicly available ChestX-ray14 image set released by the National Institutes of Health, which has historically served as a resource for AI efforts but which suffers shortcomings in accuracy.

The researchers developed a text-based system to extract labels using radiology reports associated with each X-ray, which they then applied to provide labels for over 560,000 images from the Apollo Hospitals data set. To reduce errors introduced by the text-based label extraction and provide the relevant labels for a number of ChestX-ray14 images, they recruited radiologists to review approximately 37,000 images across the two corpora.

Google notes that while the models achieved expert-level accuracy overall, performance varied across corpora. For example, the sensitivity for detecting pneumothorax among radiologists was approximately 79% for the ChestX-ray14 images, but was only 52% for the same radiologists on the other data set.

Chest X-ray depicting a pneumothorax identified by Google’s AI model and the panel of radiologists, but missed by individual radiologists. On the left is the original image, and on the right is the same image with the most important regions for the model prediction highlighted in orange

The performance differences between datasets … emphasize the need for standardized evaluation image sets with accurate reference standards in order to allow comparison across studies,” wrote Google research scientist Dr. David Steiner and Google Health technical lead Shravya Shetty in a blog post, both of whom contributed to the paper. “[Models] often identified findings that were consistently missed by radiologists, and vice versa. As such, strategies that combine the unique ‘skills’ of both the [AI] systems and human experts are likely to hold the most promise for realizing the potential of AI applications in medical image interpretation.”

The research team hopes to lay the groundwork for superior methods with a corpus of the adjudicated labels for the ChestX-ray14 data set, which they’ve made available in open source. It contains 2,412 training and validation set images and 1,962 test set images, or 4,374 images in total.

We hope that these labels will facilitate future machine learning efforts and enable better apples-to-apples comparisons between machine learning models for chest X-ray interpretation,” wrote Steiner and Shetty.  

Source: https://venturebeat.com/

Ultrasound Waves Eliminate Prostate Tumours 2 Times Out Of 3

Blasting prostate cancer with sound waves eliminates tumours in nearly two thirds of patients, a study suggests. Researchers from the University of California at Los Angeles, who tested the technology on 115 men with prostate cancer, saw tumours destroyed in 80 per cent of men they treated.

And 65 per cent of patients were still clear of cancer a year later. Some 47,000 men each year develop prostate cancer in the UK. Despite rapid advances in other cancer types, which have resulted in falling death rates, the number of men who die from prostate cancer is still going up, with 11,800 men in Britain lost each year to the disease. And of those who do survive, many are left with severe side effects as a result of surgery, including incontinence and impotence. The new treatment, called MRI-guided transurethral ultrasound ablation – or TULSA – comes with few of those side effects, the researchers said.  TULSA works by delivering precise doses of sound waves to diseased prostate tissue while sparing surrounding healthy nerve tissue.

It works using on a rod-shaped device, inserted into the urethra, which sends out sound waves from 10 ultrasound-generating elements. The elements are controlled automatically by a software algorithm that can adjust the shape, direction and strength of the therapeutic ultrasound beam. The procedure takes place in an MRI scanner so that doctors can closely monitor treatment and assess the degree and location of heating.

The technique – which uses precise pulses of ultrasound to attack tumours in a session lasting less than an hour – could mean many men avoid surgery

Unlike with other ultrasound systems on the market, you can monitor the ultrasound ablation process in real time and get immediate MRI feedback of the thermal dose and efficacy“, said Research leader Professor Steven Raman. ‘It’s an outpatient procedure with minimal recovery time.’

The treatment, which took an average of 51 minutes, saw prostate volume decreased on average from 39 cubic centimeters 3.8 cubic centimeters a year after treatment. Blood levels of ‘prostate-specific antigen’, or PSA, a marker of prostate cancer, fell by an average of 95 per cent. There were low rates of severe toxicity and no bowel complications.

We saw very good results in the patients, with a dramatic reduction of over 90 per cent in prostate volume and low rates of impotence with almost no incontinence,’ Professor Raman said.

The device, which is already approved for clinical use in Europe, is an advance on another technique that has been used on the NHS for several years called ‘HIFU‘, or high-intensity focused ultrasound. TULSA could also be used to treat men with non-cancerous enlarged prostate – a condition known as benign prostatic hyperplasia or BPH – which affects half of all men over the age of 50, and 60 per cent of those over 60.

There are two very unique things about this system,’ Professor Raman said. ‘First, you can control with much more finesse where you’re going to treat, preserving continence and sexual function. ‘Second, you can do this for both diffuse and localised prostate cancer and benign diseases, including benign hyperplasia.’

TULSA also has the benefit of allowing further treatment if needed, he said. If it fails, then the procedure can be repeated, and more aggressive invasive approaches like surgery and radiotherapy can still be used.

Simon Grieveson, head of research funding at Prostate Cancer UK, said: ‘Over 47,000 men are diagnosed with prostate cancer each year in the UK and many face a difficult decision about what treatment they should have. Current treatments for localised disease, such as surgery or radiotherapy, can be very effective, but they are not without a risk of side effects. ‘In addition, many men with low-risk prostate cancer may be able to avoid radical treatments like this altogether, and instead have their cancer monitored under active surveillance. ‘Whilst novel treatments like this one could potentially cause fewer side effects, we cannot tell from these results alone whether this could be as effective as the treatment options that are currently available and if so, which men could benefit the most.

Source: https://www.dailymail.co.uk/

How Do Killer Immune Cells Protect Themselves?

White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne. Until now, it has been a mystery to scientists how these white blood cells – called cytotoxic lymphocytesavoid being killed by their own actions and the discovery could help explain why some tumours are more resistant than others to recently developed cancer immunotherapies.

The research, published in Nature Communications, highlights the role of the physical properties of the white blood cell envelope, namely the molecular order and electric charge, in providing such protection.

Cytotoxic lymphocytes, or white blood cells, rid the body of disease by punching holes in rogue cells and by injecting poisonous enzymes inside. Remarkably, they can do this many times in a row, without harming themselves. We now know what effectively prevents these white blood cells from committing suicide every time they kill one of their targets,” according to Professor Bart Hoogenboom (London Centre for Nanotechnology, UCL Physics & Astronomy and UCL Structural & Molecular Biology), co-author of the study.

The scientists made the discovery by studying perforin, which is the protein responsible for the hole-punching. They found that perforin’s attachment to the cell surface strongly depends on the order and packing of the molecules – so-called lipids – in the membrane that surrounds and protects the white blood cells.

Source: https://www.ucl.ac.uk/

Alzheimer’s May Be Caused By Dental Infection

In a new study scientists reveal yet another reason to keep up on dental hygiene. Bacteria that cause a common yet largely preventable gum infection may also play a role in Alzheimer’s disease. The discovery also offers hope for a treatment that could slow neurodegeneration.

There were many clues in the [features of Alzheimer’s disease] that an infection is at work,” said Casey Lynch, an entrepreneur and co-founder of Cortexyme, a biotech company headquartered at the Verily Life Sciences campus in South San Francisco, who led the new research. “Many of the genetic risk factors for Alzheimer’s are related to immune system function,” she added, which suggests “immune system dysfunction might put people more at risk.

Alzheimer’s disease, an irreversible and progressive brain disorder that leads to memory loss and diminished thinking skills, affects at least 5 million Americans. Clumps of a brain protein known as amyloid plaques are a hallmark sign of the disease. Billions of research dollars have gone towards finding a treatment that destroys these mind-robbing masses. But there’s still no cure.

Not enough people are asking what is upstream of the plaques … and [brain] inflammation,” said Lynch, who has a background in Alzheimer’s research and was frustrated by the string of failed therapies for the disease. Nearly six years ago, Lynch received a call from Stephen Dominy, a psychiatrist at the University of California, San Francisco, who had studied the link between HIV and dementia.

I think I’ve found a bacterial cause of Alzheimer’s,” Dominy, who co-founded Cortexyme with Lynch and now serves as the company’s Chief Scientific Officer, told her. Dominy had spent about 15 years searching for infections that might lead to Alzheimer’s until evidence for a bacterium known as P. gingivalis became “undeniable,” according to Lynch. P. gingivalis causes periodontitis, an infection that destroys the gums and can lead to tooth loss.

When the team examined the brains and cerebrospinal fluid of Alzheimer’s patients, they found DNA from the bacterium. They also discovered bacterial enzymes called gingipains that destroy brain cells were present, too. And when they watched P. gingivalis infections play out in mice, it triggered neurodegeneration in the hippocampus, a brain structure central to memory. It also led to Alzheimer’s hallmark amyloid beta plaque production and inflammation, the researchers discovered.

The scientists then designed and created a new molecule that blocks the gingipain enzymes. The antibiotic reduced the amount of bacteria in infected mice and stopped the formation of amyloid beta plaques while reducing inflammation, the team reports Wednesday in the journal Science Advances.

Source: https://www.discovermagazine.com/

Bacteria That Eat Carbon Dioxide

Bacteria in the lab of Prof. Ron Milo of the Weizmann Institute of Science have not just sworn off sugar – they have stopped eating all of their normal solid food, existing instead on carbon dioxide (CO2) from their environment. That is, they were able to build all of their biomass from air. This feat, which involved nearly a decade of rational design, genetic engineering and a sped-up version of evolution in the lab, was reported this week in Cell. The findings point to means of developing, in the future, carbon-neutral fuels.

The study began by identifying crucial genes for the process of carbon fixation – the way plants take carbon from CO2 for the purpose of turning it into such biological molecules as protein, DNA, etc. The research team added and rewired the needed genes. They found that many of the “parts” for the machinery that were already present in the bacterial genome could be used as is. They also inserted a gene that allowed the bacteria to get energy from a readily available substance called formate that can be produced directly from electricity and air and which is apt to “give up” electrons to the bacteria.

Just giving the bacteria the “means of production” was not enough, it turned out, for them to make the switch. There was still a need for another trick to get the bacteria to use this machinery properly, and this involved a delicate balancing act. Together with Roee Ben-Nissan, Yinon Bar-On and other members of Milo’s team in the Institute’s Plant and Environmental Sciences Department, Gleizer used lab evolution, as the technique is known; in essence, the bacteria were gradually weaned off the sugar they were used to eating. At each stage, cultured bacteria were given just enough sugar to keep them from complete starvation, as well as plenty of CO2 and formate. As some “learned” to develop a taste for CO2 (giving them an evolutionary edge over those that stuck to sugar), their descendants were given less and less sugar until after about a year of adapting to the new diet some of them eventually made the complete switch, living and multiplying in an environment that served up pure CO2.

The researchers believe that the bacteria’s new “health kick” could ultimately be healthy for the planet. Milo points out that today, biotech companies use cell cultures to produce commodity chemicals. Such cells – yeast or bacteria – could be induced to live on a diet of CO2 and renewable electricity, and thus be weaned from the large amounts of corn syrup they live on today. Bacteria could be further adapted so that rather than taking their energy from a substance such as formate, they might be able to get it straight up — say electrons from a solar collector – and then store that energy for later use as fuel in the form of carbon fixed in their cells. Such fuel would be carbon-neutral if the source of its carbon was atmospheric CO2.

Our lab was the first to pursue the idea of changing the diet of a normal heterotroph (one that eats organic substances) to convert it to autotrophism (‘living on air’),” says Milo. “It sounded impossible at first, but it has taught us numerous lessons along the way, and in the end we showed it indeed can be done. Our findings are a significant milestone toward our goal of efficient, green scientific applications.

Source: https://wis-wander.weizmann.ac.il/
AND
https://newatlas.com/

Gut Microbiome Unlocks The Secrets Of Aging

A new study has shown how the gut microbiota of older mice can promote neural growth in young mice, leading to promising developments in future treatments. The research group, based in Nanyang Technological University (NTU) in Singapore, transferred the gut microbiota of older mice into the gut of younger mice with less developed gut fauna. This resulted in enhanced neurogenesis (neuron growth) in the brain and altered aging, suggesting that the symbiotic relationship between bacteria and their host can have significant benefits for health.

The past 20 years have seen a significant increase in the amount of research into the relationship between the host and the bacteria that live in or on it. The results of these studies have established an important role for this relationship in nutrition, metabolism, and behavior. The medical community hopes that these latest results could lead to the development of food-based treatment to help slow down the aging process.

In this study, the research team attempted to uncover the functional characteristics of the gut microbiota of an aging host. The researchers transplanted gut microbiota from old or young mice into young, germ-free mouse recipients.

Using mice, the team led by Professor Sven Pettersson from the NTU Lee Kong Chian School of Medicine, transplanted gut microbes from old mice (24 months old) into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis.
The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate.
 We’ve found that microbes collected from an old mouse have the capacity to support neural growth in a younger mouse,” said Prof Pettersson. “This is a surprising and very interesting observation, especially since we can mimic the neuro-stimulatory effect by using butyrate alone.”
 “These results will lead us to explore whether butyrate might support repair and rebuilding in situations like stroke, spinal damage and to attenuate accelerated ageing and cognitive decline”.
The study was published in Science Translational Medicine, and was undertaken by researchers from Singapore, UK, and Australia.

Source: https://media.ntu.edu.sg/
AND
 https://www.medicalnewstoday.com/

The Invisible Military Becomes A Reality

Canadian camouflage company Hyperstealth Biotechnology has patented the technology behind a material that bends light to make people and objects near invisible to the naked eye. The material, called Quantum Stealth, is currently still in the prototyping stage, but was developed by the company’s CEO Guy Cramer primarily for military purposes, to conceal agents and equipment such as tanks and jets in the field. As well as making objects close to invisible to the naked eye, the material also conceals them from infrared and ultraviolet imagers. Unlike traditional camouflage materials, which are limited to specific conditions such as forests or deserts, according to Cramer this “invisibility cloakworks in any environment or season, at any time of day. This is made possible through something called a lenticular lens – a corrugated sheet in which each ridge is made up of a convex – or outward-curvinglens. These are most commonly found in 3D bookmarks or collectable football cards but in this case, they are left clear rather than being printed on.

When multiple of these lenticular sheets with different lens distributions are layered in just the right way, they are able to refract light at a myriad different angles to create “dead spots“. Light is no longer able to pass through these points, hiding the subject behind them from view while the background remains unchanged.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

It bends light like a glass of water does when a spoon or straw inside it looks bent,” Cramer said. “Except I figured out how to do it with a much smaller volume and thickness of material.

Videos released by the company demonstrate Quantum Stealth‘s ability to work even when the material is the thickness of a sheet of paper, staying lightweight and inexpensive to produce while being substantial enough to also block thermal imagers.

There remain, however, some restrictions to the effectiveness of the material, as it requires the subject or object to stand a certain distance away in order to be concealed, and the effect might be more or less convincing when viewed from different angles.

Source: http://www.hyperstealth.com/
AND
https://www.dezeen.com/

Devices Made Of DNA Detect Cancer

A new cancer-detecting tool uses tiny circuits made of DNA to identify cancer cells by the molecular signatures on their surfaceDuke University researchers fashioned the simple circuits from interacting strands of synthetic DNA that are tens of thousands of times finer than a human hair. Unlike the circuits in a computer, these circuits work by attaching to the outside of a cell and analyzing it for proteins found in greater numbers on some cell types than others. If a circuit finds its targets, it labels the cell with a tiny light-up tag. Because the devices distinguish cell types with higher specificity than previous methods, the researchers hope their work might improve diagnosis, and give cancer therapies better aim.

A team led by Duke computer scientist John Reif and his former Ph.D. student Tianqi Song described their approach in a recent issue of the Journal of the American Chemical Society.

The cell membrane is studded with proteins that researchers can use to discriminate between tumor cells and normal cells, or among cancer cells of different types or disease stages.

Similar techniques have been used previously to detect cancer, but they’re more prone to false alarmsmisidentifications that occur when mixtures of cells sport one or more of the proteins a DNA circuit is designed to screen for, but no single cell type has them all. For every cancer cell that is correctly detected using current methods, some fraction of healthy cells also get mislabeled as possibly cancerous when they’re not. Each type of cancer cell has a characteristic set of cell membrane proteins on its cell surface. To cut down on cases of mistaken identity, the Duke team designed a DNA circuit that must latch onto that specific combination of proteins on the same cell to work. As a result they’re much less likely to flag the wrong cells, Reif said.

The technology could be used as a screening tool to help rule out cancer, which could mean fewer unnecessary follow-ups, or to develop more targeted cancer treatments with fewer side effects.

Source: https://today.duke.edu/

Tesla Electric Cybertruck

About an hour or so after Tesla CEO Elon Musk revealed an absurd, futuristic, brutalist electric pickup called Cybertruck to the world, I pulled myself up into its passenger seat. A Tesla employee then took me and three others for a short joy ride down a temporarily closed-off road that lines one side of SpaceX headquarters in Hawthorne, California.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We were riding in the midlevel, dual-motor version of the truck, which is supposed to go from 0 to 60 miles per hour in 4.5 seconds and will eventually start at $49,900. But while the prototype truck was quick, the sensation of speed was dulled by its size and (undisclosed) weight. It didn’t really provide that thrilling jolt forward that Teslas are known for.

Instead, the most stunning thing about my ride in the Cybertruck was how big and roomy it was. Say what you will about the outside of the Cybertruck, but I (and the rear-seat passengers) had more space to spread out than previously seemed possible in a vehicle of this size, almost as if Tesla had pulled off some sort of magic trick.

And that’s sort of the whole deal with the Cybertruck, as far as I could tell by the end of the night. Yeah, it looks outrageous, with a design that’s more at home on the surface of Mars than in a Walmart parking lot. But if you’re willing to accept that, the truck could be more than meets the eye when it goes into production in late 2021.

For instance, the single-motor base model of the Cybertruck will allegedly get 250 miles or more on a full battery, with a 3,500-pound payload limit and 7,500-pound towing capacity — all for basically the same price as the entry-level Model 3 and Model Y.

While the price goes up from there, so do the specs, all the way to a version with a proposed 500-plus mile range and 14,000-pound towing capacity, which is powered by the same three-motor “Plaid powertrainthe company has been testing at Laguna Seca and the Nürburgring. Musk promised the Cybertruck will crush any off-road scenario, too, thanks to adaptive air suspension and up to 16 inches of ground clearance. Tesla also showed off photos of the truck on its website with an accompanying trailer as well as camping gear, hinting at possible accessories (though, let’s see the production trucks first). There are even some table stakes features for a modern truck, like 110V and 220V outlets, and lockable storage, and some more unique touches, like an onboard air compressor.

Source: https://www.tesla.com/
AND
https://www.theverge.com/

China Now Launches More Rockets Than Anyone In The World

In recent weeks, China‘s space program has made news by revealing some of its long-term ambitions for spaceflight. These include establishing an Earth-Moon space economic zone by 2050, which, if successful, could allow the country to begin to dictate the rules of behavior for future space exploration. Some have questioned whether China, which has flown six human spaceflights in the last 16 years, can really build a large low-Earth space station, send taikonauts to the Moon, return samples from Mars, and more in the coming decade or two. But what seems clear is that the country’s authoritarian government has long-term plans and is taking steps toward becoming a global leader in space exploration.

By one important metric—orbital launchesChina has already reached this goal. In 2018, the country set a goal of 35 orbital launches and ended up with 39 launch attempts. That year, the United States (29 flights) and Russia (20) trailed China, according to Space Launch Report. It marked the first time China led the world in the number of successful orbital launchesThis year, China is set to pace the world again. Through Sunday, the country has launched 27 orbital missions, followed by Russia (19), and the United States (16). Although nearly a month and a half remain in this year, a maximum of six additional orbital launches are likely from the United States in 2019.

To be fair, China’s space launch program has not been without hiccups. The country’s space program is still trying to bring its large Long March 5 vehicle back into service after a catastrophic failure during just its second mission, in July 2017. And the country had three failures in 2018 and 2019, compared to just one in the United States and Russia combined.

The United States has taken a step back this year in part due to decreased activity by SpaceX. The company launched a record 21 missions last year but has so far launched 11 rockets in 2019. A flurry of missions remains possible in the next six weeks for the company, including a space station resupply mission in early December, a commercial satellite launch, and additional Starlink flights.

Another big factor has been a slow year for United Launch Alliance. The Colorado-based company has launched just two Delta IV-Medium rockets this year, one Delta IV-Heavy, and a single Atlas V mission. The company may launch Boeing’s Starliner spacecraft before the end of 2019, giving the Atlas V rocket a second launch. It is possible that Rocket Lab, which has flown its Electron rocket from New Zealand five times in 2019 and is planning at least one more mission before the end of the year, will have more launches than United Launch Alliance for the first time. Sometime next year, Rocket Lab should also begin to add to the US tally for orbital launches as it opens a new facility at Wallops Island, Virginia.

Source: https://arstechnica.com/

How Gene-edited White Blood Cells Are Helping Fight Cancer

For the first time in the United States, a gene editing tool has been used to treat advanced cancer in three patients and showed promising early results in a pilot phase 1 clinical trial. So far the treatment appears safe, and more results are expected soon. To develop a safer and more effective treatment for cancer patients, scientists from the University of Pennsylvania, the Parker Institute for Cancer Immunotherapy in San Francisco and Tmunity Therapeutics, a biotech company in Philadelphia, developed an advanced version of immunotherapy. In this treatment, a patient’s own immune cells are removed from the body, trained to recognize specific cancer cells and then finally injected back into the patient where they multiply and destroy them.

Unlike chemotherapy or radiation therapy, which directly kills cancer cells, immunotherapy activates the body’s own immune system to do the work. This team used a gene editing tool called CRISPR to alter immune cells, turning them into trained soldiers to locate and kill cancer cells. By using this technique, the team hoped to develop a more effective form of immunotherapy with minimal side effects.

Better CRISPR-based gene editors for the diagnosis and treatment of cancer and other disorders, . combining chemistry, biology and nanotechnology, are used to engineer, control and deliver gene editing tools more efficiently and precisely.

The first step in making these tumor-killing cells used in the cancer drug trial was to isolate the T-cells – a type of white blood cells that fights pathogens and cancer cells – from the blood of the cancer patients. Two patients with advanced multiple myeloma and one patient with myxoid/round cell liposarcomav were enrolled for this study.

To arm the T-cells and bolster their tumor-fighting skills without harming normal cells, scientists genetically engineered the T-cellsdisabling three genes and adding one gene – before returning them to the patients.

The first two of these deleted genes encode T-cell receptors, which are proteins found on the surface of the T-cells that can recognize and bind specific molecules, known as antigens, on cancer cells. When these engineered T-cells bind to these antigens, it allows them to attack and directly kill the cancer cells. But the problem is that a single T-cell can recognize multiple different antigens in the body, making them less focused on finding the cancer cells. By eliminating these two genes, the T-cells are less likely to attack the wrong target or the host, a phenomenon called autoimmunity, In addition, they disrupted a third gene, called programmed cell death protein 1, which slows down the immune response. Disabling the programmed cell death protein 1 gene improves the efficiency of T-cells.

The final step in the transformation of these cells was adding a gene which produces a new T-cell receptor that recognizes and grabs onto a specific marker on the cancer cells called NY-ESO-1. With three genes deleted and one added, the T-cells are now ready to fight cancer.

Source: https://theconversation.com/

How To Divide By 4 The Risk Of Gastric Cancer

While it is well known within the medical community that there is a link between the bacteria Helicobacter pylori (H pylori) and rates of gastric cancer—commonly referred to as stomach cancer—the rates and risk among Americans has been largely understudied. Now, after analyzing records of close to 400,000 patients, researchers in the Perelman School of Medicine, University of Pennsylvania, have found that successfully eliminating H pylori from the gastrointestinal tract led to a 75 percent reduction in the risk of gastric cancer. Researchers also found that rates of gastric cancer after detection of H pylori infection are higher among specific populations, suggesting that people who fall into these groups could benefit from more careful monitoring. The study is published in the journal GastroenterologyH pylori is estimated to infect half of the world’s population, largely those in the eastern parts of the world. It can cause ulcers and other gastrointestinal issues but does not cause issues in the majority of people, and so many people are unaware they have it.

3D illustration of Helicobacter pylori, bacterium which causes gastric and duodenal ulcer

The problem was that all research out of the U.S. used to study gastric cancer and determine American’s risk of developing it did not take into account H pylori infection, and studies worldwide have shown this infection is actually the leading risk factor for this type of cancer,” says the study’s lead author Shria Kumar, a fellow in the division of Gastroenterology.

The research team found that African American, Asian, Hispanic and Latin, American Indian, and Inuit Americans have a significantly higher risk of H pylori infection and of developing gastric cancer. Risks, when compared to the general population, are also higher among men, those who smoke, and among those whose H pylori infection is detected at an older age.

Source: https://penntoday.upenn.edu/

Bone Tissue Just Needs A Little Bit Of Encouragement To Regenerate

Regrowing bones is no easy task, but the world’s lightest solid might make it easier to achieve. Researchers have figured out a way to use hybrid aerogels, strong but ultralight materials, to prompt new bone tissue to grow and replace lost or damaged tissue. Although bone cancer is a relatively rare disease (it accounts for less than 1% of all cancers), people who suffer from it often end up losing a lot of bone tissue and in extreme cases, undergo amputation. The cancerous tissue has to be cut out, taking with it a large chunk of nearby healthy tissue to make sure that the cancer does not spread. This effectively removes the cancer, but also leaves the patient with a lot less bone than they started out with.

A recent study has used hybrid aerogels to restore the lost tissue by prompting bone regeneration. Aerogels are basically a combination of solid and gas. Think Jell-O, but one where the water has been slowly dried out and replaced completely by air. This slow and careful removing of liquid is what allows the gel to retain its shape instead of shriveling into a hard lump. The pairing of solid and gas makes aerogels extremely light and very porous. These two qualities make them exceptionally suitable to use as scaffolds, which can be used as physical roadmaps for the developing bone to follow as it grows.

A section of bone with osteosarcoma, a type of bone cancer. This is one of the cases where lost tissue could be restored by prompting bone regeneration.

Currently, the most common methods of bone regeneration either graft new bone on to the repair site or slowly pull two bits of bone further and further apart to allow new bone to grow in the gap. If you think that these methods sound painful, complicated, and expensive, you are right.

It turns out that bone tissue just needs a little bit of encouragement to regenerate. Most of the time, simple mechanical pressure will do the trick. The fiddly bit is getting the new bone tissue to grow in the right direction and for the right amount of time. Stop it too early and the bone will be too weak to actually serve a purpose. Let it grow too much and it will end up as painful projections. This balanced growth can be achieved by using a scaffold, which is where hybrid aerogels come in. A scaffold is a structure that is placed at the site of bone repair, where it guides the growing tissue along its destined path. A good scaffold is strong but not too stiff, lasts just long enough for fresh tissue to develop, and has a lot of pores for the growing bone to snake through. This last bit is what makes a scaffold very similar to real bone. Hybrid aerogels happen to be a magic material that hits all these notes.

There are a lot of different kinds of scaffolds to choose from, ranging from ceramic and metals to cellulose hydrogels. So what makes hybrid aerogels any better than other scaffolds? For one, they are half made of proteins (that’s the “hybrid” bit), which are eventually broken down by the body. The other half, silica, slowly melts away as orthosilicic acid, which is known to hasten wound healing. Their pore size can be controlled during the manufacturing process, making it easy to adapt them to different uses. They are also being tested as drug delivery systems, meaning that the material could be spiked with medicines or growth factors before using it as a scaffold.

Earlier this year, three research labs based out of Iran, Germany, and Austria got together and decided to fuse a very strong protein with a very light and porous aerogel. The very strong protein is silk fibroin, the stuff found in silkworm cocoons and used to make fancy fabrics. It makes the aerogel strong and just stiff enough to use for bone growth. With the raw materials ready, the scientists started with Phase I: make the hybrid aerogel. Throw a source of silica, silk fibroin, some acid and a touch of detergent into a pot. Bake for an hour and voilà! You have yourself a silica-silk fibroin hybrid aerogel.

 Hybrid aerogels are strong but ultralight materials. Here, the flower is protected from the fire by the insulating properties of the aerogel
The researchers made the perfect hybrid aerogel – hydrophilic (water-loving), not too stiff, and adequately biodegradable.

Having made the material, they now moved to Phase II: check if the hybrid aerogels are in any way harmful to human cells. In fact, the cells seemed to really like the material. When the hybrid aerogel was placed in a dish containing bone cells, they readily grew on its surface, depositing the proteins and minerals required for bone growth along the way.

On to Phase III: implant the hybrid aerogel in mice and check if it stimulates bone regeneration. The researchers made small bone injuries in two groups of mice and implanted the hybrid aerogel in one of them. After 25 days, they saw that the mice with the implants showed faster and better healing than the mice without implants. The aerogel was not just allowing new bone to grow, but also making it grow faster than normal.

This ability of the hybrid aerogel to speed up bone regeneration places it on the forefront of new therapeutic technologies. Imagine having bone fractures healing in a span of days, as opposed to weeks. Or being able to tell a bone cancer patient that, “Yes, you have to cut out a section of their leg but it can be easily grown back, no worries.” Hybrid aerogels are possibly the biomaterial that could make such conversations a reality.

Source: https://massivesci.com/

Thin Heat Shield For Superfast Aircraft

The world of aerospace increasingly relies on carbon fiber reinforced polymer composites to build the structures of satellites, rockets and jet aircraft. But the life of those materials is limited by how they handle heat.

A team of FAMU-FSU College of Engineering researchers from Florida State University’s High-Performance Materials Institute (HPMI) is developing a design for a heat shield that better protects those extremely fast machines. Their work will be published in the November edition of Carbon .

Right now, our flight systems are becoming more and more high-speed, even going into hypersonic systems, which are five times the speed of sound,” said Professor Richard Liang, director of HPMI. “When you have speeds that high, there’s more heat on a surface. Therefore, we need a much better thermal protection system.”

The team used carbon nanotubes, which are linked hexagons of carbon atoms in the shape of a cylinder, to build the heat shields. Sheets of those nanotubes are also known as “buckypaper,” a material with incredible abilities to conduct heat and electricity that has been a focus of study at HPMI. By soaking the buckypaper in a resin made of a compound called phenol, the researchers were able to create a lightweight, flexible material that is also durable enough to potentially protect the body of a rocket or jet from the intense heat it faces while flying.

Existing heat shields are often very thick compared to the base they protect, said Ayou Hao, a research faculty member at HPMI. This design lets engineers build a very thin shield, like a sort of skin that protects the aircraft and helps support its structure. After building heat shields of varying thicknesses, the researchers put them to the test.

One test involved applying a flame to the samples to see how they prevented heat from reaching the carbon fiber layer they were meant to protect. After that, the researchers bent the samples to see how strong they remained. They found the samples with sheets of buckypaper were better than control samples at dispersing heat and keeping it from reaching the base layer. They also stayed strong and flexible compared to control samples made without protective layers of nanotubes.

That flexibility is a helpful quality. The nanotubes are less vulnerable to cracking at high temperatures compared to ceramics, a typical heat shield material. They’re also lightweight, which is helpful for engineers who want to reduce the weight of anything on an aircraft that doesn’t help the way it flies.

Flying Motorcycle

Flying cars are fine — but why use a car when you can have a motorcycle instead? YC-backed startup JetPack Aviation wants to answer that question with the world’s first flying motorcycle, a personal aircraft dubbed “The Speeder,” a name that Star Wars fans will surely appreciate. Now, JetPack has raised a seed round of $2 million from investors indulging Draper Associates, Skype co-founder Jaan Tallinn, YC, Cathexis Ventures and a group of angels that it says will fund the development of the Speeder’s first functional prototype.

Back in March, JetPack revealed its plans for the Speeder, which it says will provide a fully stabilized ride that’s either pilot-controlled or fully autonomous. It can take off and land vertically, and reach top speeds of potentially over 400 MPH (640 km/h). There are no exposed rotors systems, which make it a lot safer and easier to operate than a lot of other VTOL designs and helicopters, and the company says it can also be refueled in less than 5 minutes, which is a dramatically shorter turnaround time for powering up versus an electric vehicle.

This isn’t JetPack’s first aerial rodeo: The company, led by CEO and founder David Mayman, has already created an actual jet pack. Mayman himself has demonstrated the personal aerial jet pack numerous times, and it has been certified by the FAA, plus it landed a CARADA agreement with the U.S. Navy Special Forces for use in short-distance troop transportation. The jet pack also boasts a lot of features that sound, on paper, like science fiction: Over 100 mph top seed, and suitcase-sized portability, for instance.

That track record is why when Mayman tells me this $2 million round “should fully fund the first full-scale flying prototype, including all modeling designs and build,” I tend to believe him more than I would just about anyone else in the world making a similar claim.

Part of the reason the Speeder is more viable near-term than other VTOL designs is that it will rely on turbine propulsion, rather than battery-based flight systems. This is because, in Mayman’s opinion, “current battery energy density is just too low for most electrically powered VTOLs to be truly practical,” and that timelines optimistically for that to change are in the five to 10-year range. The Speeder, by comparison, should feasibly be able to provide quick cargo transportation for emergency services and military (its first planned uses before moving on to the consumer market) in a much shorter period.*

Source: https://jetpackaviation.com/
AND
https://techcrunch.com/

How To Print Crowns And Bridges, Surgical Guides For Dental Implant

Back at CES this year, we talked with 3D-printer maker Formlabs about its early experimentation in using its printers to make dentures faster and more affordably than existing alternatives. A few months later, the company is going deep on the concept. They’re releasing a 3D printer meant specifically for dental use, opening up a whole new wing called “Formlabs Dental” and acquiring their main resin supplier in order to better make materials for the dental industry.

Unfamiliar with Formlabs? The main thing to know is that their printers use Stereolithography (SLA) rather than the Fused Deposition Modeling (or FDM) that most people probably think of when it comes to 3D printing; in other words, they use carefully aimed UV lasers to precisely harden an otherwise goopy resin into whatever you want to print, whereas FDM printers heat up a solid material until it’s malleable and then push it through a hot glue gun-style nozzle to build a model layer by layer. SLA tends to offer higher accuracy and resolution, whereas FDM tends to be cheaper and offer a wider variety of colors and material properties.

Formlabs calls its new dentistry-centric printer the “Form 3b” — which, as the name suggests, is a slight variation on the Form 3 printer the company introduced earlier this year. The base package costs about a thousand bucks more per unit over the non-dental Form 3, but comes with software meant to tie into a dental team’s existing workflow, along with a year of Formlab’s “Dental Service Plan,” which includes training, support and the ability to request a new printer if something needs repairing (rather than waiting for yours to get shipped back and forth). The company also says the 3b has been optimized to work with its dental resins, but doesn’t say much about how.

Speaking of resins: Formlabs is acquiring Spectra, which has been its primary supplier of resins since Formlabs started back in 2012. While the company isn’t disclosing any of the terms of the deal, it does say it has put over a million dollars into building an FDA-registered clean room to make medical-grade resins. Formlabs says that anyone who already buys materials and resin from Spectra can continue to do so.

The company’s new “Formlabs Dental” division, meanwhile, will focus on figuring out new dental materials and ways to better tie in to existing dentist office workflows. Right now, the company says, the Form 3b can be used to print crowns and bridges, clear retainers, surgical guides to help during dental implant procedures, custom mouth guards (or “occlusal splints”) and dentures.

Source: https://formlabs.com/
AND
https://techcrunch.com/

Safe Stem Cells Therapies To Fight Alzheimer’s, Parkinson’s Diseases

A Rutgers-led team has created better biosensor technology that may help lead to safe stem cell therapies for treating Alzheimer’s and Parkinson’s diseases and other neurological disorders.

The technology, which features a unique graphene and gold-based platform and high-tech imaging, monitors the fate of stem cells by detecting genetic material (RNA) involved in turning such cells into brain cells (neurons), according to a study in the journal Nano Letters.

Stem cells can become many different types of cells. As a result, stem cell therapy shows promise for regenerative treatment of neurological disorders such as Alzheimer’s, Parkinson’s, stroke and spinal cord injury, with diseased cells needing replacement or repair. But characterizing stem cells and controlling their fate must be resolved before they could be used in treatments. The formation of tumors and uncontrolled transformation of stem cells remain key barriers.

This unique biosensing platform consists of an array of ultrathin graphene layers and gold nanostructures. The platform, combined with high-tech imaging (Raman spectroscopy), detects genetic material (RNA) and characterizes different kinds of stem cells with greater reliability, selectivity and sensitivity than today’s biosensors.

A critical challenge is ensuring high sensitivity and accuracy in detecting biomarkers – indicators such as modified genes or proteins – within the complex stem cell microenvironment,” said senior author KiBum Lee, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers UniversityNew Brunswick.Our technology, which took four years to develop, has demonstrated great potential for analyzing a variety of interactions in stem cells.”

Source: https://news.rutgers.edu/

Virtually Indestructible Mini Cheetah Robots

The Massachusetts Institute of Technology (MIT) put on a spectacular show with a pack of mini cheetah robots the campus in Cambridge, Massachusetts. Researchers behind the small quadrupedal robots shared a video online of these mechanical animals running, jumping and even kicking around a soccer ballSteered manually with a remote control, each one weighs about 20 pounds and can reach speeds of around six miles per hour. The mini cheetah was designed to be ‘virtually indestructible,’ recovering with little damage, even if a backflip ends in a spill, MIT News explained earlier this year. Sangbae Kim, director of MIT‘s biomimetics lab, noted that the robots area designed to absorb the impact of jumping and landing – and the video highlights this capability. The cheetahs are shown frolicking through an area of the college campus, while being controlled by a human. The machines perform a synchronized dance, where they show their gymnastic abilities and then they all join in a game of soccer.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Eventually, I’m hoping we could have a robotic dog race through an obstacle course, where each team controls a mini cheetah with different algorithms, and we can see which strategy is more effective,‘ Kim said. ‘That’s how you accelerate research.’

Each of its legs is powered by three identical, specially designed low-cost electric motors. It was created with a modular design, which means each of its motors and other components can be swapped out if they fail or sustain damage. Benjamin Katz, a technical associate at MIT‘s department of mechanical engineering and lead developer said, ‘If you wanted to add another arm, you could just add three or four more of these modular motors.’ ‘The rate at which it can change forces on the ground is really fast.’

Source: https://www.dailymail.co.uk/

How To Starve Cancer Tumors and Beef Up The Immune Cells

Tumors are hogs, gobbling nutrients to fuel their runaway growth, and for decades researchers have tried to develop drugs that cut off their food supply. A study out today shows that an updated version of a failed cancer drug can not only prevent tumor cells from using an essential nutrient, but also spur immune cells to attack the growths.

T lymphocyte cells attacking a cancer cell, computer illustration. T lymphocytes are a type of white blood cell that recognise a specific site (antigen) on the surface of cancer cells or pathogens and bind to it. Some T lymphocytes then signal for other immune system cells to eliminate the cell. The genetic changes that cause a cell to become cancerous lead to the presentation of tumour antigens on the cell’s surface.

It’s a pretty striking paper,” says cancer biologist Ralph DeBerardinis of the University of Texas Southwestern Medical Center in Dallas, who wasn’t connected to the study. “With a single drug, you can in effect starve the tumor and beef up the immune cells.”

Cancer cells eat to obtain molecules vital for survival and replication, but their gluttony also turns their surroundings into an acidic, oxygen-deprived moat that stymies immune cells trying to eliminate them. One of the nutrients many tumors need in abundance is the amino acid glutamine, which provides the building blocks for fabricating molecules such as DNA, proteins, and lipids. “Glutamine is incredibly important for cellular metabolism,” says immunologist Jonathan Powell of the Johns Hopkins School of Medicine in Baltimore, Maryland.

Starting in the 1950s, researchers tried to turn tumors’ glutamine dependence against them, developing drugs to block its metabolism. A bacteria-derived compound called DON, for instance, kills tumors by inhibiting several enzymes that allow cancer cells to use glutamine. In clinical trials, however, the drug provoked severe nausea and vomiting, and it was never approved.

Now, Powell and colleagues have crafted a new version of DON that may be easier to stomach. It carries two chemical groups that keep it inert until it reaches the tumor’s neighborhood. There, enzymes that normally loiter around tumors remove these molecular handcuffs, unleashing the drug on the cancerous cells. With this approach, “the vast majority of the active drug is where we want,” Powell says.

To test their new compound, he and colleagues injected four types of cancer cells into mice, inducing tumors. They then dosed some of the animals with their next-generation DON. The drug worked against all four kinds of tumors, the scientists report today in Science. In untreated mice, for example, colon cancer tumors had grown more than five times larger after about 3 weeks. But in rodents that received DON, the tumors shrank and almost disappeared. The researchers found that the drug wasn’t just throttling glutamine metabolism. It was also disrupting other aspects of the cellsbiochemistry, such as their ability to use the sugar glucose.

Source: https://www.sciencemag.org/

Rare genetic mutation holds clues to preventing Alzheimer’s

Could one woman’s rare genetic mutation one day have a global impact on dementia risk? It’s possible, say investigators who report on a potentially groundbreaking case of a woman whose genetic mutation staved off dementia for decades, even though her brain had already been damaged by Alzheimer’s disease. While most Alzheimer’s cases are not driven by genetic predisposition, one woman in Colombia is among about 1,200 in her country who do face a genetically higher risk for early-onset Alzheimer’s. Why? They all carry the E280A mutation of a gene called Presenilin 1 (PSEN1), which is known to increase the chances for Alzheimer’s at a far younger age than usual.

We identified an individual that was predisposed to develop Alzheimer’s in her 40s,” noted study author Dr. Joseph Arboleda-Velasquez. He’s an assistant professor of ophthalmology with the Schepens Eye Research Institute of Mass Eye and Ear at Harvard Medical School, in Boston.

But, strangely, the woman “remained unimpaired until her 70s,” Arboleda-Velasquez added. The twist: the woman had, in fact, developed clear telltale signs of Alzheimer’s in her brain. She just hadn’t developed dementia. For example, while she had fewer neural “tangles” in her brain than is typical for Alzheimer’s patients, by the time she hit her 40s she did have the same unusually high level of brain amyloid-beta deposits as her E280A peers. Such deposits are a key signature of Alzheimer’s. So why didn’t she develop middle-aged dementia like her peers?

To unravel the mystery, Arboleda-Velasquez and his colleagues ran an in-depth genetic analysis on the woman. And what they found is that she had not just one mutation, but two. In addition to the E280A mutation, she also carried the so-calledChristchurchmutation in the APOE3 gene. But there’s more. Not only did she carry the Christchurch mutation, but she had two of them. Some of her E280A peers (about 6%) also carried a single copy of Christchurch. But she was the only one who carried two, the investigators found. “It is ultra-rare, with an approximate prevalence of less than one in every 200,000 individuals,” Arboleda-Velasquez said.

And having one such rare mutation did not appear to be enough. No protection against dementia was linked to only one Christchurch mutation. But as this woman’s case suggests, having two such mutations did seem to throw up a shield against Alzheimer’s, preserving her ability to remember things and think clearly for a few decades, long after her E280A peers had started experiencing cognitive decline.

Source: https://www.cbsnews.com/

Electric 3D-Printed Plastics

Rutgers engineers have embedded high performance electrical circuits inside 3D-printed plastics, which could lead to smaller and versatile drones and better-performing small satellites, biomedical implants and smart structures.

They used pulses of high-energy light to fuse tiny silver wires, resulting in circuits that conduct 10 times more electricity than the state of the art, according to a study in the journal Additive Manufacturing. By increasing conductivity 10-fold, the engineers can reduce energy use, extend the life of devices and increase their performance.

Our innovation shows considerable promise for developing an integrated unit – using 3D printing and intense pulses of light to fuse silver nanoparticles – for electronics,” said senior author Rajiv Malhotra, an assistant professor in the Department of Mechanical and Aerospace Engineering in the School of Engineering at Rutgers University–New Brunswick.

Embedding electrical interconnections inside 3D-printed structures made of polymers, or plastics, can create new paradigms for devices that are smaller and more energy-efficient. Such devices could include CubeSats (small satellites), drones, transmitters, light and motion sensors and Global Positioning Systems. Such interconnections are also often used in antennas, pressure sensors, electrical coils and electrical grids for electromagnetic shielding.

Source: https://news.rutgers.edu/

Gene Therapy Combats Efficiently Age-related Diseases

As we age, our bodies tend to develop diseases like heart failure, kidney failure, diabetes, and obesity, and the presence of any one disease increases the risk of developing others. In traditional drug development, a drug usually only targets one condition, largely ignoring the interconnectedness of age-related diseases, such as obesity, diabetes, and heart failure, and requiring patients to take multiple drugs, which increases the risk of negative side effects.

A new study from the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School (HMS) reports that a single administration of an adeno-associated virus (AAV)-based gene therapy delivering combinations of three longevity-associated genes to mice dramatically improved or completely reversed multiple age-related diseases, suggesting that a systems-level approach to treating such diseases could improve overall health and lifespan. The research is reported in PNAS.

The AAV-based gene therapy improved the function of the heart and other organs in mice with various age-related diseases, suggesting that such an approach could help maintain health during aging.

The results we saw were stunning, and suggest that holistically addressing aging via gene therapy could be more effective than the piecemeal approach that currently exists,” said first author Noah Davidsohn, Ph.D., a former Research Scientist at the Wyss Institute and HMS who is now the Chief Technology Officer of Rejuvenate Bio. “Everyone wants to stay as healthy as possible for as long as possible, and this study is a first step toward reducing the suffering caused by debilitating diseases.

The study was conducted in the lab of Wyss Core Faculty member George Church, Ph.D. as part of Davidsohn’s postdoctoral research into the genetics of aging. Davidsohn, Church, and their co-authors honed in on three genes that had previously been shown to confer increased health and lifespan benefits when their expression was modified in genetically engineered mice: FGF21, sTGFβR2, and αKlotho. They hypothesized that providing extra copies of those genes to non-engineered mice via gene therapy would similarly combat age-related diseases and confer health benefits.

The team created separate gene therapy constructs for each gene using the AAV8 serotype as a delivery vehicle, and injected them into mouse models of obesity, type II diabetes, heart failure, and renal failure both individually and in combination with the other genes to see if there was a synergistic beneficial effect.

Source; https://wyss.harvard.edu/

Measles Virus Resets Immune System To ‘Baby-like’ State

Two newly published studies have found that measles is a bigger deal than many people realize: it leaves them more susceptible to a variety of other health conditions. The issue is caused by eliminating many of the protective antibodies one develops over time, opening the door for illnesses caused by bacteria and viruses to which the patient was previously immune.

Measles vaccination rates have decreased, particularly among select populations motivated by skepticism of the science behind vaccinations in general or by ideologies that forbid their use. There’s a general belief among many that measles, a highly contagious disease most commonly acquired in childhood, is “no big deal” for most people. That’s not true, however.

Researchers with multiple institutions, including the Wellcome Sanger Institute and Harvard Medical School, found that the measles virus can essentially wipe the patient’s immune system record, eliminating the protective antibodies that make them immune to various viruses and other pathogens. This effect was observed in both humans and ferrets

According to the study, the immune system of someone who was infected with measles is partially reset to ‘an immature baby-like state,’ one that is able to respond to viruses and bacteria in a limited fashion. As a result of this, kids who contract measles are more likely to contract other illnesses they were previously immune to, such as the flu

The measles is highly preventable with the administration of a vaccine that led to the elimination of the disease in the US and, until recently, the UK. The condition itself causes a red rash and fever; there’s the potential for severe complications leading to death. Despite this, vaccination rates have decreased, particularly among certain religious collectives and anti-vaxers.

Source: https://www.slashgear.com/

The Top-Selling Car In Norway Last Month is Electric

German auto maker Audi’s fullyelectric e-tron sports utility vehicle was the top-selling car in Norway last month with an 8.3% market share, registration data showed on Friday.

Audi delivered 873 electric SUVs in October, ahead of Volkswagen Golf (VOWG_p.DE) in second place with 748 cars, according to the Norwegian Road Federation.

In total, 35.7% of all cars sold in Norway last month were electric. Seeking to end the sale of combusion-engine cars by the middle of the next decade, Norway exempts battery-powered vehicles from taxes imposed on petrol and diesel engines.

Tesla’s Model 3 sales fell to a market share of just 1.2% in October, but the car still remains the country’s top-selling car year-to-date.

Swarms Of NanoRobots Quickly Clean-up Radioactive Waste

According to some experts, nuclear power holds great promise for meeting the world’s growing energy demands without generating greenhouse gases. But scientists need to find a way to remove radioactive isotopes, both from wastewater generated by nuclear power plants and from the environment in case of a spill. Now, a team of researchers from  the University of Chemistry and Technology and the Institute of Organic Chemistry and Biochemistry in Prague, Czech Republic,  reporting in ACS Nano have developed tiny, self-propelled robots that remove radioactive uranium from simulated wastewater.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The accidental release of radioactive waste, such as what occurred in the Chernobyl and Fukushima nuclear plant disasters, poses large threats to the environment, humans, and wildlife. Scientists have developed materials to capture, separate, remove and recover radioactive uranium from water, but the materials have limitations. One of the most promising recent approaches is the use of metal-organic frameworks (MOFs) — compounds that can trap specific substances, including radioactive uranium, within their porous structures. Martin Pumera and colleagues wanted to add a micromotor to a rod-shaped MOF called ZIF-8 to see if it could quickly clean up radioactive waste.

To make their self-propelled microrobots, the researchers designed ZIF-8 rods with diameters about 1/15 that of a human hair. The researchers added iron atoms and iron oxide nanoparticles to stabilize the structures and make them magnetic, respectively. Catalytic platinum nanoparticles placed at one end of each rod converted hydrogen peroxidefuel” in the water into oxygen bubbles, which propelled the microrobots at a speed of about 60 times their own length per second. In simulated radioactive wastewater, the microrobots removed 96% of the uranium in an hour. The team collected the uranium-loaded rods with a magnet and stripped off the uranium, allowing the tiny robots to be recycled. The self-propelled microrobots could someday help in the management and remediation of radioactive waste, the researchers say.

Source: https://pubs.acs.org/
AND
https://scitechdaily.com/

Worlds Like Earth Common In The Cosmos

A new way of studying planets in other solar systems – by doing sort of an autopsy on planetary wreckage devoured by a type of star called a white dwarf – is showing that rocky worlds with geochemistry similar to Earth may be quite common in the cosmos. Researchers studied six white dwarfs whose strong gravitational pull had sucked in shredded remnants of planets and other rocky bodies that had been in orbit. This material, they found, was very much like that present in rocky planets such as Earth and Mars in our solar system. Given that Earth harbors an abundance of life, the findings offer the latest tantalizing evidence that planets similarly capable of hosting life exist in large numbers beyond our solar system.

The more we find commonalities between planets made in our solar system and those around other stars, the more the odds are enhanced that the Earth is not unusual,” said Edward Young, a geochemistry and cosmochemistry professor at the University of California, Los Angeles (UCLA), who helped lead the study published in the journal Science. “The more Earth-like planets, the greater the odds for life as we understand it.”

The first planets beyond our solar system, called exoplanets, were spotted in the 1990s, but it has been tough for scientists to determine their composition. Studying white dwarfs offered a new avenue.

A white dwarf is the burned-out core of a sun-like star. In its death exoplanets, the star blows off its outer layer and the rest collapses, forming an extremely dense and relatively small entity that represents one of the universe’s densest forms of matter, exceeded only by neutron stars and black holesPlanets and other objects that once orbited it can be ejected into interstellar space. But if they stray near its immense gravitation field, they “will be shredded into dust, and that dust will begin to fall onto the star and sink out of sight,” said study lead author Alexandra Doyle, a UCLA graduate student in geochemistry and astrochemistry.

This is where that ‘autopsy’ idea comes from,” Doyle added, noting that by observing the elements from the massacred planets and other objects inside the white dwarf scientists can understand their composition.

Source: https://www.reuters.com/

New Crispr Fixes 89% Of The Mutations That Cause Heritable Diseases

Andrew Anzalone was restless. It was late autumn of 2017. The year was winding down, and so was his MD/PhD program at Columbia. Trying to figure out what was next in his life, he’d taken to long walks in New York’s leaf-strewn West Village. One night as he paced up Hudson Street, his stomach filled with La Colombe coffee and his mind with Crispr gene editing papers, an idea began to bubble through the caffeine brume inside his brainCrispr, for all its DNA-snipping precision, has always been best at breaking things. But if you want to replace a faulty gene with a healthy one, things get more complicated. In addition to programming a piece of guide RNA to tell Crispr where to cut, you have to provide a copy of the new DNA and then hope the cell’s repair machinery installs it correctly. Which, spoiler alert, it often doesn’t. Anzalone wondered if instead there was a way to combine those two pieces, so that one molecule told Crispr both where to make its changes and what edits to make. Inspired, he cinched his coat tighter and hurried home to his apartment in Chelsea, sketching and Googling late into the night to see how it might be done. A few months later, his idea found a home in the lab of David Liu, the Broad Institute chemist who’d recently developed a host of more surgical Crispr systems, known as base editors. Anzalone joined Liu’s lab in 2018, and together they began to engineer the Crispr creation glimpsed in the young post-doc’s imagination. After much trial and error, they wound up with something even more powerful. The system, which Liu’s lab has dubbed “prime editing,” can for the first time make virtually any alterationadditions, deletions, swapping any single letter for any other—without severing the DNA double helix.

“If Crispr-Cas9 is like scissors and base editors are like pencils, then you can think of prime editors to be like word processors,” Liu told reporters in a press briefing. Why is that a big deal? Because with such fine-tuned command of the genetic code, prime editing could, according to Liu’s calculations, correct around 89 per cent of the mutations that cause heritable human diseases. Working in human cell cultures, his lab has already used prime editors to fix the genetic glitches that cause sickle cell anemia, cystic fibrosis, and Tay-Sachs disease. Those are just three of more than 175 edits the group unveiled in a scientific article published in the journal Nature.

The work “has a strong potential to change the way we edit cells and be transformative,” says Gaétan Burgio, a geneticist at the Australian National University who was not involved in the work, in an email. He was especially impressed at the range of changes prime editing makes possible, including adding up to 44 DNA letters and deleting up to 80. “Overall, the editing efficiency and the versatility shown in this paper are remarkable.”

Source: https://www.broadinstitute.org/
AND
https://www.wired.co.uk/

Tiny Robots Build Huge Structures

Today’s commercial aircraft are typically manufactured in sections, often in different locationswings at one factory, fuselage sections at another, tail components somewhere else — and then flown to a central plant in huge cargo planes for final assembly. But what if the final assembly was the only assembly, with the whole plane built out of a large array of tiny identical pieces, all put together by an army of tiny robots? That’s the vision that graduate student Benjamin Jenett, working with Professor Neil Gershenfeld in MIT’s Center for Bits and Atoms (CBA), has been pursuing as his doctoral thesis work. It’s now reached the point that prototype versions of such robots can assemble small structures and even work together as a team to build up a larger assemblies. The new work appears in the October issue of the IEEE Robotics and Automation Letters, in a paper by Jenett, Gershenfeld, fellow graduate student Amira Abdel-Rahman, and CBA alumnus Kenneth Cheung SM ’07, PhD ’12, who is now at NASA’s Ames Research Center, where he leads the ARMADAS project to design a lunar base that could be built with robotic assembly.

“This paper is a treat,” says Aaron Becker, an associate professor of electrical and computer engineering at the University of Houston, who was not associated with this work. “It combines top-notch mechanical design with jaw-dropping demonstrations, new robotic hardware, and a simulation suite with over 100,000 elements,” he says. “What’s at the heart of this is a new kind of robotics, that we call relative robots,” Gershenfeld says. Historically, he explains, there have been two broad categories of robotics — ones made out of expensive custom components that are carefully optimized for particular applications such as factory assembly, and ones made from inexpensive mass-produced modules with much lower performance. The new robots, however, are an alternative to both. They’re much simpler than the former, while much more capable than the latter, and they have the potential to revolutionize the production of large-scale systems, from airplanes to bridges to entire buildings.

Source: http://news.mit.edu/
AND
https://www.popularmechanics.com/

Quantum Supremacy

Researchers in UC Santa Barbara/Google scientist John Martinis’ group have made good on their claim to quantum supremacy. Using 53 entangled quantum bits (“qubits”), their Sycamore computer has taken on — and solved — a problem considered intractable for classical computers.

Google’s quantum supreme cryostat with Sycamore inside

A computation that would take 10,000 years on a classical supercomputer took 200 seconds on our quantum computer,” said Brooks Foxen, a graduate student researcher in the Martinis Group. “It is likely that the classical simulation time, currently estimated at 10,000 years, will be reduced by improved classical hardware and algorithms, but, since we are currently 1.5 billion times faster, we feel comfortable laying claim to this achievement.

The feat is outlined in a paper in the journal Nature.

The milestone comes after roughly two decades of quantum computing research conducted by Martinis and his group, from the development of a single superconducting qubit to systems including architectures of 72 and, with Sycamore, 54 qubits (one didn’t perform) that take advantage of the both awe-inspiring and bizarre properties of quantum mechanics.

The algorithm was chosen to emphasize the strengths of the quantum computer by leveraging the natural dynamics of the device,” said Ben Chiaro, another graduate student researcher in the Martinis Group. That is, the researchers wanted to test the computer’s ability to hold and rapidly manipulate a vast amount of complex, unstructured data.

We basically wanted to produce an entangled state involving all of our qubits as quickly as we can,” Foxen said, “and so we settled on a sequence of operations that produced a complicated superposition state that, when measured, returned output (“bitstring”) with a probability determined by the specific sequence of operations used to prepare that particular superposition.” The exercise, which was to verify that the circuit’s output correspond to the sequence used to prepare the state, sampled the quantum circuit a million times in just a few minutes, exploring all possibilities — before the system could lose its quantum coherence. “We performed a fixed set of operations that entangles 53 qubits into a complex superposition state,” Chiaro explained. “This superposition state encodes the probability distribution. For the quantum computer, preparing this superposition state is accomplished by applying a sequence of tens of control pulses to each qubit in a matter of microseconds. We can prepare and then sample from this distribution by measuring the qubits a million times in 200 seconds.” “For classical computers, it is much more difficult to compute the outcome of these operations because it requires computing the probability of being in any one of the 2^53 possible states, where the 53 comes from the number of qubits — the exponential scaling is why people are interested in quantum computing to begin with,” Foxen said. “This is done by matrix multiplication, which is expensive for classical computers as the matrices become large.”

According to the new paper, the researchers used a method called cross-entropy benchmarking to compare the quantum circuit’s bitstring to its “corresponding ideal probability computed via simulation on a classical computer” to ascertain that the quantum computer was working correctly. “We made a lot of design choices in the development of our processor that are really advantageous,” said Chiaro. Among these advantages, he said, are the ability to experimentally tune the parameters of the individual qubits as well as their interactions.

Source: https://www.news.ucsb.edu/
AND
https://www.nature.com/

Breakthrough In The Fight Against Alzheimer’s

In a shocking reversal, Biogen (BIIB) said that it would resurrect an Alzheimer’s drug that the company previously said had failed and will ask the Food and Drug Administration (FDA) to approve it. The company said a “new analysis of a larger dataset” showed that the drug, aducanumab, reduced clinical decline in patients with early Alzheimer’s disease on multiple measures of the drug’s effectiveness. That directly contradicts a decision in March to halt studies of the therapy based on the recommendations of an independent monitoring board that was charged with protecting patients in the study. Aducanumab’s failure sent shock waves far beyond Biogen. It was thought to be the last of a series of drugs—the previous ones, from many different drug companies, all failed—that targeted a protein in the brain called beta amyloid. After Biogen’s announcement in March, most researchers and biotechnology executives saw little hope for a drug that would help patients with Alzheimer’s disease even as cases mount.

Biogen said that it conducted a new analysis in consultation with the FDA of a larger data set from the discontinued studies. The new analysis includes additional data that became available after the previous analysis showed the studies were “futile”—that it had no chance of succeeding. Biogen said that the new data show aducanumab is “pharmacologically and clinically active” and that it reduced patients’ clinical decline based on the results of a survey called Clinical Dementia Rating-Sum of Boxes (CDR-SB), which was the main goal of both studies.

With such a devastating disease that affects tens of millions worldwide, today’s announcement is truly heartening in the fight against Alzheimer’s. This is the result of groundbreaking research and is a testament to Biogen’s steadfast determination to follow the science and do the right thing for patients,” Michel Vounatsos, Biogen’s chief executive, said in a statement. “We are hopeful about the prospect of offering patients the first therapy to reduce the clinical decline of Alzheimer’s disease and the potential implication of these results for similar approaches targeting amyloid beta.”

Al Sandrock, Biogen’s head of research and development and chief medical officer, said in his first interview about the new results that his team could only find one previous instance where a trial was stopped for futility and then it turned out to be positive. “I have to pinch myself because I almost don’t believe it yet,” Sandrock said. “It’s so amazing to have this change from March. But I’m also very, very happy because… I know people with mild cognitive impairment and I felt like I had let them all down.

By June, as Biogen analyzed the full data set, researchers started to realize that a different picture was emerging of aducanumab, Sandrock said. The reason was because of changes that Biogen had made to the study late in the game. Initially, the company worried about a potential side effectbrain swelling—and limited the dosage of the drug. But later patients were allowed to receive higher doses of the medicine.

Source: https://www.biogen.com/
A
ND
https://www.scientificamerican.com/

3D-Printed Home Constructed In One Day For Under $4,000

CLICK ON THE IMAGE TO ENJOY THE VIDEO

A home like this can be built in less than 24 hours at a cost of only $4,000. The secret? 3D printing. And they could help families living in poverty and unsafe conditions. New Story, a housing charity organization, and ICON, a construction tech company, have partnered together. Their goal is to end global homelessness.

Alexandria Lafci (Icon) comments: “So having strong, sturdy walls, having a door that we can close at night — it’s something that we take for granted. Being able to lock our door and be safe. For many of these families, for years, sometimes even a lifetime, they don’t have that opportunity to have a safe shelter. So when they move into a New Story community, when they move into a safe home, families lives are transformed. An entire community of these 3D printed homes will be constructed in El Salvador. The ultimate goal is to get costs down to $4,000 per house with a build time of fewer than 24 hours. “

This prototype house was built in Austin, TX. The home measures 650 square feetMortar was printed layer by layerHuman workers installed windows, doors, plumbing, and electrical systems. Here’s what’s inside: A living room. Small office space. One bedroom. One bathroomICON staff will use the home as an office to test the durability.

“Our first product is a 3D printer that can print a house in 24 hours for half the cost. Phase one for News Story and for ICON is a proof of concept house and the good news is we’ve done it. We printed the first home in the United States that’s going to be permitted and for us, this is just the beginning”, explains Evan Loomis from Icon. “The real kind of home run for us is to be able to do what we’ve done here in Austin, Texas in the developing world and we’re doing that in what we call phase two which is in El Salvador. We are going to be printing an entire village for people that don’t have homes“.

Source: https://www.youtube.com/

Air Pollution Triggers 500,000 Premature Deaths In Europe Every Year

A team at King’s College London looked at data from London, Birmingham, Bristol, Derby, Liverpool, Manchester, Nottingham, Oxford and Southampton. They calculated days with above average pollution levels would see an extra 124 cardiac arrests over the yearNHS England boss Simon Stevens said it was evidence of “a health emergency“. The figure is based on ambulance call data and does not count heart attacks suffered by patients already in hospital. It points to significant short-term health risks caused by air pollution, on top of contributing to almost 500,000 premature deaths in Europe every year.

On days with high pollution levels, across the nine cities in total, they calculated that there would be a total of 231 additional hospital admissions for stroke, with an extra 193 children and adults taken to hospital for asthma treatment. Dr Heather Walton, of King’s College London’s Environmental Research Group, said air pollution reduction policies concentrated in the main on effects connected to life expectancy. “However, health studies show clear links with a much wider range of health effects,” she added.

In London, high-pollution days would see an extra 87 cardiac arrests per year, an extra 144 strokes, and 74 children and 33 adults ending up in hospital with asthma-related issues. In Birmingham the figure would be 12 more out-of-hospital cardiac arrests, 27 additional admissions for stroke and 26 more for asthma. Bristol, Liverpool, Manchester, Nottingham, Oxford and Southampton would see between two and six more out-of-hospital heart attacks and up to 14 extra hospital admissions for both stroke and asthma. Only in Derby would there be no apparent increase.

Among the long-term risks associated with high pollution levels are stunted lung growth and low birth weight. The King’s College research also suggests cutting air pollution by a fifth would decrease incidents of lung cancer by between 5% and 7% across the nine cities surveyed. Mr Stevens said: “It’s clear that the climate emergency is in fact also a health emergency. “Since these avoidable deaths are happening now – not in 2025 or 2050 – together we need to act now.”

The figures were published ahead of Wednesday’s International Clean Air Summit hosted by Mayor of London Sadiq Khan and the UK100 network of local government leaders.

Source: https://www.bbc.com/

Machine Gun That Turns Anyone Into A Marksman

A carbine that can call in an airstrike. A computer-aided scope on a machine gun that can turn just about anyone into a marksman.Even firearms that measure and record every movement, from the angle of the barrel to the precise moment of each shot fired, which could provide law enforcement with a digital record of police shootings. The application of information technology to firearms has long been resisted in the United States by gun owners and law-enforcement officials who worry they could be hacked, fail at the wrong moment, or invite government control.

But with the U.S. Army soliciting bids for high-tech battlefield solutions to create the soldier’s rifle of the future, those concerns may quickly become irrelevant. The Army is moving forward regardless. One company seeking an Army contract is working on an operating system that could be embedded into the gun, which could have law-enforcement and civilian applications that may reshape the U.S. debate about gun safety.

You could accomplish some of the functionality by duct-taping an iPhone to your gun. However what we offer is the world’s first truly embedded operating system,” said Melvic Smith, 41, principal owner of Dimensional Weapons Systems, which bills itself as the first patented blockchain-based firearms company.

That system could eventually add any number of applications, Smith said, including “smart gun” technology that would only allow the weapon to be fired by a designated shooter’s handSmart guns in theory could prevent children from accidentally firing guns at home, or render stolen guns useless.

Our team is composed of veterans, law enforcement officers, people that are pro-Second Amendment to begin with,” Smith said, referring to the amendment in the U.S. constitution that grants American citizens the right to bear arms. “But we also have engaged with people in the weapons manufacturing industry. They actually love the technology. They’re worried about political backlash.”

Source: https://www.reuters.com/

Eye Drops Reverse Vision Loss

Eye drops that can reverse poor vision? It may sound like science fiction, but one Israeli company is aiming to bring this product to market. The drops passed their Phase 2b clinical trial earlier this month, meaning they’ve proven to improve farsightedness, the inability to see or read nearby objects, and are highly tolerable.

Although results have yet to be released, Israel-based Orasis, Pharmaceuticals, revealed details last week about the latest results of the Phase 2b study for their CSF-1 eye drops. The drops offer temporary relief reversal of farsightedness. Their effects can be felt quickly, although they only last for a few hours.

The study was based on results from 166 participants across several research centers in the U.S. and designed to test both the efficacy and safety of the product. According to Elad Kedar, CEO of Orasis, results are extremely positive.

We are very encouraged by the results,” said Kedar. “The results were great not only on the efficacy endpoints, but also on the safety and tolerability, so we are moving as quickly as possible into Phase 3.”

According to Kedar, the drops are made from chemicals already existing in eye medication for other treatments. In addition, the concentrations used in the eye drops are far lower than those already used for current eye treatment. In trials, patients improved their eyesight by three eye chart lines, which is the FDA requirement for eyesight studies, according to Kedar.

Source: https://www.orasis-pharma.com/

Brexit Hits UK Science Funding, Deters International Researchers

Uncertainty surrounding Britain’s exit from the European Union has hit science funding to the tune of almost half a billion euros and is putting off international researchers from coming to Britain, a leading institution said on Wednesday. An analysis conducted by the Royal Society scientific academy found that the UK’s annual share of EU research funding has fallen by some 460 million euros ($509.40 million) since 2015, making it a less attractive destination for international science talent. British Prime Minister Boris Johnson has vowed to take Britain out of the EU with or without a deal by the end of October.

Venki Ramakrishnan, the Royal Society’s president, said the potential paralysis of a no-deal Brexit and the current state of chaos had already lead to a dramatic drop in the number of leading researchers who want to come to the UK.

People do not want to gamble with their careers when they have no sense of whether the UK will be willing and able to maintain its global scientific leadership,” he said in a statement as the analysis was published.

On funding, the Royal Society report found that in 2015 prior to the UK’s referendum on Brexit, Britain secured 1.49 billion euros, or 16% of total grants awarded, under Horizon 2020 – the EU’s research and innovation programme which has around 77 billion euros of funding between 2014 and 2020. By 2018, that had fallen to just over 11% of grants, or 1.06 billion euros.

Source: https://www.reuters.com/

How To Restore Sight To The Blind

For more than a decade, researchers have been working to create artificial digital retinas that can be implanted in the eye to allow the blind to see again. Many challenges stand in the way, but researchers at Stanford University may have found the key to solving one of the most vexing: heat. The artificial retina requires a very small computer chip (nanocoputer) with many metal electrodes poking out. The electrodes first record the activity of the neurons around them to create a map of cell types. This information is then used to transmit visual data from a camera to the brain. Unfortunately, the eye produces so much data during recording that the electronics get too darn hot.

The chips required to build a high-quality artificial retina would essentially fry the human tissue they are trying to interface with,” says E.J. Chichilnisky, a professor in the Neurosurgery and Ophthalmology departments, who is on Stanford’s artificial retina team.

Members of the team, including Chichilnisky and his collaborators in Stanford’s Electrical Engineering and Computer Science departments, recently announced they have devised a way to solve that problem by significantly compressing the massive amounts of visual data that all those neurons in the eye create. They discuss their advance in a study published in the IEEE Transactions on Biomedical Circuits and Systems.

To convey visual information, neurons in the retina send electrical impulses, known as spikes, to the brain. The problem is that the digital retina needs to record and decode those spikes to understand the properties of the neurons, but that generates a lot of heat in the digitization process, even with only a few hundred electrodes used in today’s prototypes. The first true digital retina will need to have tens of thousands of such electrodes, complicating the issue further. Boris Murmann, a professor of electrical engineering on the retina project, says the team found a way to extract the same level of visual understanding using less data. By better understanding which signal samples matter and which can be ignored, the team was able to reduce the amount of data that has to be processed. It’s a bit like being at a party trying to extract a single coherent conversation amid the din of a crowded room — a few voices matter a lot, but most are noise and can be ignored.

We compress the data by being more selective, ignoring the noise and baseline samples and digitizing only the unique spikes,” Murmann says. Previously, digitization and compression were done separately, leading to a lot of extra data storage and data transfer. “Our innovation inserts compression techniques into the digitization process,” says team member Subhasish Mitra, a professor of electrical engineering and of computer science. This approach retains the most useful information and is easier to implement in hardware.

Source: https://engineering.stanford.edu/

Cotton As Human Food

U.S. regulators gave the green light for genetically modified cotton to be used for human consumption, paving the way for a protein-packed new food sourceedible cottonseed that tastes a bit like chickpeas – that its developers said could help tackle global malnutrition.

The Food and Drug Administration’s decision on the cotton plant developed by Texas A&M University scientists means it is allowed as food for people and all types of animals.

Texas A&M AgriLife Research plant biotechnologist Keerti Rathore said the scientists are holding discussions with companies and hope to have the plant commercially available within about five years. Rathore said the team also will explore seeking regulatory approval in other countries starting with Mexico.

Genetically modified cotton plants with an edible cottonseed trait are seen growing near Belvidere, North Carolina, U.S.
Yes, we are fully aware of the resistance to GMOs in many countries, but I remain hopeful that counties who are desperate for food will adopt this technology,” Rathore added.

Cotton is grown in more than 80 countries, with its fiber used to make textiles and cottonseed currently used among other purposes to feed animals such as cattle and sheep that have multiple stomach chambers. Ordinary cottonseed is unfit for humans and many animals to eat because it contains high levels of gossypol, a toxic chemical.

Rathore’s team used so-called RNAi, or RNA interference, technology to “silence” a gene, virtually eliminating gossypol from the cottonseed. Gossypol was left at natural levels in the rest of the plant because it guards against insects and disease.

Source: https://www.reuters.com/

Walking Again With Robot Exoskeleton Steered By The Brain

The French tetraplegic man who has been able to walk again using a pioneering four-limb robotic system, or exoskeleton, said walking was a major feat for him after being immobile for years. The French scientists behind the system, which was publicly unveiled last week, use a system of sensors implanted near the brain which send signals to the robotic system, moving the patient’s legs and arms. Speaking to media in the French city of Grenoble, the 30-year-old patient, who was identified only by his first name, Thibault, said he had to re-educate to use his brain when he started to try the whole-body exoskeleton.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

  • As I hadn’t moved for two years I had to re-learn to use my brain,” he said. “At the beginning, walking was very difficult. Now I can stand up for two hours in the exoskeleton and I can do walking cycles for a very long time”, he also said. “This is a feat for me.”

In a two-year-long trial, two recording devices were implanted, one either side of Thibault’s head between the brain and the skin, spanning the region of the brain that controls sensation and motor function. Each recorder contained 64 electrodes which collected brain signals and transmitted them to a decoding algorithm. The system translated the brain signals into the movements the patient thought about, and sent his commands to the exoskeleton. Over 24 months, the patient carried out various mental tasks to train the algorithm to understand his thoughts and to progressively increase the number of movements he could make. For now the exoskeleton is purely an experimental prototype.

Source: https://www.reuters.com/

Bacteria Becomes Resistant When Exposed To Li-Ion Nanoparticles

Over the last two decades, nanotechnology has improved many of the products we use every day from microelectronics to sunscreens. Nanoparticles (particles that are just a few hundred atoms in size) are ending up in the environment by the ton, but scientists are still unclear about the long-term effects of these super-small nanoparticles. In a first-of-its-kind study, researchers have shown that nanoparticles may have a bigger impact on the environment than previously thought.

Researchers from the National Science Foundation Center for Sustainable Nanotechnology, led by scientists at the University of Minnesota, found that a common, non-disease-causing bacteria found in the environment, called Shewanella oneidensis MR-1, developed rapid resistance when repeatedly exposed to nanoparticles used in making lithium ion batteries, the rechargeable batteries used in portable electronics and electric vehicles. Resistance is when the bacteria can survive at higher and higher quantities of the materials, which means that the fundamental biochemistry and biology of the bacteria is changing.

At many times throughout history, materials and chemicals like asbestos or DDT have not been tested thoroughly and have caused big problems in our environment,” said Erin Carlson, a University of Minnesota chemistry associate professor in the University’s College of Science and Engineering and the lead author of the study. “We don’t know that these results are that dire, but this study is a warning sign that we need to be careful with all of these new materials, and that they could dramatically change what’s happening in our environment.”

Carlson said the results of this study are unusual because typically when we talk about bacterial resistance it is because we’ve been treating the bacteria with antibiotics. The bacteria become resistant because we are trying to kill them, she said. In this case, the nanoparticles used in lithium ion batteries were never made to kill bacteria.

The research is published in Chemical Science, a peer-reviewed journal of the Royal Society of Chemistry.

Source: https://twin-cities.umn.edu/

How To Make Robots More Effective On The Future Battlefield

In an effort to make robots more effective and versatile teammates for Soldiers in combat, Army researchers are on a mission to understand the value of the molecular living functionality of muscle, and the fundamental mechanics that would need to be replicated in order to artificially achieve the capabilities arising from the proteins responsible for muscle contraction.

Bionanomotors, like myosins that move along actin networks, are responsible for most methods of motion in all life forms. Thus, the development of artificial nanomotors could be game-changing in the field of robotics research.

Researchers from the U.S. Army Combat Capabilities Development Command‘s Army Research Laboratory ‘(CCDC ARL) have been looking to identify a design that would allow the artificial nanomotor to take advantage of Brownian motion, the property of particles to agitatedly move simply because they are warm.

The CCDC ARL researchers believe understanding and developing these fundamental mechanics are a necessary foundational step toward making informed decisions on the viability of new directions in robotics involving the blending of synthetic biology, robotics, and dynamics and controls engineering.

Army researchers are on a mission to understand the value of the molecular ‘living’ functionality of muscle, and the fundamental mechanics that would need to be replicated in order to artificially achieve the capabilities arising from the proteins responsible for muscle contraction

By controlling the stiffness of different geometrical features of a simple lever-arm design, we found that we could use Brownian motion to make the nanomotor more capable of reaching desirable positions for creating linear motion,” said Dean Culver, a researcher in CCDC ARL’s Vehicle Technology Directorate. “This nano-scale feature translates to more energetically efficient actuation at a macro scale, meaning robots that can do more for the warfighter over a longer amount of time.”

These widely accepted muscle contraction models are akin to a black-box understanding of a car engine,” Culver explained. “More gas, more power. It weighs this much and takes up this much space. Combustion is involved. But, you can’t design a car engine with that kind of surface-level information. You need to understand how the pistons work, and how finely injection needs to be tuned. That’s a component-level understanding of the engine. We dive into the component-level mechanics of the built-up protein system and show the design and control value of living functionality as well as a clearer understanding of design parameters that would be key to synthetically reproducing such living functionality.”

Culver stated that the capacity for Brownian motion to kick a tethered particle from a disadvantageous elastic position to an advantageous one, in terms of energy production for a molecular motor, has been illustrated by ARL at a component level, a crucial step in the design of artificial nanomotors that offer the same performance capabilities as biological ones.

This research adds a key piece of the puzzle for fast, versatile robots that can perform autonomous tactical maneuver and reconnaissance functions,” Culver said. “These models will be integral to the design of distributed actuators that are silent, low thermal signature and efficient – features that will make these robots more impactful in the field.”

Culver noted that they are silent because the muscles don’t make a lot of noise when they actuate, especially compared to motors or servos, cold because the amount of heat generation in a muscle is far less than a comparable motor, and efficient because of the advantages of the distributed chemical energy model and potential escape via Brownian motion.

According to Culver, the breadth of applications for actuators inspired by the biomolecular machines in animal muscles is still unknown, but many of the existing application spaces have clear Army applications such as bio-inspired robotics, nanomachines and energy harvesting.

 

The Journal of Biomechanical Engineering recently featured their research.

Source: https://www.arl.army.mil/

First Russian Lab-grown Meat

Earlier this week, the Ochakov Food Ingredients Plant (OKPI), a Russian food innovation lab, announced it has produced the country’s first sample of cultivated meat. “Cultivated meat” is one of the terms used to indicate meat produced by in vitro cultivation of animal cells, without the need to slaughter any animal. In this case, the 40-gram sample was grown using the muscle tissue of an Aberdeen Angus calf. The project was carried out over a 2-year period and the sample cost 900,000 rubles (around $14,000) to produce, stated the lab in its press release.

 CLICK ON THE IMAGE TO ENJOY THE VIDEO

In vitro meat, also known as cultivated meat, is a very promising direction for the meat industry […] From our point of view, laboratory meat production has the most significant ethical significance for modern society, since we can refuse the slaughter of living creatures to obtain meat,” said Nikolai Shimanovsky, a molecular pharmacologist and the project’s head.

Barring legal impediments, the lab predicted that locally-produced cultivated meat may appear in Russian supermarkets by 2023 at a retail price of 800 rubles per kilo ($12). Meat supply per person in Russia grew from 39.86 kg in 2000 to 74.82 kg in 2013 and OECD-FAO projections estimate that it will grow steadily over the next 10 years.

Source: https://www.forbes.com/

Bacteria trapped — and terminated — by graphene filter

Airborne bacteria may see what looks like a comfy shag carpet on which to settle. But it’s a trapRice University scientists have transformed their laser-induced graphene (LIG) into self-sterilizing filters that grab pathogens out of the air and kill them with small pulses of electricity. The flexible filter developed by the Rice lab of chemist James Tour may be of special interest to hospitalsAccording to the Centers for Disease Control and Prevention, patients have a 1-in-31 chance of acquiring a potentially antibiotic-resistant infection during hospitalization. The device described in the American Chemical Society journal ACS Nano captures bacteria, fungi, fungi, prions, endotoxins and other biological contaminants carried by droplets, aerosols and particulate matter. The filter then prevents the microbes and other contaminants from proliferating by periodically heating up to 350 degrees Celsius (662 degrees Fahrenheit), enough to obliterate pathogens and their toxic byproducts. The filter requires little power, and heats and cools within seconds.

LIG is a conductive foam of pure, atomically thin carbon sheets synthesized through heating the surface of a common polyimide sheet with an industrial laser cutter. The process discovered by Tour’s lab in 2014 has led to a range of applications for electronics, triboelectric nanogenerators, composites, electrocatalysis and even art. Like all pure graphene, the foam conducts electricity. When electrified, Joule heating raises the filter’s temperature above 300 C, enough to not only kill trapped pathogens but also to decompose toxic byproducts that can feed new microorganisms and activate the human immune system. The researchers suggested a single, custom-fit LIG filter could be efficient enough to replace the two filter beds currently required by federal standards for hospital ventilation systems.

Seen in an electron microscope image, micron-scale sheets of graphene created at Rice University form a two-layer air filter that traps pathogens and then kills them with a modest burst of electricity

So many patients become infected by bacteria and their metabolic products, which for example can result in sepsis while in the hospital,” Tour said. “We need more methods to combat the airborne transfer of not just bacteria but also their downstream products, which can cause severe reactions among patients.

“Some of these products, like endotoxins, need to be exposed to temperatures of 300 degrees Celsius in order to deactivate them,” a purpose served by the LIG filter, he added. “This could significantly lessen the transfer of bacteria-generated molecules between patients, and thereby lower the ultimate costs of patient stays and lessen sickness and death from these pathogens.”

The lab tested LIG filters with a commercial vacuum filtration system, pulling air through at a rate of 10 liters per minute for 90 hours, and found that Joule heating successfully sanitized the filters of all pathogens and byproducts. Incubating used filters for an additional 130 hours revealed no subsequent bacterial growth on the heated units, unlike control LIG filters that had not been heated.

Bacteria culturing experiments performed on a membrane downstream from the LIG filter indicated that bacteria are unable to permeate the LIG filter,” said Rice sophomore John Li, co-lead author of the paper with postdoctoral researcher Michael Stanford. Stanford noted the sterilization feature “may reduce the frequency with which LIG filters would need to be replaced in comparison to traditional filters.” Tour suggested LIG air filters could also find their way into commercial aircraft.

Source: https://news.rice.edu/

Edible Sensor To Check Whether Drugs Have Been Taken

An ingestible sensor that enables health workers to check that patients have taken their medication could revolutionise tuberculosis treatment, particularly in developing countries, researchers believe. New ways to ensure TB patients comply with their treatment are desperately needed. Patients with the most straightforward form of the deadly infectious disease have to take a cocktail of drugs over a six-month period – and if they fail to stick to the regime, they risk the disease returning in a drug-resistant form.

In the study, published in in the journal Plos Medicinepatients in California were given a standard TB drug alongside an “ediblesensor, coated with minerals.  When ingested, the sensor communicates with a patch attached to the patient’s torso that in turn sends a message to a mobile phone. The data is then automatically uploaded to a secure, centralised computer for a health worker to check.

To avoid high treatment drop-out rates it is recommended that patients take their medication under the supervision of a health worker in a procedure called directly observed therapy (DOT). But this is time consuming – requiring a health worker to visit the patient at work or home or vice versa – as well as costly and inconvenient. But this new “wireless observed therapy” (WOT) avoids the need for daily visits and enables the patient to take the drugs in private and at a time that suits them.

Some 77 patients, who were no longer infectious but still needed to finish their course of treatment, took part in the study, carried out by researchers at the University of California San Diego (UCSD). A third followed the standard DOT model of care and two thirds followed the novel treatment. The study showed that WOT had a 99.3 per cent accuracy rate in recording adherence to treatment and all those patients on the wireless therapy wanted to continue with it after the trial had ended. All finished treatment and were cured of TB.

Sara Browne, lead author of the study and associate professor of infectious diseases at the UCSD, said the ingestible sensor gave patients more autonomy.

The system allows patients to determine how they want to take their pills with minimum interference. It preserves the highest standards of privacy but it also enables the health system to focus on people who need the most support,” she said.

Source: http://grantome.com/
AND

https://www.telegraph.co.uk/

Electrified Tattoos and Personalized Biosensors

Electrical engineers at Duke University have devised a fully print-in-place technique for electronics that is gentle enough to work on delicate surfaces including paper and human skin. The advance could enable technologies such as high-adhesion, embedded electronic tattoos and bandages tricked out with patient-specific biosensors.

Two electronically active leads directly printed along the underside of Duke graduate student Nick Williams’s pinky successfully light up an LED when a voltage is applied

When people hear the term ‘printed electronics,’ the expectation is that a person loads a substrate and the designs for an electronic circuit into a printer and, some reasonable time later, removes a fully functional electronic circuit,” said Aaron Franklin, Associate Professor at Duke.

“Over the years there have been a slew of research papers promising these kinds of ‘fully printed electronics,’ but the reality is that the process actually involves taking the sample out multiple times to bake it, wash it or spin-coat materials onto it,” Franklin said. “Ours is the first where the reality matches the public perception.

The concept of so-called electronic tattoos were first developed in the late 2000s at the University of Illinois by John A. Rogers, who is now Professor of Materials Science and Engineering at Northwestern University. Rather than a true tattoo that is injected permanently into the skin, Rogers’s electronic tattoos are thin, flexible patches of rubber that contain equally flexible electrical components.

The thin film sticks to skin much like a temporary tattoo, and early versions of the flexible electronics were made to contain heart and brain activity monitors and muscle stimulators. While these types of devices are on their way to commercialization and large-scale manufacturing, there are some arenas in which they’re not well suited, such as when direct modification of a surface by adding custom electronics is needed. “For direct or additive printing to ever really be useful, you’re going to need to be able to print the entirety of whatever you’re printing in one step,” said Franklin. “Some of the more exotic applications include intimately connected electronic tattoos that could be used for biological tagging or unique detection mechanisms, rapid prototyping for on-the-fly custom electronics, and paper-based diagnostics that could be integrated readily into customized bandages.”

The techniques are described in a series of papers published in the journal Nanoscale and in the journal ACS Nano.

Source: https://pratt.duke.edu/

Gym Robot

N many robotics companies can boast legions of fans online, but not many robotics companies make robots quite like Boston Dynamics.

Boston Dynamics is a world leader in mobile robots, tackling some of the toughest robotics challenges. We combine the principles of dynamic control and balance with sophisticated mechanical designs, cutting-edge electronics, and next-generation software for high-performance robots equipped with perception, navigation, and intelligence. Boston Dynamics has an extraordinary and fast-growing technical team of engineers and scientists who seamlessly combine advanced analytical thinking with bold engineering and boots-in-the-mud practicality.

Each time the firm shares new footage of its machines, they cause a sensation. Whether it’s a pack of robot dogs towing a truck or a human-like bot leaping nimbly up a set of boxes, Boston Dynamics’ bots are uniquely thrilling.

They’re also something of a Rorschach test for our feelings about the future, with viewers either basking in the high-tech splendor or bemoaning the coming robo-apocalypse. And when a parody video circulated last month showing a CGI “Bosstown Dynamics” robot turning on its creators, many mistook it for the real thing — a testament to how far the company has pushed what seems technologically possible.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We’ve been an R&D company for a long time, working on pushing the envelope [and] making robots that try to live up to people’s idea of what a robot should be,” says Raibert. “And it’s natural … that as we do that R&D it makes robots more and more useful, and it makes it obvious to us that, ‘Oh, this thing could be used and commercialized,’ said Boston Dynamics CEO Marc Raibert.”

The world’s most dynamic humanoid robot ! Atlas is a research platform designed to push the limits of whole-body mobility. Atlas’s advanced control system and state-of-the-art hardware give the robot the power and balance to demonstrate human-level agility. Atlas has one of the world’s most compact mobile hydraulic systems. Custom motors, valves, and a compact hydraulic power unit enable Atlas to deliver high power to any of its 28 hydraulic joints for impressive feats of mobility. Atlas’s advanced control system enables highly diverse and agile locomotion, while algorithms reason through complex dynamic interactions involving the whole body and environment to plan movementsAtlas uses 3D printed parts to give it the strength-to-weight ratio necessary for leaps and somersaults.

Source: https://www.bostondynamics.com/
AND
https://www.theverge.com/

Cut emissions to avert catastrophic sea-level rise

Scientists behind a landmark study of the links between oceans, glaciers, ice caps and the climate delivered a stark warning to the world: slash emissions or watch cities vanish under rising seas, rivers run dry and marine life collapse. Days after millions of young people demanded an end to the fossil-fuel era in protests around the globe, a new report by a U.N.-backed panel of experts found that radical action may yet avert some of the worst possible outcomes of global warming. But the study was clear that allowing carbon emissions to continue rising would upset the balance of the geophysical systems governing oceans and the frozen regions of the Earth so profoundly that nobody would escape untouched.

We are in a race between two factors, one is the capacity of humans and ecosystems to adapt, the other is the speed of impact of climate change. This report…indicates we may be losing in this race. We need to take immediate and drastic action to cut emissions right now,” IPCC Chair Hoesung Lee said at the presentation of the report in Monaco.

Finalised in a marathon 27-hour session of talks in Monaco between authors and representatives of governments, the report was the culmination of two years’ efforts by the U.N.-backed Intergovernmental Panel on Climate Change (IPCC). Compiled by more than 100 authors who crunched 7,000 academic papers, the study documents the implications of warm, fast-melting ice sheets in Greenland and Antarctica and shrinking glaciers for more than 1.3 billion people living in low-lying or high-mountain regions.

The report projects that sea levels could rise by one meter (3.3 feet) by 2100 — ten times the rate in the 20th century — if emissions keep climbing. The rise could exceed five meters by 2300. In the Himalayas, glaciers feeding ten rivers, including the Ganges and Yangtze, could shrink dramatically if emissions do not fall, hitting water supplies across a swathe of Asia. Thawing permafrost in places like Alaska and Siberia could release vast quantities of greenhouse gases, potentially unleashing feedback loops driving faster warming.

CRISPR-Cas9 gene editing could ‘turn off’ HIV virus

HIV treatment has come a long way over the years, due in large part to antiretroviral drugs that stop the HIV virus from replicating in the body. This gives the immune system a chance to repair itself and stop further damage. Thanks to these amazing advances, HIV is no longer the death sentence that it was in previous decades. However, antiretrovirals only keep HIV at bay for as long as they’re taken. Defaulting on the drugs means that the HIV virus comes back. Even worse, it can cause patients to build up resistance to the antiretrovirals so that they do not work so effectively in the future. In other words, there’s still room for improvement when it comes to treatment. Fortunately, researchers from thUniversity of California — San Diego School of Medicine are poised to provide help, courtesy of a new genetic-sequencing approach that could possibly provide a “kill switch” to clear out dormant HIV reservoirs inside cells.

The most exciting part of this discovery has not been seen before,” Tariq Rana, professor of pediatrics and genetics at UC San Diego School of Medicine, said in a statement. “By genetically modifying a long non-coding RNA, we prevent HIV recurrence in T cells and microglia upon cessation of antiretroviral treatment, suggesting that we have a potential therapeutic target to eradicate HIV and AIDS.”

The work is based on the discovery of a recently emerged gene that appears to regulate HIV replication in immune cells, including macrophages, microglia, and T cells. The team refers to this as HIV-1 Enchanced LncRNA (HEAL), and it is elevated in people with HIV. By using CRISPR-Cas9 gene editing, their work suggests that it could stop HIV from recurring in the event that antiretroviral treatment is stopped.

This has the potential for [being a] cure but, [we’ll] have to wait for animal studies,” Rana told Digital Trends. As for the next steps, Rana said that future studies “will determine if turning this regulator HEAL off can remove viral reservoirs, which are the key source for viral rebound when therapies are discontinued.” A paper describing the work was recently published in the journal mBio.

Source: https://mbio.asm.org/
AND
https://www.digitaltrends.com
/

Converting CO2 To Valuable Resources

Enzymes use cascade reactions to produce complex molecules from comparatively simple raw materials. Researchers have now copied this principle.

An international research team has used nanoparticles to convert carbon dioxide into valuable raw materials. Scientists at RUB in Germany and the University of New South Wales in Australia have adopted the principle from enzymes that produce complex molecules in multi-step reactions. The team transferred this mechanism to metallic nanoparticles, also known as nanozymes. The chemists used carbon dioxide to produce ethanol and propanol, which are common raw materials for the chemical industry.

The team led by Professor Wolfgang Schuhmann from the Center for Electrochemistry in Bochum and Professor Corina Andronescu from the University of Duisburg-Essen, together with the Australian team led by Professor Justin Gooding and Professor Richard Tilley, reported in the Journal of the American Chemical Society on 25 August 2019.

Transferring the cascade reactions of the enzymes to catalytically active nanoparticles could be a decisive step in the design of catalysts,” says Wolfgang Schuhmann.

 

Source: https://news.rub.de/

 

Mimicking Mosquito Eyes To Create Artificial Lens

Anyone who’s tried to swat a pesky mosquito knows how quickly the insects can evade a hand or fly swatter. The pests’ compound eyes, which provide a wide field of view, are largely responsible for these lightning-fast actions. Now, researchers reporting in ACS Applied Materials & Interfaces have developed compound lenses inspired by the mosquito eye that could someday find applications in autonomous vehicles, robots or medical devices.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Compound eyes, found in most arthropods, consist of many microscopic lenses organized on a curved array. Each tiny lens captures an individual image, and the mosquito’s brain integrates all of the images to achieve peripheral vision without head or eye movement. The simplicity and multifunctionality of compound eyes make them good candidates for miniaturized vision systems, which could be used by drones or robots to rapidly image their surroundings. Joelle Frechette and colleagues from Johns Hopkins University wanted to develop a liquid manufacturing process to make compound lenses with most of the features of the mosquito eye.

To make each microlens, the researchers used a capillary microfluidic device to produce oil droplets surrounded by silica nanoparticles. Then, they organized many of these microlenses into a closely packed array around a larger oil droplet. They polymerized the structure with ultraviolet light to yield a compound lens with a viewing angle of 149 degrees, similar to that of the mosquito eye. The silica nanoparticles coating each microlens had antifogging properties, reminiscent of nanostructures on mosquito eyes that allow the insect organs to function in humid environments. The researchers could move, deform and relocate the fluid lenses, allowing them to create arrays of compound lenses with even greater viewing capabilities.

Source: https://www.acs.org/

How To Improve Your Body Movement

Massachusetts Institute of Technology engineer Nan-Wei Gong went from designing sensors to search the universe for dark matter, to designing sensors to track the movement of the human body.

It’s a particle that’s really hard to find, and I didn’t find it,” Gong said of dark matter.

She’s had better luck with the human body, attracting $7.5 million to launch Figur8 at the end of August 2019. Figur8 is a startup that boasts of having the world’s most cost-effective and portable system for “accurately assessing quality of movement.”

That’s exciting news for trainers, physical therapists and physicians, all of whom have an interest in being able to quantify and assess the quality of human movement. Previously that took expensive equipment, including cumbersome cameras, to do it accurately.

But with Gong’s sensors strapped to the body, feeding data to a cloud-based mobile app, movement measurements and analytics can be taken anywhere, quickly and easily.

 

Gong developed Figur8 in conjunction with Massachusetts General Hospital as well as MIT’s Media Lab. The strap-on sensors produced by Figur8 do the job of much more expensive systems that were generally unavailable to anyone other than elite athletes.

 

Source: https://www.forbes.com/

How To Reverse Baldness Using Nanogenerators

Few things on earth strike fear into the hearts of men more profoundly than hair loss. But reversing baldness could someday be as easy as wearing a hat, thanks to a noninvasive, low-cost hair-growth-stimulating technology developed by engineers at the University of Wisconsin–Madison (UW Madison).

I think this will be a very practical solution to hair regeneration,” says Xudong Wang, a professor of materials science and engineering at UW–Madison.

Based on devices that gather energy from a body’s day-to-day motion, the hair-growth technology stimulates the skin with gentle, low-frequency electric pulses, which coax dormant follicles to reactivate hair production. The devices don’t cause hair follicles to sprout anew in smooth skin. Instead they reactivate hair-producing structures that have gone dormant. That means they could be used as an intervention for people in the early stages of pattern baldness, but they wouldn’t bestow cascading tresses to someone who has been as bald as a billiard ball for several years.

Because the devices are powered by the movement of the wearer, they don’t require a bulky battery pack or complicated electronics. In fact, they’re so low-profile that they could be discreetly worn underneath the crown of an everyday baseball cap. Wang is a world expert in the design and creation of energy-harvesting devices. He has pioneered electric bandages that stimulate wound-healing and a weight-loss implant that uses gentle electricity to trick the stomach into feeling full.

The hair-growth technology is based on a similar premise: Small devices called nanogenerators passively gather energy from day-to-day movements and then transmit low-frequency pulses of electricity to the skin. That gentle electric stimulation causes dormant follicles to “wake up.” “Electric stimulations can help many different body functions,” says Wang. “But before our work there was no really good solution for low-profile devices that provide gentle but effective stimulations.”

Wang and colleagues published a description of the technology in the journal ACS Nano.

Source: https://news.wisc.edu/

Drinking Tea May Improve Brain Health

In a recent study, Assistant Professor Feng Lei from the NUS Yong Loo Lin School of Medicine in Singapore shares that drinking tea regularly may improve brain efficiency. It is revealed that regular tea drinkers have better organised brain regions, which is associated with healthy cognitive function, as compared to non-tea drinkers.

By looking at brain imaging data of older adults, individuals who consumed either green tea, oolong tea, or black tea at least four times a week for about 25 years had brain regions that were interconnected in a more efficient way.

Take the analogy of road traffic as an example – consider brain regions as destinations, while the connections between brain regions are roads. When a road system is better organised, the movement of vehicles and passengers is more efficient and uses less resources. Similarly, when the connections between brain regions are more structured, information processing can be performed more efficiently,” explained Asst Prof Feng.

The results suggests that drinking tea regularly has a protective effect against age-related decline in brain organisation.

Previous studies have also shown that tea intake is beneficial to human health, and the positive effects include mood improvement and cardiovascular disease prevention. Another study led by Asst Prof Feng in 2017 showed that daily consumption of tea can reduce the risk of cognitive decline in older people by 50 per cent.

Asst Prof Feng and his team plan to examine how tea and its bioactive compounds can affect cognitive decline next.

Source: http://nusmedicine.nus.edu.sg

Walking Patterns Identify Specific Dementia Type

Walking may be a key clinical tool in helping medics accurately identify the specific type of dementia a patient has, pioneering research has revealed.

Gait Lab

For the first time, scientists at Newcastle University have shown that people with Alzheimer’s disease or Lewy body dementia have unique walking patterns that signal subtle differences between the two conditions. The research, published today in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, shows that people with Lewy body dementia change their walking steps more – varying step time and length – and are asymmetric when they move, in comparison to those with Alzheimer’s disease. It is a first significant step towards establishing gait as a clinical biomarker for various subtypes of the disease and could lead to improved treatment plans for patients.

The way we walk can reflect changes in thinking and memory that highlight problems in our brain, such as dementia. “Correctly identifying what type of dementia someone has is important for clinicians and researchers as it allows patients to be given the most appropriate treatment for their needs as soon as possible”, says Dr Ríona McArdle, Post-Doctoral Researcher at Newcastle University’s Faculty of Medical Sciences, who led the Alzheimer’s Society-funded research. The results from this study are exciting as they suggest that walking could be a useful tool to add to the diagnostic toolbox for dementia. It is a key development as a more accurate diagnosis means that we know that people are getting the right treatment, care and management for the dementia they have.

Current diagnosis of the two types of dementia is made through identifying different symptoms and, when required, a brain scan. For the study, researchers analysed the walk of 110 people, including 29 older adults whose cognition was intact, 36 with Alzheimer’s disease and 45 with Lewy body dementia. The participants took part in a simple walking test at the Gait Lab of the Clinical Ageing Research Unit, an NIHR-funded research initiative jointly run by Newcastle Hospitals NHS Foundation Trust and Newcastle UniversityParticipants moved along a walkway – a mat with thousands of sensors inside – which captured their footsteps as they walked across it at their normal speed and this revealed their walking patterns.

Source: https://www.ncl.ac.uk/

Little Algae Bioreactor Removes As Much Carbon Dioxide as 4000m2 of Trees

Algae could play a surprising role in the fight against climate change. A.I.-focused technology firm Hypergiant Industries announced a machine that uses the aquatic organisms to sequester carbon dioxide. Algae, the company claims, is “one of nature’s most efficient machines.” By pairing it with a machine learning system, its developers hope to make these talents even more effective. That’s not all. The team claims the device, which measures three feet (90 centimeters) on each side and seven feet (2,1 meters) tall, can sequester as much carbon as a whole acre (4000 square meters) of trees — estimated somewhere around two tons.

We’ve been thinking about climate change solutions in only a very narrow scope,” Ben Lamm, CEO of the Austin-based firm, said. “Trees are part of the solution but there are so many other biological solutions that are useful. Algae is much more effective than trees at reducing carbon in the atmosphere, and can be used to create carbon negative fuels, plastics, textiles, food, fertilizer and much more.”
It’s not the only ambitious idea in the works at the six-division Hypergiant Industries. Its Galactic division is aiming to build a multi-planetary internet by using satellites as relays. Last month, it took the wraps off a prototype Iron Man-like helmet that could aid search and rescue teams. The company, founded last year, counts Bill Nye and astronaut Andy Allen among its advisory board members.

Hypergiant’s algae-powered bioreactor is the sort of idea that could be needed now more than ever. Despite a push to greener technologies, global annual carbon emissions rose in 2018 to hit an all-time high of 37.1 billion tonnes. That’s after two years of a relative plateau between 2014 and 2016. This has resulted in a global climate shift, where 2018 was the fourth-hottest year on record. Several countries, including the United Kingdom, have pledged to reach net-zero emissions by 2050.

Research has shown that restoring forests by an area the size of the United States could cut carbon dioxide in the atmosphere by a staggering 25 percent, reaching levels not seen for a century. While planting trees could play an important role in the pushback, alternative solutions like carbon capture and storage and new sequestering technologies could also help remove carbon from the atmosphere.

Algae, Hypergiant Industries explains, needs three elements for growth: light, water, and carbon dioxide. The machine monitors factors like light, available carbon dioxide, temperature and more to maximize the amount sequestered by the algae.

One Eos Bioreactor sequesters the same amount of carbon from the atmosphere as an entire acre of trees,” Lamm says. “With enough Eos devices, we could make whole cities carbon-neutral or even negative, and at a rate that is so much faster than that of trees. That’s the dream: breathable, livable cities for everyone and right now.”

When the algae consumes carbon dioxide, it produces biomass. The company has suggested that this biomass could be used in a number of applications, like making oils or cosmetics. A smart city could take the biomass and use it for fuels. The machine is small enough to fit inside office buildings, and Lamm tells FastCompany that the initial prototype it’s currently operating can attach to a building’s HVAC system to clean the air inside.

Eye Test Reveals How Likely Is A Person To Develop Alzheimer’s

Alzheimer’s disease (AD) begins to alter and damage the brain years — even decadesbefore symptoms appear, making early identification of AD risk paramount to slowing its progression.

In a new study published online in the September 9, 2019 issue of the Neurobiology of Aging , scientists at University of California San Diego School of Medicine say that, with further developments, measuring how quickly a person’s pupil dilates while they are taking cognitive tests may be a low-cost, low-invasive method to aid in screening individuals at increased genetic risk for AD before cognitive decline begins.

In recent years, researchers investigating the pathology of AD have primarily directed their attention at two causative or contributory factors: the accumulation of protein plaques in the brain called amyloid-beta and tangles of a protein called tau. Both have been linked to damaging and killing neurons, resulting in progressive cognitive dysfunction.

The new study focuses on pupillary responses which are driven by the locus coeruleus (LC), a cluster of neurons in the brainstem involved in regulating arousal and also modulating cognitive function. Tau is the earliest occurring known biomarker for AD; it first appears in the LC; and it is more strongly associated with cognition than amyloid-beta. The study was led by first author William S. Kremen, PhD, and senior author Carol E. Franz, PhD, both professors of psychiatry and co-directors of the Center for Behavior Genetics of Aging at UC San Diego School of Medicine.

The LC drives pupillary response — the changing diameter of the eyes’ pupils — during cognitive tasks. (Pupils get bigger the more difficult the brain task.) In previously published work, the researchers had reported that adults with mild cognitive impairment, often a precursor to AD, displayed greater pupil dilation and cognitive effort than cognitively normal individuals, even if both groups produced equivalent results. Critically, in the latest paper, the scientists link pupillary dilation responses with identified AD risk genes.

face of an elderly man

How quickly a person’s pupils dilate while doing mental tasks may be an indicator of increased genetic risk for Alzheimer’s disease.

Given the evidence linking pupillary responses, LC and tau and the association between pupillary response and AD polygenic risk scores (an aggregate accounting of factors to determine an individual’s inherited AD risk), these results are proof-of-concept that measuring pupillary response during cognitive tasks could be another screening tool to detect Alzheimer’s before symptom appear,” said Kremen.

Source: https://health.ucsd.edu/

Biomimetic Nanoparticles Used As Carriers Improve AntiCancer Drugs

Researchers at the University of Helsinki in collaboration with researchers from Åbo Akademi University (Finland) and Huazhong University of Science and Technology (China) have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy. This new nano-tool provides a new approach to use cell-based nanomedicines for efficient cancer chemotherapy.

Exosomes contain various molecular constituents of their cell of origin, including proteins and RNA. Now the researchers have harnessed them together with synthetic nanomaterial as carriers of anticancer drugs. The new exosome-based nanomedicines enhanced tumor accumulation, extravasation from blood vessels and penetration into deep tumor parenchyma after intravenous administration.

Exosomes

The new exosome-based nanomedicines enhanced tumor accumulation, extravasation from blood vessels and penetration into deep tumor parenchyma after intravenous administration.

This study highlights the importance of cell-based nanomedicines”, says the principal investigator and one of the corresponding authors of this study, Hélder A. Santos, Associate Professor at the Faculty of Pharmacy, University of Helsinki.

Nanoparticles-based drug delivery systems have shown promising therapeutic efficacy in cancer. To increase their targetability to tumors, nanoparticles are usually functionalized with targeted antibodies, peptides or other biomolecules. However, such targeting ligands may sometimes have a negative influence on the nanoparticle delivery owing to the enhanced immune-responses.

Biomimetic nanoparticles on the other hand combine the unique functionalities of natural biomaterials, such as cells or cell membranes, and bioengineering versatility of synthetic nanoparticles, that can be used as an efficient drug delivery platform. The developed biocompatible exosome-sheathed porous silicon-based nanomedicines for targeted cancer chemotherapy resulted in augmented in vivo anticancer drug enrichment in tumor cells. “This demonstrates the potential of the exosome-biomimetic nanoparticles to act as drug carriers to improve the anticancer drug efficacy”, Santos concludes.

Source:  https://www.helsinki.fi/

RoboTaxis transported 6,299 passengers in one month

Waymo transported 6,299 passengers in self-driving Chrysler Pacifica minivans in its first month participating in a robotaxi pilot program in California, according to a quarterly report the company filed with the California Public Utilities Commission (CPUC).

In all, the company completed 4,678 passenger trips in July — plus another 12 trips for educational purposes. It’s a noteworthy figure for an inaugural effort that pencils out to an average of 156 trips every day that month.  And it demonstrates that Waymo has the resources, staff and vehicles to operate a self-driving vehicle pilot while continuing to test its technology in multiple cities and ramp up its Waymo One ride-hailing service in Arizona. But Waymo’s data — along with quarterly reports from three other companies that hold permits with the CPUC — provides just a hint at what demand could be for commercial autonomous vehicles and how these services might reshape cities.

Waymo’s pilot program, for instance, isn’t open to the public. Waymo or Alphabet employees and their guests can take rides within its geofenced South Bay territory, which currently includes Mountain View, Palo Alto, Sunnyvale, Cupertino, Los Altos and Los Altos Hills. This is only a few of the cities where Waymo is currently testing in California. And because companies in this pilot program cannot charge for rides, it’s difficult to determine what the demand will be for self-driving passenger services, Dr. Susan Shaheen, co-director of the Transportation Sustainability Research Center at the University of California, noted in a recent interview.

Source: https://techcrunch.com/

How To Make A Car Run Forever

Put together the best solar panels money can buy, super-efficient batteries and decades of car-making know-how and, theoretically, a vehicle might run forever. That’s the audacious motivation behind a project by Toyota Motor Corp., Sharp Corp. and New Energy and Industrial Technology Development Organization of Japan, or NEDO, to test a Prius that could revolutionize transportation.

The solar car’s advantage is that — while it can’t drive for a long range — it’s really independent of charging facilities,” said Koji Makino, a project manager at Toyota.

Even if fully electric cars overtake petroleum-powered vehicles in sales, they still need to be plugged in, which means building a network of charging stations across the globe. The sun, on the other hand, shines everywhere for free, and when that energy is paired with enough battery capacity to propel automobiles at night, solar-powered cars could leapfrog all the new-energy technologies being developed, from plug-in hybrids to hydrogen fuel-cell vehicles, in one fell swoop. But the current forecast is only partly sunny because there’s still some work left to reach that level of efficiency.

This is not a technology we are going to see widely used in the next decades,” said Takeshi Miyao, an auto analyst at consultancy Carnorama. “It’s going to take a long time.”

Not for lack of trying. Toyota and Hyundai Motor Coalready introduced commercial models with solar panels on the roof, but they were too underpowered and could barely juice the sound system. A Prius plug-in hybrid that sells for more than 3 million yen offers solar panels as an option, but they only charge the battery when parked. The maximum amount of power for driving only lasts about 6 kilometers (about 4 miles), said Mitsuhiro Yamazaki, director at the solar energy systems division of NEDO. Toyota has been testing a new solar-powered Prius since July, though it acknowledges that cars running nonstop without connecting to a hose or plug are still far away. Even so, the Toyota City-based company said the research will pay off in other ways.

Indeed, there have been some breakthroughs, mainly due to advancements by Sharp. The prototype’s solar panel converts sunlight at an efficiency level of more than 34%, compared with about 20% for current panels on the market. Because the solar cell being used by Toyota, Sharp and NEDO is only about 0.03 mm thick, it can be placed on more surfaces, including the curvy parts of the roof, hood and hatchback. The electrical system can charge the vehicle even when it’s on the move.

Source: https://www.bloomberg.com/

Reverse biological aging

In a small clinical trial, scientists were looking for a means to restore the thymus — the gland that forms and releases key immune cells. By doing so, they actually managed to reverse various aspects of biological aging. The thymus gland, located between the lungs, is the organ within which T cells — a critical population of immune cells — mature. This gland also has a peculiarity. After a person reaches puberty, it begins a process of involution, which means that it becomes less and less active and starts to shrink in size gradually. Studies have shown that thymic involution affects the size of immune cell populations related to it, possibly causing changes to biological mechanisms when people reach their 60s.

Prof. Steve Horvath from the University of California Los Angeles School of Public Health and colleagues initially set out to see if they could restore function in the aging thymus.

Thymic involution leads to the depletion of critical immune cell populations, […] and is linked to age‐related increases in cancer incidence, infectious disease, autoimmune conditions, generalized inflammation, atherosclerosis, and all‐cause mortalit,” he explains In the study paper recently published in the journal Aging Cell.

For the reasons outlined above, the researchers organized and conducted what they believe is a first-of-its-kind clinical trial: TRIIM (Thymus Regeneration, Immunorestoration, and Insulin Mitigation). The study took place between 2015–2017, and the researchers were pleased with the results they achieved. They found that it was possible to restore thymic function and reduce the risk of age-related conditions and diseases linked to poor immune system reaction.

They also had a pleasant surprise. At the end of the trial, the researchers found that the mix of drugs they used to restore the thymus gland had also reversed other aspects of biological aging. A person’s biological age refers not to how old they are in conventional years, but to how much their biological mechanisms have aged, according to their epigenetic clocksmarkers that indicate how changes in various cellular mechanisms have affected gene expression.

For their trial, Prof. Horvath and team recruited 10 healthy adult males aged 51–65. The researchers were able to use and analyze data collected from nine of these individuals. In the first week of the clinical trial, the researchers gave the participants recombinant human growth hormone (rhGH). In its natural state, rhGH supports many different aspects of cellular health, such as cell growth and regeneration. Previous studies — some conducted in animals, and others with the participation of individuals with HIV — have uncovered evidence that rhGH could help restore thymus function, as well as immune system effectiveness. 

Source: https://onlinelibrary.wiley.com/
A
ND
https://www.medicalnewstoday.com/

Water Found On A Potentially Life-friendly Alien Planet

In a first for astronomers studying worlds beyond our solar system, data from the Hubble Space Telescope have revealed water vapor in the atmosphere of an Earth-size planet. Although this exoplanet orbits a star that is smaller than our sun, it falls within what’s known as the star’s habitable zone, the range of orbital distances where it would be warm enough for liquid water to exist on a planet’s surface. The discovery, announced this week in two independent studies, comes from years of observations of the exoplanet K2-18b, a super-Earth that’s about 111 light-years from our solar system. Discovered in 2015 by NASA’s Kepler spacecraft, K2-18b is very unlike our home world: It’s more than eight times the mass of Earth, which means it’s either an icy giant like Neptune or a rocky world with a thick, hydrogen-rich atmosphere.

K2-18b’s orbit also takes it seven times closer to its star than Earth gets to the sun. But because it circles a type of dim red star known as an M dwarf, that orbit places it in the star’s potentially life-friendly zone. Crude models predict that K2-18b’s effective temperature falls somewhere between -100 and 116 degrees Fahrenheit, and if it is about as reflective as Earth, its equilibrium temperature would be roughly the same as our home planet’s.

This is the only planet right now that we know outside the solar system that has the correct temperature to support water, it has an atmosphere, and it has water in it—making this planet the best candidate for habitability that we know right now,” University College London astronomer Angelos Tsiaras, a coauthor of one of the two studies, said during a press conference.

Source: https://www.nationalgeographic.com/

How To Detect Heart Failure From A Single Heartbeat

Researchers have developed a neural network approach that can accurately identify congestive heart failure with 100% accuracy through analysis of just one raw electrocardiogram (ECG) heartbeat, a new study reports.

Congestive heart failure (CHF) is a chronic progressive condition that affects the pumping power of the heart muscles. Associated with high prevalence, significant mortality rates and sustained healthcare costs, clinical practitioners and health systems urgently require efficient detection processes.

Dr Sebastiano Massaro, Associate Professor of Organisational Neuroscience at the University of Surrey, has worked with colleagues Mihaela Porumb and Dr Leandro Pecchia at the University of Warwick and Ernesto Iadanza at the University of Florence, to tackle these important concerns by using Convolutional Neural Networks (CNN) – hierarchical neural networks highly effective in recognising patterns and structures in data.

Published in Biomedical Signal Processing and Control Journal, their research drastically improves existing CHF detection methods typically focused on heart rate variability that, whilst effective, are time-consuming and prone to errors. Conversely, their new model uses a combination of advanced signal processing and machine learning tools on raw ECG signals, delivering 100% accuracy.

We trained and tested the CNN model on large publicly available ECG datasets featuring subjects with CHF as well as healthy, non-arrhythmic hearts. Our model delivered 100% accuracy: by checking just one heartbeat we are able detect whether or not a person has heart failure. Our model is also one of the first known to be able to identify the ECG’ s morphological features specifically associated to the severity of the condition,”  explains Dr Massaro.  Dr Pecchia, President at European Alliance for Medical and Biological Engineering, explains the implications of these findings: “With approximately 26 million people worldwide affected by a form of heart failure, our research presents a major advancement on the current methodology. Enabling clinical practitioners to access an accurate CHF detection tool can make a significant societal impact, with patients benefitting from early and more efficient diagnosis and easing pressures on NHS resources.”

Source: https://www.surrey.ac.uk/

The Science Of BioPrinting a Human Heart

A company called Biolife4D has developed the technology to print human cardiac tissue by collecting blood cells from a patient and converting these cells to a type of stem cell called Induced Pluripotent Stem (iPS) cells. The technology could eventually be used to create thousands of much-needed hearts for transplantation.

What we’re working on is literally bioprinting a human heart viable for transplantation out of a patient’s own cells, so that we’re not only addressing the problem with the lack of [organ] supply, but by bioengineering the heart out of their own cells, we’re eliminating the rejection,Biolife4D CEO Steven Morris said during an appearance on Digital Trends Live, referring to the body’s impulse to reject a transplanted organ.

It starts with a patient’s own cells and ends with a 3D bioprinted heart that’s a precise fit and genetic match. The BIOLIFE4D bioprinted organ replacement process begins with a magnetic resonance imaging (MRI) procedure used to create a detailed three-dimensional image of a patient’s heart. Using this image, a computer software program will construct a digital model of a new heart for the patient, matching the shape and size of the original.

A “bio-ink” is created using the specialized heart cells combined with nutrients and other materials that will help the cells survive the bioprinting processHearts created through the BIOLIFE4D bioprinting process start with a patient’s own cells. Doctors safely take cells from the patient via a blood sample, and leveraging recent stem cell research breakthroughs, BIOLIFE4D plans to reprogram those blood cells and convert them to create specialized heart cells.

Bioprinting is done with a 3D bioprinter that is fed the dimensions obtained from the MRI. After printing, the heart is then matured in a bioreactor, conditioned to make it stronger and readied for patient transplant.

Source: https://biolife4d.com/

Loch Ness Monster Might Just Be A Giant Eel

Scotland’s fabled Loch Ness monster could possibly be a giant eel, scientists said after an intensive analysis of traces of DNA in the Loch’s icy waters. The results ruled out the presence of large animals such as dinosaurs, they said. But there was a lot of eel DNA in the Loch, Professor Neil Gemmell, a geneticist from New Zealand’s University of Otago, told reporters.

Eels are very plentiful in the loch system – every single sampling site that we went to pretty much had eels and the sheer volume of it was a bit of a surprise,” Gemmell said. “We can’t exclude the possibility that there’s a giant eel in Loch Ness but we don’t know whether these samples we’ve collected are from a giant beast or just an ordinary one – so there’s still this element of ‘we just don’t know.’”

Gemmell noted however that despite the idea of a giant eel having been around for decades, nobody had ever caught a giant one in the Loch. The international team of scientists took their samples of so-called environmental DNA (eDNA) in June last year.

The use of eDNA sampling is already well established as a tool for monitoring marine life like whales and sharks.

Source: https://www.reuters.com/

Cancer Tops Heart Disease As The No. 1 Cause Of Death

Cardiovascular disease (CVD) is the major cause of death among middle-aged adults around the world; however, in high-income countries deaths from cancer have become twice as frequent as those from CVD.

The findings come from the first large prospective international study documenting the frequency of common diseases and death rates in high-, middle– and low-income countries using a standardized approach. The research, published in The Lancet presented at the European Society of Cardiology Congress, is from the Prospective Urban Rural Epidemiology (PURE) study led by the Population Health Research Institute (PHRI) of McMaster University and Hamilton Health Sciences in Hamilton, Canada.

For this paper, the research involved more than 162,500 adults aged 35 to 70 from 21 countries who were followed for a median of 9.5 years.

The fact that cancer deaths are now twice as frequent as CVD deaths in high-income countries indicates a transition in the predominant causes of death in middle age,” said Salim Yusuf, principal investigator of the study, executive director of PHRI and a professor of medicine at McMaster.

As CVD declines in many countries because of prevention and treatment, cancer mortality will likely become the leading cause of death globally in the future.

“The high mortality in poorer countries is not due to a higher burden of risk factors, but likely other factors including lower quality and less health care.

The high-income countries (HIC) in the study were Canada, Saudi Arabia, Sweden and United Arab Emirates. The middle-income countries (MIC) were Argentina, Brazil, Chile, China, Columbia, Iran, Malaysia, Palestine, Philippines, Poland, Turkey and South Africa. The lower-income
countries (LIC) were Bangladesh, India, Pakistan, Tanzania and Zimbabwe.

Source: https://brighterworld.mcmaster.ca

Artificial Tongue Tastes Whisky

An artificial ‘tongue’ which can taste subtle differences between drams of whisky could help cut down on the trade in counterfeit alcohol, scientists say. In a new paper published today in the Royal Society of Chemistry’s journal Nanoscale, Scottish engineers describe how they built the tiny taster, which exploits the optical properties of gold and aluminium to test the tipples.

Sub-microscopic slices of the two metals, arranged in a checkerboard pattern, act as the ‘tastebuds’ in the team’s artificial tongue. The researchers poured samples of whisky over the tastebuds – which are about 500 times smaller than their human equivalents – and measured how they absorb light while submerged. Statistical analysis of the very subtle differences in how the metals in the artificial tongue absorb light – what scientists call their plasmonic resonance – allowed the team to identify different types of whiskies.

The team used the tongue to sample a selection of whiskies from Glenfiddich, Glen Marnoch and Laphroaig. The tongue was able to taste the differences between the drinks with greater than 99% accuracy. It was capable of picking up on the subtler distinctions between the same whisky aged in different barrels, and tell the difference between the same whisky aged for 12, 15 and 18 years.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We’re not the first researchers to make an artificial tongue, but we’re the first to make a single artificial tongue that uses two different types of nanoscale metal ‘tastebuds’, which provides more information about the ‘taste’ of each sample and allows a faster and more accurate response,” explains Dr Alasdair Clark, of the University of Glasgow’s School of Engineering, the paper’s lead author. “While we’ve focused on whisky in this experiment, the artificial tongue could easily be used to ‘taste’ virtually any liquid, which means it could be used for a wide variety of applications. In addition to its obvious potential for use in identifying counterfeit alcohols, it could be used in food safety testing, quality control, security – really any area where a portable, reusable method of tasting would be useful.

Source: https://www.gla.ac.uk/

Virtual Reality Is Life-Changing For People With Dementia

Virtual reality, smart clothes and reminiscence therapy are offering respite to patients and carers. One of millions of people who die each year from the neurodegenerative disease, Alzheimer’s, for which a cure is not possible. The condition, one of a number of forms of dementia, is caused by rogue proteins that lodge and tangle in the neural networks of the brain, causing irreparable damage to the billions of neurons which transmit the electrical signals that build memories. These cells gradually die, causing memory loss and personality change, eventually halting the brain’s basic functions.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Despite decades of medical research into treatments to slow the disease’s progressive course or prevent it entirely – the field from which Pfizer notably withdrew in January, after years of setbacks – it is not yet known what causes these proteins to gather, and therefore how to remove or block them. And despite Alzheimer’s being the world’s fifth biggest killer, funding levels for research have lagged shockingly behind those for both cancer and the next biggest area of medical research, cardiovascular disease.

In the meantime, the greatest cost is in providing care and therapy for those suffering from the disease – a global total currently estimated at $818 billion; the equivalent to over one per cent of global GDP. If no effective treatment and preventive solution is found this sum will only increase, as ten million new cases of dementia are diagnosed each year.

UK healthcare start-up, Virtue, applies the latest immersive technologies to the process of ‘reminiscence therapy’. While the traditional approach draws on physical visual stimulus such as photo books, or even involves substantial investment in constructing full-scale sets that recreate nostalgic scenes, Virtue has developed a new type of memory portal using virtual reality 

It’s only now that the phone in your pocket is advanced enough and VR headsets are reducing in price that we can really democratise access to this type of impactful therapy,” Virtue‘s co-founder and CTO Scott Gorman says. Virtue’s app, LookBack VR, offers a wide variety of 360 VR content and filmic experiences which chime with the memories of the target age group of the patient – arranged by destination, theme, activity or decade. Viewers can choose from experiences ranging from spending time on Brighton beach in the 1970s, to finding themselves in a 1950s tearoom, and can create a personalised playlist or ‘itinerary for time travel’ with the help of their family or carer. Their companion can see their VR headset view on a companion app via tablet, along with a series of suggested questions to help stimulate relevant conversation about that era.

Our vision is for LookBack VR to become a global platform that can help people with dementia anywhere,” co-founder and CEO Arfa Rehman shares. “We are starting to seek partnerships with organisations and individuals to gather content from around the world.”

Source: https://www.wired.co.uk/

NK cells give our immune system long-term memory

I’ll be honest, when I first started working on this I didn’t fully accept it.”
That’s Dr. Andrew Makrigiannis, head of the Department of Microbiology & Immunology at the Dalhousie University., discussing his groundbreaking research on natural killer cells that was published in the leading journal Proceedings of the National Academy of Sciences.“I’m a traditionally trained immunologist; I was skeptical”.
NK cells were originally discovered due to their novel ability to recognize and kill tumour cells without having previously encountered these aberrant cells, unlike other lymphocytes such as T and B cells.

One of the receptor families on NK cells which have been shown to play an important role in tumour recognition are the Ly49 receptor family.
Class I major histocompatibility complex (MHC-I) molecules are expressed on all nucleated cells and function as a marker of a “healthy” cell for NK cells. Ly49 receptor family recognition and binding to the host’s MHC-I molecule will signal to the NK cell not to kill this cell since it is healthy.

 

Alternatively, in transformed cells, such as those which are virally-infected or cancerous, MHC-I expression is reduced on the cell surface, and so, the NK cell now recognizes this cell as being an unhealthy cell. These cells are killed by the NK cell through various means such as direct cytotoxicity or indirectly through cytokine secretion and recruitment of other.

We observed that NK cells from mice with knocked-down expression of the Ly49 receptor family have defective killing of traditional tumour target cells which lack MHC-I expression in both in vitro [51Cr]-release cytotoxicity assays and in vivo rejection assays. Using different carcinoma models such as oncogene-driven lymphoma and carcinogen-induced sarcoma, we observed that mice with knocked-down expression of the Ly49 receptor family show defective tumour control. Specifically they are prone to earlier cancer development as well as metastatic formation. As well, through the use of antibodies and flow cytometry analysis of tumours isolated from Ly49-knock-down and wildtype mice, it was seen that there is differential expression of MHC-I. This observation suggests that tumours which grow in the knock-down mice are phenotypically different from those in the WT mice due to their altered immune environments which directly affect how these tumours develop.

Source: https://www.pnas.org/
AND
http://maklab.ca/

Artificial Skin Recreates The Human Sense Of Pain

Prosthetic technology has taken huge strides in the last decade, but accurately simulating human-like sensation is a difficult task. New “electronic skin” technology developed at the Daegu Gyeongbuk Institute of Science and Technology (DGIST) in Korea could help replicate advanced “pain” sensations in prosthetics, and enable robots to understand tactile feedback, like the feeling of being pricked, or that of heat on skin.

Trying to recreate the human senses has been a driver of technologies throughout the 20thcentury, like TV or audio playback. Mimicry of tactile sensing has been a focus of several different research groups in the last few years, but advances have mainly improved the feeling of pressure and strength in prosthetics. Human sensation, however, can detect much more subtle cues. The DGIST researchers, led by Department of Information and Communication Engineering Professor Jae Eun Jang, needed to bring together expertise from several different fields to begin the arduous task of replicating these more complex sensations in their electronic skin, working with colleagues in DGIST’s Robotics and Brain Sciences departments.

“We have developed a core base technology that can effectively detect pain, which is necessary for developing future-type tactile sensor. As an achievement of convergence research by experts in nano engineering, electronic engineering, robotics engineering, and brain sciences, it will be widely applied on electronic skin that feels various senses as well as new human-machine interactions.” Jang explained.

The DGIST team effort has created a more efficient sensor technology, able to simultaneously detect pressure and heat. They also developed a signal processing system that adjusted pain responses depending on pressure, area, and temperature.

Source: https://www.dgist.ac.kr/
AND
https://www.technologynetworks.com/

CRISPR Halts Growth of Breast Cancer

Triple-negative breast cancer (TNBC), lacking estrogen, progesterone and HER2 receptors, has the highest mortality rate of all breast cancers. It more frequently strikes women under age 50, African American women, and women carrying a BRCA1 gene mutation. The highly aggressive, frequently metastatic cancer is in urgent need of more effective targeted therapeutics.

A new tumor-targeted CRISPR gene editing system, encapsulated in a nanogel and injected into the body, could offer a genetic treatment, suggest researchers at Boston Children’s Hospital. In a proof-of-principle study, conducted in human tumor cells and live, tumor-bearing mice, the CRISPR system effectively halted the growth of TNBC while sparing normal cells. Peng Guo, PhD,Marsha Moses, PhD and their colleagues have reported the findings in the journal PNAS.

To date, a lack of effective delivery systems has limited the translation of CRISPR gene editing into therapies. One method uses a virus to deliver CRISPR, but the virus cannot carry large payloads and potentially can cause side effects if it “infectscells other than those targeted. Another method packages the CRISPR tools inside a cationic polymer or lipid nanoparticles. But these elements can be toxic to cells, and the body often traps or breaks down the nanoparticles before they reach their destination.

The new approach encapsulates the CRISPR editing system inside a soft “nanolipogel” made up of a nontoxic double layer of fatty molecules and a hydrogel. Antibodies attached to the gel’s surface then guide the CRISPR nanoparticles to the tumor site. (The antibodies are designed to recognize and target ICAM-1, a therapeutic target for TNBC discovered by the Moses Lab in 2014.)

Because the particles are soft and flexible, they can enter cells more efficiently than their stiffer counterparts. Stiffer nanoparticles tend to get trapped by the cell’s ingestion machinery, while the soft particles fused with the tumor cell membrane and delivered their CRISPR payloads directly inside the cell, the researchers found.

Using a soft particle allows us to penetrate the tumor better, without side effects, and with bigger cargo,” says Guo, the study’s first author. “Our system can substantially increase tumor delivery of CRISPR.”

Source: http://discoveries.childrenshospital.org

Artificial Muscle

Wearing a flower brooch that blooms before your eyes sounds like magic. KAIST researchers have made it real with robotic muscles. Researchers have developed an ultrathin, artificial muscle for soft robotics. The advancement, recently reported in the journal Science Robotics, was demonstrated with a robotic blooming flower brooch, dancing robotic butterflies and fluttering tree leaves on a kinetic art piece.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The robotic equivalent of a muscle that can move is called an actuator. The actuator expands, contracts or rotates like muscle fibers using a stimulus such as electricity. Engineers around the world are striving to develop more dynamic actuators that respond quickly, can bend without breaking, and are very durable. Soft, robotic muscles could have a wide variety of applications, from wearable electronics to advanced prosthetics.

The team from KAIST’s Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering developed a very thin, responsive, flexible and durable artificial muscle. The actuator looks like a skinny strip of paper about an inch long. They used a particular type of material called MXene, which is class of compounds that have layers only a few atoms thick.

Their chosen MXene material (T3C2Tx) is made of thin layers of titanium and carbon compounds. It was not flexible by itself; sheets of material would flake off the actuator when bent in a loop. That changed when the MXene was “ionically cross-linked” — connected through an ionic bond — to a synthetic polymer. The combination of materials made the actuator flexible, while still maintaining strength and conductivity, which is critical for movements driven by electricity.

Their particular combination performed better than others reported. Their actuator responded very quickly to low voltage, and lasted for more than five hours moving continuously. To prove the tiny robotic muscle works actuator into wearable art: an origami-inspired brooch mimics how a narcissus, the team incorporated the flower unfolds its petals when a small amount of electricity is applied. They also designed robotic butterflies that move their wings up and down, and made the leaves of a tree sculpture flutter.

Wearable robotics and kinetic art demonstrate how robotic muscles can have fun and beautiful applications,” said Il-Kwon Oh, lead paper author and professor of mechanical engineering. “It also shows the enormous potential for small, artificial muscles for a variety of uses, such as haptic feedback systems and active biomedical devices.”

Source: https://www.kaist.ac.kr/

How To Strengthen Your Immune System

There’s another reason to celebrate the gut microbiome—a healthy gut might actually be able to save lives. According to scientists at the Lawson Health Research Institute, all it takes to strengthen your immune system is to improve your gut health, a process that we know is as easy as increasing your ingestion of probiotics and dietary fiber. How’s that for functional food?

These Lawson Health Research Institute scientists are implementing a preliminary study that would discover whether a fecal transplant of a healthy microbiome can help patients with melanoma become more receptive to immunotherapy treatments. During immunotherapy treatments, patients take certain drugs to stimulate their immune systems in order to attack tumors in their bodies. A fecal transplant, according to these researchers, would make their immune systems more receptive to the drugs and, in turn, could help more people successfully fight their cancer.

We know that some people’s immune systems don’t respond well, and it seems to be associated with the microbes within your gut,” Michael Silverman, M.D., a Lawson associate scientist, said in a video filmed by the research institute. “The goal is to give people healthy microbes to replenish the microbes in their gut so that their immune system responds optimally, and they’re able to control the tumor.”

Source: https://www.mindbodygreen.com/

Breakthroughs In Anti-Aging Research In Near Future

People 50 and older have a lot to look forward to, according to Juvenescence’s Greg Bailey—mainly that we won’t be aging as fast or poorly as our parents. “Science fiction has become science,” said the UK-based anti-aging biotech’s CEO about the company’s completing its $100 million Series B round of financing last week. “I think the world is going to be shocked,” he said in an interview. In total, Juvenescence has now raised $165 million in just 18 months to fund longevity projects with the lofty goal of extending human lifespans to 150 years. Bailey said the money will allow the company “to progress all of our products.” And there’s quite a list of potential therapies.

We have 12 programs based on hard, rigorous science, to try to modify aging. From stem cell research to senolytics to modifying or preventing Alzheimer’s and Parkinson’s diseases,” he said. It’s no secret that anti-aging is big business. According to Endpoints News, “Bank of America has forecast the market will balloon to $610 billion by 2025, from an estimated $110 billion currently.”  “I think there’s a huge amount of skepticism. There’s an enormous number of charlatans…I understand why they would be thinking you know, is this real?” Bailey told Endpoints. “Walk into your local drugstore, you’re going to see about 50 products that claim to be anti-aging, and I can assure you that none of them are.

Bailey said creams that claim everything and do nothing and vitamins that basically give users “expensive urine” are the reason for that skepticism. And investors are not as quick to step up as he would like. Bailey told Endpoints: “We’re dramatically being underserved…it’s not getting the exposure that tech gets, considering the size of the market.” He said he believes there is “a disconnect” on how investors and institutions are viewing anti-aging technology. “I don’t think they quite grasp how fast this is going to happen, and how big it’s going to be.”

Source: https://www.forbes.com/

One Pill A Day Reduces Heart Attack Risk By One Third

A cheap, single pill taken once a day that combines four common drugs is safe and reduces the risk of events such as heart attacks, strokes and sudden death in people over the age of 50, research has found. The study, the first large-scale trial to date, looked at the effectiveness of a so-called polypill – a four-in-one therapy containing drugs to lower cholesterol and blood pressure that was first proposed more than 15 years ago. The researchers found those taking the polypill had a more than 30% lower risk of serious heart problems than those just offered advice.

While different formulations have been studied, previous trials have only been conducted in small groups of people and over short periods of time. These studies have primarily looked at the impacts of cholesterol on blood pressure, relying on models to predict the impact on cardiovascular events such as strokes – meaning the full potential of the polypill has remained unclear. The latest study tackled both of these problems.

There has been a lot of talk about using this simple, fixed-dose combination drug for prevention of cardiovascular disease and I think we have shown that as a strategy it can work,” said Prof Tom Marshall, a co-author of the study from the University of Birmingham, adding that the pills might cost as little as a few pence per day. The new study involved more than 6,800 participants aged 50-75 from rural Iran – an area where almost 34% of premature deaths are down to coronary heart disease, and 14% are caused by strokes.

Writing in the Lancet, researchers from the UK, US and Iran reported that 3,417 people were given only minimum care, such as help with controlling blood pressure or cholesterol if needed, as well as lifestyle advice on topics such as diet, exercise and smoking. A similar number of people were, in addition to this, also given the polypill. More than 90% of those involved in the study did not have cardiovascular disease at the outset. Participants were followed up for five years. Over that time, 202 people taking the polypill had a major cardiovascular event, such as heart attack, heart failure, or stroke, compared with 301 in the “advice” group.

The authors say that translated as a 34% lower risk of having such an event, compared with the “advice” group, once factors including age, sex, diabetes and high blood pressure were taken into account.

There were also signs that, at least early on, the polypill reduced some aspects of high blood pressure, while it also led to a small fall in “bad” cholesterol. Both groups showed similar low levels of problematic events including internal bleeding and peptic ulcers. Overall, the results suggested that two major cardiovascular events would be avoided for every 69 people taking the tablet for 5 years. The polypill includes aspirin, which the team acknowledge is controversial as it can increase the risk of bleeding: the latest trial did not include people who were at high risk of such problems.

Source: https://www.theguardian.com/

Super-powered Immune Cells Kill Cancer

Ground-breaking immune therapy promises to deliver vital evidence in the fight against cancer as researchers from the Centre for Cancer Biology in Australia open a new clinical trial using genetically engineered immune cells to treat solid cancers. The phase 1 clinical trial will test the feasibility and safety of CAR-T cellsgenetically modified white blood cells harvested from a patient’s own blood with the unique ability to directly attack and kill cancers – to treat advanced solid tumours including small cell lung cancer, sarcomas and triple negative breast cancer.

The new clinical trial will allow researchers to learn more about how CAR-T cells interact with solid tumours in the hope that this form of immune-based therapy may one day treat a wide range of different cancers. Led by the Centre for Cancer Biology – an alliance between University of South Australia (UniSA), the Central Adelaide Local Health Network (CALHN) and the Royal Adelaide Hospital, the trial is funded by Cancer Council’s Beat Cancer Project and sponsored by CALHN.

The research scientist in charge of manufacturing the CAR-T cell product and following the patients’ responses to treatment is UniSA’s Dr Tessa Gargett, a Cancer Council Beat Cancer Project Early Career Fellow from the Centre for Cancer Biology .She says the CAR-T immune therapy shows great potential for developing cancer treatments.

Chimeric antigen receptor (CAR) T cells are a promising new technology in the field of cancer immunotherapy,” Dr Gargett says. “Essentially, CAR-T cells are super-powered immune cells which work by enlisting and strengthening the power of a patient’s immune system to attack tumours. “They’ve had astounding results in treating some forms of chemotherapy-resistant blood cancers, but similar breakthroughs are yet to be achieved for solid cancers – that’s where this study comes in.”

Source: https://www.unisa.edu.au/

CRISPR Can Now Edit Multiple Genes At Once

Researchers at ETH Zurich have refined the famous CRISPR-Cas method. Now, for the very first time, it is possible to modify dozens, if not hundreds, of genes in a cell simultaneously.

Everyone’s talking about CRISPR-Cas. This biotechnological method offers a relatively quick and easy way to manipulate single genes in cells, meaning they can be precisely deleted, replaced or modified. Furthermore, in recent years, researchers have also been using technologies based on CRISPR-Cas to systematically increase or decrease the activity of individual genes. The corresponding methods have become the worldwide standard within a very short time, both in basic biological research and in applied fields such as plant breeding.

To date, for the most part, researchers could modify only one gene at a time using the method. On occasion, they managed two or three in one go; in one particular case, they were able to edit seven genes simultaneously. Now, Professor Randall Platt and his team at the Department of Biosystems Science and Engineering at ETH Zurich in Basel have developed a process that – as they demonstrated in experiments – can modify 25 target sites within genes in a cell at once. As if that were not enough, this number can be increased still further, to dozens or even hundreds of genes, as Platt points out. At any rate, the method offers enormous potential for biomedical research and biotechnology. “Thanks to this new tool, we and other scientists can now achieve what we could only dream of doing in the past.

Genes and proteins in cells interact in many different ways. The resulting networks comprising dozens of genes ensure an organism’s cellular diversity. For example, they are responsible for differentiating progenitor cells to neuronal cells and immune cells. “Our method enables us, for the first time, to systematically modify entire gene networks in a single step,” Platt says.

Moreover, it paves the way for complex, large-scale cell programming. It can be used to increase the activity of certain genes, while reducing that of others. The timing of this change in activity can also be precisely controlled.

This is of interest for basic research, for example in investigating why various types of cells behave differently or for the study of complex genetic disorders. It will also prove useful for cell replacement therapy, which involves replacing damaged with healthy cells. In this case, researchers can use the method to convert stem cells into differentiated cells, such as neuronal cells or insulin-producing beta cells, or vice versa, to produce stem cells from differentiated skin cells.

Source: https://www.ethz.ch

How To 3D Print New Organs Using Stem Cells In Space

William Wagner, the director of the McGowan Institute for Regenerative Medicine at the University of Pittsburgh, a 250-strong team focused on organ and tissue failure, is at the center of possibly one of the most exciting projects in biomedical research today: can you use 3D printers to create new organs for people in space?

The ability to create new organs using stem cells is an exciting area of research that could help save lives, ending the scourge of donor shortages. Studying the concept further in microgravity could teach the team more about how these cells act, while enabling them to build more complex organs that could inform research on Earth. Early findings also suggest that these studies could reveal more about certain diseases. This vision came a bit closer to reality this week, when Wagner’s institute announced a multi-year research alliance with the International Space Station’s United States National Laboratory to explore the area further. The institute will develop facilities on Earth while working with the lab on flight opportunities to study experiments in the orbiting lab.

There’s been a lot of neat discovery science done on the space station,” Wagner says. “Let’s see what happens when we put stem cells in space. Oh, gosh, they stay more stem-like and they divide better! Okay, well, now what?”

Slowly but surely, organ printing is developing. At a 2016 conference, CELLINK detailed a future where organ shortages were a thing of the past. A team in May 2017 succesfully implanted artificial ovaries in mice. A Rutgers University group of researchers created a 3D-printable water gel that could one day help researchers print organs.

SpaceX’s CRS-18 resupply mission, which launched July 21 carrying Nickelodeon slime, also carried a Techshot biofabrication utility designed for exploring this area further: Wagner’s team is focused on using stem cells to fabricate new organs. These cells, which can further split into specialized cells, are also being used in the nascent area of lab-grown meat. Wagner explains that both areas involve similar problems of growing cells in a certain manner and rate. But while lab-based burgers could hit plates as early as 2021, printed livers and the like are nowhere near ready. “I can tell you from my perspective, organ printing’s got a long, long, long way to go,” Wagner says. “There’s a lot of barriers. At the same time, it’s exciting. There’s a lot of hope there if we can overcome any of these barriers.”

Source: https://www.inverse.com/

How To Make Solar Panels More Sustainable And Cheaper

An innovative way to pattern metals has been discovered by scientists in the Department of Chemistry at the University of Warwick in UK, which could make the next generation of  solar panels more sustainable and cheaperSilver and copper are the most widely used electrical conductors in modern electronics and solar cells. However, conventional methods of patterning these metals to make the desired pattern of conducting lines are based on selectively removing metal from a film by etching using harmful chemicals or printing from costly metal inks.

Scientists from the Department of Chemistry at the University of Warwick, have developed a way of patterning these metals that is likely to prove much more sustainable and cheaper for large scale production, because there is no metal waste or use of toxic chemicals, and the fabrication method is compatible with continuous roll-to-roll processing. Dr Ross Hatton and Dr Silvia Varagnolo have discovered that silver and copper do not condense onto extremely thin films of certain highly fluorinated organic compounds when the metal is deposited by simple thermal evaporation.

Thermal evaporation is already widely used on a large scale to make the thin metal film on the inside of crisp packets, and organofluorine compounds are already common place as the basis of non-stick cooking pans. The researchers have shown that the organofluorine layer need only be 10 billionths of a metre thick to be effective, and so only tiny amounts are needed. This unconventional approach also leaves the metal surface uncontaminated, which Hatton believes will be particularly important for the next generation sensors, which often require uncontaminated patterned films of these metals as platforms onto which sensing molecules can be attached.

To help address the challenges posed by climate change, there is a need for colour tuneable, flexible and light weight solar cells that can be produced at low cost, particularly for applications where conventional rigid silicon solar cells are unsuitable such as in electric cars and semi-transparent solar cells for buildings. Solar cells based on thin films of organic, perovskite or nano-crystal semiconductors all have potential to meet this need, although they all require a low cost, flexible transparent electrode. Hatton and his team have used their method to fabricate semi-transparent organic solar cells in which the top silver electrode is patterned with millions of tiny apertures per square centimetre, which cannot be achieved by any other scalable means directly on top of an organic electronic device.

This innovation enables us to realise the dream of truly flexible, transparent electrodes matched to needs of the emerging generation of thin film solar cells, as well as having numerous other potential applications ranging from sensors to low-emissivity glass” explains Dr Hatton from the Department of Chemistry at the University of Warwick.

The work is published in the journal Materials Horizons.

Source: https://warwick.ac.uk/

Long-term memory forming mechanism discovered

Your brain has its own box of memories. If you were to hold it in your hand, brush off the dust and open it up, you’d be able to pull out Polaroid snaps of your most treasured memories. Your graduation ceremony perhaps, your wedding day, your daughter’s first words – all things you wouldn’t want to forget. But how does your brain keep these memories in their crystal-clear clarity? The strength of a memory lies in its formation and upkeep. When we create a memory, thin connections, called axons, form between nerve cells in our brain. The point at which two axons connect is called a synapse, and it is the strength of the synapse that determines if the memory is kept or allowed to fade away.

Now, a study in mice carried out by Nobel Prize-winning researchers at Columbia University has shown that a protein called CPEB3 plays an important role in the formation of memories. The team discovered how this protein is stored and used in the brain and hope it could lead to new methods of slowing memory loss in humans.

The science of how synapses form and are strengthened over time is important for deciphering any disorder in which synapses – and the memories associated with them – degrade and die, such as Alzheimer’s disease,” said Dr Luana Fioriti. CPEB3 is created by the brain’s memory centre, the Hyppocampus. Once produced, it is stored in chamber-like structures called P bodies that protect it from other parts of the cell. It then travels to the synapse between nerve cells where required and is gradually released to help create a specific memory.

The findings suggest that the more CPEB3 released at a synapse, the stronger the connection and thus, the more concrete the resulting memory is. When the protein was removed, the mice could create new memories but were unable to keep them.

Source: https://www.sciencefocus.com/

Nano Glass Bottles Attack Malignant Cells

Tiny silica bottles filled with medicine and a special temperature-sensitive material could be used for drug delivery to kill malignant cells only in certain parts of the body, according to a study published recently by researchers at the Georgia Institute of Technology. The research team devised a way to create silica-based hollow spheres around 200 nanometers in size, each with one small hole in the surface that could enable the spheres to encapsulate a wide range of payloads to be released later at certain temperatures only.

In the study, which was published on June 4 in the journal Angewandte Chemie International Edition, the researchers describe packing the spheres with a mixture of fatty acids, a near-infrared dye, and an anticancer drug. The fatty acids remain solid at human body temperature but melt a few degrees above. When an infrared laser is absorbed by the dye, the fatty acids will be quickly melted to release the therapeutic drug.

This new method could allow infusion therapies to target specific parts of the body and potentially negating certain side effects because the medicine is released only where there’s an elevated temperature,” said Younan Xia, professor and Brock Family Chair in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “The rest of the drug remains encapsulated by the solid fatty acids inside the bottles, which are biocompatible and biodegradable.”

The researchers also showed that the size of the hole could be changed, enabling nanocapsules that release their payloads at different rates. “This approach holds great promise for medical applications that require drugs to be released in a controlled fashion and has advantages over other methods of controlled drug release,” Xia said.

Source: http://www.rh.gatech.edu/

New Theory To Prevent Alzheimer’s

Alzheimer’s disease, the most common cause of dementia among the elderly, is characterized by plaques and tangles in the brain, with most efforts at finding a cure focused on these abnormal structures. But a University of California, Riverside, research team has identified alternate chemistry that could account for the various pathologies associated with the diseasePlaques and tangles have so far been the focus of attention in this progressive disease that currently afflicts more than 5.5 million people in the United States. Plaques, deposits of a protein fragment called beta-amyloid, look like clumps in the spaces between neurons. Tangles, twisted fibers of tau, another protein, look like bundles of fibers that build up inside cells.

The dominant theory based on beta-amyloid buildup has been around for decades, and dozens of clinical trials based on that theory have been attempted, but all have failed,” said Ryan R. Julian, a professor of chemistry who led the research team. “In addition to plaques, lysosomal storage is observed in brains of people who have Alzheimer’s disease. Neurons — fragile cells that do not undergo cell division — are susceptible to lysosomal problems, specifically, lysosomal storage, which we report is a likely cause of Alzheimer’s disease.”

An organelle within the cell, the lysosome serves as the cell’s trashcan. Old proteins and lipids get sent to the lysosome to be broken down to their building blocks, which are then shipped back out to the cell to be built into new proteins and lipids. To maintain functionality, the synthesis of proteins is balanced by the degradation of proteins.

The lysosome, however, has a weakness: If what enters does not get broken down into little pieces, then those pieces also can’t leave the lysosome. The cell decides the lysosome is not working and “stores it, meaning the cell pushes the lysosome to the side and proceeds to make a new one. If the new lysosome also fails, the process is repeated, resulting in lysosome storage.

The brains of people who have lysosomal storage disorder, another well-studied disease, and the brains of people who have Alzheimer’s disease are similar in terms of lysosomal storage,” Julian said. “But lysosomal storage disorder symptoms show up within a few weeks after birth and are often fatal within a couple of years. Alzheimer’s disease occurs much later in life. The time frames are, therefore, very different.”

Julian’s collaborative team of researchers in the Department of Chemistry and the Division of Biomedical Sciences at UC Riverside posits that long-lived proteins, including beta-amyloid and tau, can undergo spontaneous modifications that can make them undigestible by the lysosomes. “Long-lived proteins become more problematic as we age and could account for the lysosomal storage seen in Alzheimer’s, an age-related disease,” Julian said. “If we are correct, it would open up new avenues for treatment and prevention of this disease.”

Study results appear in ACS Central Science, a journal of the American Chemical Society.

Source: https://news.ucr.edu/

VR Gives 3D Depiction Inside Blood Vessels

UW Medicine interventional radiologist Wayne Monsky first saw virtual reality’s vivid, 3D depiction of the inside of a phantom patient’s blood vessels, his jaw dropped in childlike wonder.

A virtual-reality depiction of a catheter navigating blood vessel. With a VR headset, this would be 3D (click on the image to enjoy video)

When you put the (VR) headset on … you have a giddy laugh that you can’t control – just sheer happiness and enthusiasm. (I’m) moving up to the mesenteric artery and I can’t believe what I’m seeing,” he recalled.

The experience reminds him of “Fantastic Voyage,” the ’60s-era sci-fi film about a submarine and crew that are miniaturized and injected into a scientist’s body to repair a blood clot.

As a child, and today, I’ve been amazed at the premise that one day you can swim around inside someone’s body. And really, that’s the sensation: You’re in it,” he said. Interventional radiologists use catheters, thin flexible tubes that are inserted into arteries and veins and steered to any organ in the body, guided by X-ray visuals. With this approach, they (and cardiologists, vascular surgeons, and neuro-interventionalists) treat an array of conditions: liver tumors, narrowed and bleeding arteries, uterine fibroids, and more.

Monsky and two collaborators have pioneered VR technology that puts the operator inside 3D blood vessels. By following an anatomically correct, dynamic, 3D map of a phantom patient’s vessels, Monsky navigates the catheter through junctions and angles. The catheter‘s tip is equipped with sensors that visually represent its exact location to the VR headset. It’s a sizable leap forward from the 2D, black-and-white X-ray perspective that has guided Monsky’s catheters through vessels for most of his career.

He recently presented study findings that underscore VR’s value: In tests of a phantom patient, VR guidance got him to the destination faster – about 40 seconds faster, on average, over 18 simulations – than was the case with X-ray guidance.

Source: https://newsroom.uw.edu/

Brain Tumour Treatment Is Set To Be Revolutionised By A Cheap Drug

A trio of medical experts from Manchester have made a potentially revolutionary breakthrough for the treatment of brain tumours.   Innovate Pharmaceuticals – led by Dr James Stuart, Simon Cohen and Jan Cohen – was part of the development team for a new drug, known as IP1867B. The pioneering medication could transform the future treatment of brain tumours.  The major cause of treatment failure in patients is resistance to targeted therapies and pre-clinical trials of the new drug have demonstrated its ability to sensitise tumours to the latest generation of treatments. Trials have even demonstrated a capacity for the drug to prevent tumours from acquiring resistance at all, which would dramatically improve the success of treatment for this particular cancer.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Our work on multiple disease areas in the cancer field has shown that hitting a number of targets with IP1867B allows us to not only shrink tumours but unmask them allowing other therapies to attack them, said Dr James Stuart, medical director at Eccles based Innovate Pharmaceuticals. “This action of ‘turning cold tumours hot’ alongside the reversal of acquired resistance, boosting combination efficacy and a possible lowering of side effect burden makes IP1867B a true breakthrough in cancer treatment. The next step is to take IP1867B into ‘first in human’ trial. We actively driving this next stage of development and look forward to seeing the results,” he explained.

Alongside Innovate Pharmaceuticals, trials were led by the research team at the Brain Tumour Research Centre at University of Portsmouth, working with the University of Liverpool and the University of Algarve in Portugal.  The success rate for cancer therapies has been limited due to a combination of factors, such as the tumour’s ability to hide from and develop resistance to the treatment; excessive side effects; the treatment not being clinically effective; and the lack of penetration through the blood brain barrierIP1867B was shown to be effective at targeting all of these limiting factors.  The research team worked with existing cancer treatments and combination studies with traditional chemotherapy, targeted therapies and immunotherapies are now underway.

Source: https://researchportal.port.ac.uk
AND
https://aboutmanchester.co.uk/

How To Turn Breast Cancer Cells Into Fat to Stop Them From Spreading

Researchers have been able to coax human breast cancer cells to turn into fat cells in a new proof-of-concept study in mice. To achieve this feat, the team exploited a weird pathway that metastasising cancer cells have; their results are just a first step, but it’s a truly promising approach. When you cut your finger, or when a foetus grows organs, the epithelium cells begin to look less like themselves, and more ‘fluid’ – changing into a type of stem cell called a mesenchyme and then reforming into whatever cells the body needs.

This process is called epithelial-mesenchymal transition (EMT) and it’s been known for a while that cancer can use both this one and the opposite pathway called MET (mesenchymal‐to‐epithelial transition), to spread throughout the body and metastasise. The researchers took mice implanted with an aggressive form of human breast cancer, and treated them with both a diabetic drug called rosiglitazone and a cancer treatment called trametinib. Thanks to these drugs, when cancer cells used one of the above-mentioned transition pathways, instead of spreading they changed from cancer into fat cells – a process called adipogenesis.

The image  shows this process, with the cancer cells tagged with a green fluorescent protein and normal red fat cell on the left. The cancer-turned-fat cells display as brown (on the right) because the red of the fat cells combines with the green of the protein cancer cell tag.

The models used in this study have allowed the evaluation of disseminating cancer cell adipogenesis in the immediate tumour surroundings,” the team wrote in their paper, published in January 2019. “The results indicate that in a patient-relevant setting combined therapy with rosiglitazone and trametinib specifically targets cancer cells with increased plasticity and induces their adipogenesis.

Although not every cancer cell changed into a fat cell, the ones that underwent adipogenesis didn’t change back. “The breast cancer cells that underwent an EMT not only differentiated into fat cells, but also completely stopped proliferating,” said senior author Gerhard Christofori, a biochemist at the University of Basel, in Switzerland. “As far as we can tell from long-term culture experiments, the cancer cells-turned-fat cells remain fat cells and do not revert back to breast cancer cells.

So how does this work? Well, as a drug trametinib both increases the transition process of cells – such as cancer cells turning into stem cells – and then increases the conversion of those stem cells into fat cellsRosiglitazone was less important, but in combination with trametinib, it also helped the stem cells convert into fat cells. “Adipogenic differentiation therapy with a combination of rosiglitazone and [trametinib] efficiently inhibits cancer cell invasion, dissemination, and metastasis formation in various preclinical mouse models of breast cancer,” wrote the team.

Source: https://www.cell.com/
AND
https://www.sciencealert.com/

I-Phone Apps Could Identify Alzheimer’s

Drugmaker Eli Lilly said early results from a study suggest that Apple Inc devices, including the iPhone, in combination with digital apps could differentiate people with mild Alzheimer’s disease dementia and those without symptoms. The study, tested in 113 participants over the age of 60, was conducted by Apple along with Eli Lilly and Evidation Health. The Apple devices were used along with the Beddit sleep monitoring device and digital apps in the study.

The researchers looked at device usage data and app history of the study participants over 12 weeks. People with symptoms tended to have slower typing than health volunteers, and received fewer text messages in total.

The participants were also asked to answer two one-question surveys daily as well as perform simple activities every two weeks, such as dragging one shape to the other and tapping a circle as fast as possible on an app. The study also aimed to differentiate people with mild cognitive impairment, the pre-dementia stage of Alzheimer’s disease.

Source: https://www.reuters.com/

Geno-Economics

Biologists don’t understand the link between genes and behavior, so why should economists? Many outside critics of economics complain that it’s not a science. In response, most economists have steadily improved the quality of their empirical methods. But a few economists are taking a different tack by borrowing from natural science. Neuroeconomists, for example, have put experimental subjects in MRI machines to measure how their brains behave when they’re making economic decisions, in order to search for clues to the mechanisms behind everyday behavior. Recently, a few economists have sought to use genetics to augment their understanding of economic outcomes. This has become possible thanks to the advent of cheap genome sequencing and widely available databases of human genetic information. But there are a number of reasons this line of research is likely to do more harm than good, at least until biologists better understand the ways that genes affect human development.

One major foray into the field of geno-economics came from Quamrul Ashraf of Williams College and Oded Galor of Brown University. In a 2013 paper published in the American Economic Review — arguably the most prestigious journal in economics — Ashraf and Galor argue that genetic diversity exerts a big influence on economic developmentToo much diversity, they argue, and people don’t trust each other. Too little diversity, and original ideas are hard to come by. Thus, the optional amount of diversity is a happy medium — a population homogeneous enough to cooperate, but diverse enough to have originality. Looking at genetic data, they found that Europe and East Asia tend to have a medium range of genetic diversity, with Africa on the high end and the indigenous populations of the Americas and Oceania on the low end. Since Europe and East Asia contain the most industrialized nations, Ashraf and Galor concluded that the data supported their hypothesis. Another geno-economics paper was recently published in the Journal of Public Economics — also a top journal — by economists Daniel Barth, Nicholas Papageorge and Kevin Thom. Rather than tackling the broad sweep of international development as Ashraf and Galor did, Barth et al. tried to use genetics to explain differences in individual wealth, using the Health and Retirement Study, which measures wealth and various other financial information. For each individual, they obtained a polygenic score — a number that represents statistical differences in a large set of genes — that tends to be correlated with educational attainment. Restricting their analysis only to people of European descent, Barth et al. then showed that this genetic statistic is correlated with more success in investing, even after controlling for things like income and education. They concluded that genetic endowments help some people invest more successfully, leading them to build up wealth over time.

Source: https://www.bloomberg.com/

One Injection Reduces Obesity In 4 Weeks

An injection has helped reduce body weight and glucose levels in patients with diabetes and obesity in four weeks. The findings came from a small study in which patients lost on average 4.4kg and the treatment led to substantial improvements to their blood glucose, with some patients’ reducing to near-normal levels.Obesity is a common problem in the UK and it is estimated that one in four adults are obese. One of the most common types of weight loss surgery is a procedure known as gastric bypass surgery, which can be very effective in keeping excess weight off and improving blood sugar levels in diabetics.  However, some patients decide against surgery and the procedure can cause complications such as abdominal pain, chronic nausea, vomiting and debilitating low blood sugar levels.

Previous research by Imperial College London suggested that one of the reasons why gastric bypass surgery works so well is because three specific hormones originating from the bowels are released in higher levels. This hormone combination, called ‘GOP’ for short, reduces appetite, causes weight loss and improves the body’s ability to use the sugar absorbed from eating. Researchers wanted to see if infusing patients with the GOP hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin and peptide YY, to mimic the high levels seen after surgery, could aid weight loss and reduce high glucose levelsFifteen patients were given the GOP treatment for four weeks using a pump that slowly injects the GOP mixture under the skin for 12 hours a day, beginning one hour before breakfast and disconnecting after their last meal of the day. Patients also received dietetic advice on healthy eating and weight loss from a dietician.

Obesity and type 2 diabetes can lead to very serious and potentially life-threatening conditions such as cancer, stroke and heart disease. There is a real need to find new medicines so we can improve and save the lives of many patients, said Tricia Tan, Professor of Practice (Metabolic Medicine & Endocrinology) at Imperial College London and lead author of the study. “Although this is a small study our new combination hormone treatment is promising and has shown significant improvements in patients’ health in only four weeks.  Compared to other methods the treatment is non-invasive and reduced glucose levels to near-normal levels in our patients”, she adds.

Source: https://www.imperial.ac.uk/

Injection Of Nanoparticle Effective Against Melanoma

Researchers at Tel Aviv University have developed a novel nano-vaccine for melanoma, the most aggressive type of skin cancer. Their innovative approach has so far proven effective in preventing the development of melanoma in mouse models and in treating primary tumors and metastases that result from melanoma. The focus of the research is on a nanoparticle that serves as the basis for the new vaccine. The study was led by Prof. Ronit Satchi-Fainaro, chair of the Department of Physiology and Pharmacology and head of the Laboratory for Cancer Research and Nanomedicine at TAU‘s Sackler Faculty of Medicine, and Prof. Helena Florindo of the University of Lisbon while on sabbatical at the Satchi-Fainaro lab at TAU. Melanoma develops in the skin cells that produce melanin or skin pigment.

The war against cancer in general, and melanoma in particular, has advanced over the years through a variety of treatment modalities, such as chemotherapy, radiation therapy and immunotherapy; but the vaccine approach, which has proven so effective against various viral diseases, has not materialized yet against cancer,” says Prof. Satchi-Fainaro. “In our study, we have shown for the first time that it is possible to produce an effective nano-vaccine against melanoma and to sensitize the immune system to immunotherapies.

The researchers harnessed tiny particles, about 170 nanometers in size, made of a biodegradable polymer. Within each particle, they “packed two peptides — short chains of amino acids, which are expressed in melanoma cells. They then injected the nanoparticles (or “nano-vaccines“) into a mouse model bearing melanoma. “The nanoparticles acted just like known vaccines for viral-borne diseases,” Prof. Satchi-Fainaro explains. “They stimulated the immune system of the mice, and the immune cells learned to identify and attack cells containing the two peptides — that is, the melanoma cells. This meant that, from now on, the immune system of the immunized mice will attack melanoma cells if and when they appear in the body.”

The results were published recently in Nature Nanotechnology.

Source: https://english.tau.ac.il/

Open Bionics Releases Affordable 3D Printed Bionic Arm

Back in January 2019, the UK-company Open Bionics announced it had raised about £5 million from investors to continue developing not just simple 3D printed prosthetics but bionic devices. Last year, the company actually released its first 3D printed bionic arm that was officially medically approved. The prosthetic devices cost about £10,000 ($13,060), which is a third of the cost of traditionally manufactured equivalents. The company has been capable of using 3D technologies to reduce its costs and offer customisable 3D printed bionic devices to clinics.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Until now the devices were exclusively available in the UK and France. However, the company announced a new partnership with Hanger Clinic to bring its products to the US. One of its key products is the 3D printed Hero Arm: showcasing multi-grip functionality but also empowering aesthetics for below elbow amputee adults and children (aged 8 and above). The Hero Arm, as its name implies can be personalised to resemble a superhero’s arm. Variations include designs inspired by Frozen, Marvel Comics or even Star Wars. The prosthetic device can perform a wide-range of actions like gripping, giving an OK sign, high fiving, fist bumping, or even picking up a small object. The company stated, “Special sensors within the Hero Arm detect muscle movements, meaning you can effortlessly control your bionic hand with intuitive life-like precision. Also, haptic vibrations, beepers, buttons and lights provide you with intuitive notifications.

The first US recipients of the Hero Arm includes 14-year-old Hanger Clinic patient Meredith Gross, a high school freshman. She was born missing part of her lower left arm. She is a competitive golfer and volleyball player and previously had to use sports-specific prostheses. For the first time, she is considering using the 3D printed device for everyday tasks as well. Her mom said, “The Hero Arm has opened up a whole new world for Meredith. She found success from the moment she put It on, and has been able to do things for the first time in her life. This device allows people like Meredith to own their differences with more confidence”.

Source: https://openbionics.com/
AND
https://www.3dnatives.com/

Solar-driven Water Splitting Catalyst Produces Hydrogen

Engineers from Lehigh University (Bethlehem, Pennsylvania)  are the first to utilize a single enzyme biomineralization process to create a catalyst that uses the energy of captured sunlight to split water molecules to produce hydrogen. The synthesis process is performed at room temperature and under ambient pressure, overcoming the sustainability and scalability challenges of previously reported methods.

Solar-driven water splitting is a promising route towards a renewable energy-based economy. The generated hydrogen could serve as both a transportation fuel and a critical chemical feedstock for fertilizer and chemical production. Both of these sectors currently contribute a large fraction of total greenhouse gas emissions.

One of the challenges to realizing the promise of solar-driven energy production is that, while the required water is an abundant resource, previously-explored methods utilize complex routes that require environmentally-damaging solvents and massive amounts of energy to produce at large scale. The expense and harm to the environment have made these methods unworkable as a long-term solution.

Now a team of engineers at Lehigh have harnessed a biomineralization approach to synthesizing both quantum confined nanoparticle metal sulfide particles and the supporting reduced graphene oxide material to create a photocatalyst that splits water to form hydrogen. The team reported their results in an article entitled: “Enzymatic synthesis of supported CdS quantum dot/reduced graphene oxide photocatalysts” featured on the cover of the August 7 issue of Green Chemistry, a journal of the Royal Society of Chemistry. “Our water-based process represents a scalable green route for the production of this promising photocatalyst technology,” says Professor Steven McIntosh, who is also associate director of Lehigh’s Institute for Functional Materials and Devices.

Source: https://engineering.lehigh.edu/

Neural Text-to-Speech Machine

Thanks to modern machine learning techniques, text-to-speech engines have made massive strides over the last few years. It used to be incredibly easy to know that it was a computer that was reading a text and not a human being. But that’s changing quickly. Amazon’s AWS cloud computing arm today launched a number of new neural text-to-speech models, as well as a new newscaster style that is meant to mimic the way… you guessed it… newscasters sound.

Man sitting in news studio with breaking news sign behind her. Ready to go live. Afro-american descent.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Speech quality is certainly important, but more can be done to make a synthetic voice sound even more realistic and engaging,” the company notes in today’s announcement. “What about style? For sure, human ears can tell the difference between a newscast, a sportscast, a university class and so on; indeed, most humans adopt the right style of speech for the right context, and this certainly helps in getting their message across.

The new newscaster style is now available in two U.S. voices (Joanna and Matthew) and Amazon is already working with USA Today and Canada’s The Globe and Mail, among a number of other companies, to help them. Amazon Polly Newscaster, as the new service is officially called, is the result of years of research on text-to-speech, which AWS is also now making available through its Neural Text-to-Speech engine. This new engine, which isn’t unlike similar neural engines like Google’s WaveNet and others, currently features 11 voices, three for U.K. English and eight for U.S. English.

Source: https://aws.amazon.com/

The Mind Controls Remotely Videogames

Scientists in Switzerland have developed a system which allows people with severely-impaired motor functions, such as quadriplegia, to use video games using only the power of their brain.

Samuel Kunz, who was paralysed after an accident, uses the brain-computer interface to control an avatar through a race course in a specially-designed computer game called ‘Brain Driver’. The ultimate aim of the research is to develop technology to control devices such as wheelchairs for those with a limited ability to move. Kunz, who is taking part in the trial, is able to ‘pilot’ the digital race-car using only his brain signals transmitted to a computer via electrodes placed on his head.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

These electrodes are connected to an amplifier and then to the computer and to our algorithms in the end. The algorithms are then calculating the brain signal and sending commands to the game that our pilot can actually control,” Dr. Rea Lehner, a neuroscientist at ETH Zurich explained. Lehner added Kunz is training his mind by imagining certain actions which are then translated into signals to control the race car. Thinking about moving his left hand makes the car turn left, thinking about moving his right hand turns the car right, and moving both together makes the car go straight. A fourth command – fully relaxing and clearing his mind – slows the car down. Kunz said it has taken a lot of practise to train his mind to control the game; which will be made even more difficult in a stadium full of people. He will be among those taking part in a special championship next year called Cybathlon in which people with physical disabilities compete against each other using state-of-the-art technology.

I have to be very concentrated. The connection between my fingers and my brain is not there anymore. I still try to move my fingers just in my head and so that needs a lot of concentration to do it exactly the same way every time,” Kunz told Reuters during a training session in Zurich.

Source: https://www.reuters.com/

Amputee Feels In Real-Time With Bionic Hand

Nine years after an accident caused the loss of his left hand, Dennis Aabo Sørensen from Denmark became the first amputee in the world to feel – in real-time – with a sensory-enhanced prosthetic hand that was surgically wired to nerves in his upper arm. Silvestro Micera and his team at EPFL Center for Neuroprosthetics (Ecole Polytechnique Fédérale de Lausanne in Switzerland) and SSSA (Italy) developed the revolutionary sensory feedback that allowed Sørensen to feel again while handling objects. A prototype of this bionic technology was tested in February 2013 during a clinical trial in Rome under the supervision of Paolo Maria Rossini at Gemelli Hospital (Italy). The study is published in the February 5, 2014 edition of Science Translational Medicine, and represents a collaboration called Lifehand 2 between several European universities and hospitals.
CLICK ON THE IMAGE TO ENJOY THE VIDEO

The sensory feedback was incredible,” reports the 36 year-old amputee from Denmark. “I could feel things that I hadn’t been able to feel in over nine years.” In a laboratory setting wearing a blindfold and earplugs, Sørensen was able to detect how strongly he was grasping, as well as the shape and consistency of different objects he picked up with his prosthetic. “When I held an object, I could feel if it was soft or hard, round or square.

Micera and his team enhanced the artificial hand with sensors that detect information about touch. This was done by measuring the tension in artificial tendons that control finger movement and turning this measurement into an electrical current. But this electrical signal is too coarse to be understood by the nervous system. Using computer algorithms, the scientists transformed the electrical signal into an impulse that sensory nerves can interpret. The sense of touch was achieved by sending the digitally refined signal through wires into four electrodes that were surgically implanted into what remains of Sørensen’s upper arm nerves.

This is the first time in neuroprosthetics that sensory feedback has been restored and used by an amputee in real-time to control an artificial limb,” says Micera. “We were worried about reduced sensitivity in Dennis’ nerves since they hadn’t been used in over nine years,” says Stanisa Raspopovic, first author and scientist at EPFL and SSSA. These concerns faded away as the scientists successfully reactivated Sørensen’s sense of touch.

Source: https://actu.epfl.ch/

Contact Lens Zooms On Your Command

It is absolutely the stuff of science fiction: a contact lens that zooms on your command. But scientists at the University of California San Diego have gone ahead and made it a reality. They’ve created a contact lens, controlled by eye movements, that can zoom in if you blink twice.

How is this possible? In the simplest of terms, the scientists measured the electrooculographic signals generated when eyes make specific movements (up, down, left, right, blink, double blink) and created a soft biomimetic lens that responds directly to those electric impulses. The lens created was able to change its focal length depending on the signals generated.

Therefore the lens could literally zoom in the blink of an eye. Incredibly, the lens works regardless of whether the user can see or not. It’s not about the sight, it’s about the electricity produced by specific movements.

Why create this? Why the hell not. The researchers believe this innovation could be used in “visual prostheses, adjustable glasses, and remotely operated robotics in the future,” but I’m waiting for them to turn up on CSI Miami. Could you imagine the crimes Ice-T could solve wearing these things?

Source: https://www.cnet.com/

New Cause Of Cell Aging Discovered: Findings Have Huge Implications

New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works. The findings potentially pave the way for better cancer treatments and revolutionary new drugs that could vastly improve human health in the twilight years. The work, from Assistant Professor of Chemical Engineering and Materials Science Nick Graham and his team in collaboration with Scott Fraser, Provost Professor of Biological Sciences and Biomedical Engineering, and Pin Wang, Zohrab A. Kaprielian Fellow in Engineering, was recently published in the Journal of Biological Chemistry.

LEFT: NON-SENESCENT CELLS WERE SHOWN WITH DIFFERENT COLORS. RIGHT: SENESCENT CELLS APPEARED OFTEN WITH MULTIPLE BLUE NUCLEI AND DID NOT SYNTHESIZE DNA.

To drink from the fountain of youth, you have to figure out where the fountain of youth is, and understand what the fountain of youth is doing,” Graham said. “We’re doing the opposite; we’re trying to study the reasons cells age, so that we might be able to design treatments for better aging.”

To achieve this, lead author Alireza Delfarah, a graduate student in the Graham lab, focused on senescence, a natural process in which cells permanently stop creating new cells. This process is one of the key causes of age-related decline, manifesting in diseases such as arthritis, osteoporosis and heart disease.

Senescent cells are effectively the opposite of stem cells, which have an unlimited potential for self-renewal or division,” Delfarah said. “Senescent cells can never divide again. It’s an irreversible state of cell cycle arrest.”

The research team discovered that the aging, senescent cells stopped producing a class of chemicals called nucleotides, which are the building blocks of DNA. When they took young cells and forced them to stop producing nucleotides, they became senescent, or aged. “This means that the production of nucleotides is essential to keep cells young,” Delfarah said. “It also means that if we could prevent cells from losing nucleotide synthesis, the cells might age more slowly.”

Graham’s team examined young cells that were proliferating robustly and fed them molecules labeled with stable isotopes of carbon, in order to trace how the nutrients consumed by a cell were processed into different biochemical pathways.

Scott Fraser and his lab worked with the research team to develop 3D imagery of the results. The images unexpectedly revealed that senescent cells often have two nuclei, and that they do not synthesize DNA. Before now, senescence has primarily been studied in cells known as fibroblasts, the most common cells that comprised the connective tissue in animals. Graham’s team is instead focusing on how senescence occurs in epithelial cells, the cells that line the surfaces of the organs and structures in the body and the type of cells in which most cancers arise. Graham said that senescence is most widely known as the body’s protective barrier against cancer: When cells sustain damage that could be at risk of developing into cancer, they enter into senescence and stop proliferating so that the cancer does not develop and spread.

Sometimes people talk about senescence as a double-edged sword, that it protects against cancer, and that’s a good thing,” Graham said. “But then it also promotes aging and diseases like diabetes, cardiac dysfunction or atherosclerosis and general tissue dysfunction,” he said. Graham said the goal was not to completely prevent senescence, because that might unleash cancer cells. “But then on the other hand, we would like to find a way to remove senescent cells to promote healthy aging and better function,” he explained.

Graham underscores that the team’s research has applications in the emerging field of senolytics, the development of drugs that may be able to eliminate aging cells. He said that human clinical trials are still in early stages, but studies with mice have shown that by eliminating senescent cells, mice age better, with a more productive life span. “They can take a mouse that’s aging and diminishing in function, treat it with senolytic drugs to eliminate the senescent cells, and the mouse is rejuvenated. If anything, it’s these senolytic drugs that are the fountain of youth,” Graham said. He added that in order for successful senolytic drugs to be designed, it was important to identify what is unique about senescent cells, so that drugs won’t affect the normal, non-senescent cells.

That’s where we’re coming in–studying senescent cell metabolism and trying to figure out how the senescent cells are unique, so that you could design targeted therapeutics around these metabolic pathways,” Graham added.

Source: https://viterbischool.usc.edu/
AND
https://eurekalert.org/

Stem Cells Restore Damaged Teeth

A new study demonstrates that stem cells from baby teeth can be used to repair damaged permanent teeth in young children. The findings suggest a new treatment for childhood dental issues may be around the corner. The treatment’s potential applications go much further than just dental health. Half of all children suffer some kind of dental injury while young. Sometimes the damage isn’t to the baby teeth they will lose anyway, but to the permanent adult teeth lying below the gums that they will need for the rest of their lives. In some cases, trauma can cut off the blood supply to a tooth and rot out the living pulp inside it; a condition called “pulp necrosis.” This condition often leads to the loss of the tooth. While treatment exists, it is often unsatisfactory.

A new clinical trial by Yan Jin, Kun Xuan, and Bei Li of the Fourth Military Medicine University in Xi’an, China and Songtao Shi of the University of Pennsylvania‘s School of Dental Medicine demonstrates how to repair teeth suffering from pulp necrosis by taking stem cells from the patient’s baby teeth.

The study, carried out in China on 40 children who had both damaged adult teeth and baby teeth that had yet to fall out, was published in the journal Science Translational Medicine. The test subjects were selected to either receive the new treatment or an older treatment called apexification, which attempts to address the issue by encouraging root development. This was considered the control group.

The patients who received the stem cell treatment, called human deciduous pulp stem cell (hDPSC) treatment, had pulp tissue taken out of one of their healthy baby teeth. This pulp is rich in stem cells. The cells were grown in a lab and then placed into the injured adult tooth. The hope was that the stem cells would encourage the growth of new pulp inside the tooth.

Follow-ups were carried out for up to three years. The patients who had received the hDPSC treatment showed better blood flow in their teeth, better root systems, and thicker dentin than the patents who underwent the traditional procedure. They also had recovered sensation in their teeth, while the control group had not. The use of a patient’s own cells in the treatment also reduced the risk of their body rejecting the therapymaking the concept even more attractive. “This treatment gives patients sensation back in their teeth. If you give them a warm or cold stimulation, they can feel it; they have living teeth again,” Dr. Shi told Penn Today. “For me, the results are very exciting. To see something we discovered take a step forward to potentially become a routine therapy in the clinic is gratifying.

Source: https://penntoday.upenn.edu/

Deciphering Breast Cancer

Breast cancer is one of the most common cancers, and one of the leading causes of death in women globally. Breast cancer is a disease where cells located in the breast grow out of control. Although a majority of breast cancers are discovered in women at the age of 50 years or older, the disease can affect anyone, including men and younger women, according to the Centers for Disease Control and Prevention (CDC). Last year there were 9.6 million deaths and 18.1 million new cases of breast cancer diagnosed globally according to the latest report from the International Agency for Research on Cancer (IARC) released in September 2018.

In 2019 alone, the U.S. National Cancer Institute estimates that there will be 268,600 new female breast cancer cases and 41,760 fatalities. Earlier this month, researchers based in Switzerland published in Cell their study in using applied artificial intelligence (AI) machine learning to create a comprehensive tumor and immune atlas of breast cancer ecosystems that lays the foundation for innovative precision medicine and immunotherapy.

The study was led by professor Bernd Bodenmiller, Ph.D. at the Institute of Molecular Life Sciences at the University of Zurich in Switzerland. Bodenmiller is a recipient of the 2019 Friedrich Miescher Award, Switzerland’s highest distinction for outstanding achievements in biochemistry. His team worked in collaboration with the Systems Biology Group at IBM Research in Zurich led by María Rodríguez Martínez, Ph.D. with the shared goal to produce a foundation for more targeted breast cancer treatment through precision medicine.

Source: https://www.ibm.com/